Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.601
1.
PLoS One ; 19(5): e0298864, 2024.
Article En | MEDLINE | ID: mdl-38753630

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-ß1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.


Disease Models, Animal , Fibrosis , GTP-Binding Proteins , Macaca fascicularis , Protein Glutamine gamma Glutamyltransferase 2 , Renal Insufficiency, Chronic , Transglutaminases , Animals , Humans , Fibrosis/drug therapy , Rabbits , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism
2.
Biochem Pharmacol ; 224: 116190, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604257

Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of 'phosphorylation barcode,' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.


Arrestins , Protein Transport , Receptor, Cannabinoid, CB1 , Signal Transduction , Humans , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , Signal Transduction/physiology , HEK293 Cells , Arrestins/metabolism , Protein Transport/physiology , GTP-Binding Proteins/metabolism , G-Protein-Coupled Receptor Kinases/metabolism , Animals , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics
3.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672511

TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.


Alkylating Agents , Catalytic Domain , GTP-Binding Proteins , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Transglutaminases/antagonists & inhibitors , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Humans , Alkylating Agents/chemistry , Alkylating Agents/pharmacology , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Protein Conformation , Kinetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
4.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581012

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Adenylyl Cyclases , GTP Phosphohydrolases , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , GTP Phosphohydrolases/metabolism , Molecular Docking Simulation , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Carrier Proteins , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
5.
Cells ; 13(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38607016

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.


Nervous System Diseases , Spastic Paraplegia, Hereditary , Animals , Humans , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , GTP-Binding Proteins/metabolism , Spastic Paraplegia, Hereditary/genetics , Mammals/metabolism
6.
Biophys Chem ; 309: 107234, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603989

Activation of heterotrimeric G-proteins (Gαßγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.


Guanine Nucleotide Exchange Factors , Signal Transduction , Phosphorylation , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , GTP-Binding Proteins/metabolism , Tyrosine/metabolism
7.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578826

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


B-Lymphocytes , Celiac Disease , GTP-Binding Proteins , Immunoglobulin A , Plasma Cells , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Celiac Disease/pathology , Humans , Transglutaminases/immunology , Transglutaminases/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Adult , Male , Female , Middle Aged , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Glutens/immunology
8.
Sci Rep ; 14(1): 9652, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671143

Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.


Muscarinic Agonists , Receptors, Muscarinic , Muscarinic Agonists/pharmacology , Receptors, Muscarinic/metabolism , Animals , Signal Transduction/drug effects , Humans , Pyridines/pharmacology , Carbachol/pharmacology , CHO Cells , Cricetulus , GTP-Binding Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits/genetics
9.
Front Immunol ; 15: 1371706, 2024.
Article En | MEDLINE | ID: mdl-38650935

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Fibroblasts , GTP-Binding Proteins , Hypertension, Pulmonary , Interleukin-6 , Lung , Mice, Transgenic , Protein Glutamine gamma Glutamyltransferase 2 , Pyruvate Kinase , Transglutaminases , Animals , Humans , Mice , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/etiology , Interleukin-6/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Transglutaminases/metabolism , Transglutaminases/genetics
10.
Exp Lung Res ; 50(1): 106-117, 2024.
Article En | MEDLINE | ID: mdl-38642025

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Autophagy , GTP-Binding Proteins , Lung Injury , Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Autophagy/drug effects , Inflammation/metabolism , Lipopolysaccharides , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Pneumonia/metabolism , Pulmonary Emphysema , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism
11.
J Cell Sci ; 137(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38587461

Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.


Dynamins , Microtubule-Associated Proteins , Mitochondria , Mitochondrial Dynamics , Monomeric GTP-Binding Proteins , Humans , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Phosphorylation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
12.
Mol Pharmacol ; 105(6): 386-394, 2024 May 17.
Article En | MEDLINE | ID: mdl-38641412

The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor (GPCR) that regulates important physiologic processes, including vascular tone, bronchoconstriction, and insulin secretion. It is expressed on a wide variety of cell types, including pancreatic beta, smooth muscle, neuronal, and immune cells. Agonist binding to the M3R is thought to initiate intracellular signaling events primarily through the heterotrimeric G protein Gq. However, reports differ on the ability of M3R to couple to other G proteins beyond Gq. Using members from the four primary G protein families (Gq, Gi, Gs, and G13) in radioligand binding, GTP turnover experiments, and cellular signaling assays, including live cell G protein dissociation and second messenger assessment of cAMP and inositol trisphosphate, we show that other G protein families, particularly Gi and Gs, can also interact with the human M3R. We further show that these interactions are productive as assessed by amplification of classic second messenger signaling events. Our findings demonstrate that the M3R is more promiscuous with respect to G protein interactions than previously appreciated. SIGNIFICANCE STATEMENT: The study reveals that the human M3 muscarinic acetylcholine receptor (M3R), known for its pivotal roles in diverse physiological processes, not only activates intracellular signaling via Gq as previously known but also functionally interacts with other G protein families such as Gi and Gs, expanding our understanding of its versatility in mediating cellular responses. These findings signify a broader and more complex regulatory network governed by M3R and have implications for therapeutic targeting.


GTP-Binding Proteins , Receptor, Muscarinic M3 , Signal Transduction , Receptor, Muscarinic M3/metabolism , Humans , Signal Transduction/physiology , GTP-Binding Proteins/metabolism , Animals , CHO Cells , Cricetulus , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells
13.
J Mol Biol ; 436(10): 168569, 2024 May 15.
Article En | MEDLINE | ID: mdl-38604527

Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.


GTP-Binding Proteins , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Humans , Transglutaminases/metabolism , Transglutaminases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Transcriptome/drug effects , Gene Expression Profiling , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Enzyme Inhibitors/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism
14.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38639976

The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding the spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, ß-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE), which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs-biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane-initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This, in turn, could highlight important considerations for future selective targeting of EP2 signalling pathways.


Receptors, Prostaglandin E, EP2 Subtype , Signal Transduction , Humans , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Female , Pregnancy , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , Endosomes/metabolism , Protein Transport , Myometrium/metabolism , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Alprostadil/metabolism , HEK293 Cells , Animals
15.
Theranostics ; 14(6): 2329-2344, 2024.
Article En | MEDLINE | ID: mdl-38646650

Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a comprehensive understanding of the pathological mechanisms underlying complications and identification of precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and explores TGase2 inhibition as a promising therapeutic approach in their treatment.


GTP-Binding Proteins , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Animals , Humans , Diabetes Mellitus , Diabetic Angiopathies , GTP-Binding Proteins/metabolism , Transglutaminases/metabolism , Transglutaminases/antagonists & inhibitors
16.
Cells ; 13(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38667282

Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.


GTP-Binding Proteins , Nervous System Neoplasms , Protein Glutamine gamma Glutamyltransferase 2 , Animals , Humans , GTP-Binding Proteins/metabolism , Nervous System Neoplasms/pathology , Nervous System Neoplasms/enzymology , Nervous System Neoplasms/metabolism , Transglutaminases/metabolism
17.
Vet Microbiol ; 293: 110089, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678845

Brucellosis is a zoonotic disease that affects wild and domestic animals. It is caused by members of the bacterial genus Brucella. Guanylate-binding protein 1 (GBP1) is associated with microbial infections. However, the role of GBP1 during Brucella infection remains unclear. This investigation aimed to identify the association of GBP1 with brucellosis. Results showed that Brucella infection induced GBP1 upregulation in RAW 264.7 murine macrophages. Small interfering GBP1 targeting RNAs were utilized to explore how GBP1 regulates the survival of Brucella intracellularly. Results revealed that GBP1 knockdown promoted Brucella's survival ability, activated Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammatory corpuscles, and induced pro-inflammatory cytokines IFN-γ and IL-1ß. Furthermore, Brucella stimulated the expression of GBP1 in bone marrow-derived macrophages (BMDMs) and mice. During the inhibition of GBP1 in BMDMs, the intracellular growth of Brucella increased. In comparison, GBP1 downregulation enhanced the accumulation of Brucella-induced reactive oxygen species (ROS) in macrophages. Overall, the data indicate a significant role of GBP1 in regulating brucellosis and suggest the function underlying its suppressive effect on the survival and growth of Brucella intracellularly.


Brucellosis , GTP-Binding Proteins , Macrophages , Animals , Mice , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Macrophages/microbiology , Brucellosis/microbiology , RAW 264.7 Cells , Brucella/genetics , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
18.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Article En | MEDLINE | ID: mdl-38488738

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Calcium , Chickens , Animals , Female , Calcium/metabolism , Chickens/metabolism , Protein Hydrolysates/chemistry , Peptides/chemistry , Hydrolysis , Papain/chemistry , Amino Acids , Calcium, Dietary/metabolism , GTP-Binding Proteins/metabolism , Meat , Ethanol
19.
Methods Mol Biol ; 2754: 33-54, 2024.
Article En | MEDLINE | ID: mdl-38512659

Alzheimer's disease, a progressive neurological disorder, is characterized by the accumulation of neurofibrillary tangles and senile plaques by Tau and amyloid-ß, respectively, in the brain microenvironment. The misfolded protein aggregates interact with several components of neuronal and glial cells such as membrane lipids, receptors, transporters, enzymes, cytoskeletal proteins, etc. Under pathological conditions, Tau interacts with several G-protein-coupled receptors (GPCRs), which undergoes either receptor signaling or desensitization followed by internalization of the protein complex. The purinergic GPCR, P2Y12 which is expressed in microglial cells, plays a key role in its activation and migration. Microglial cells sense and migrate to the site of injury aided by P2Y12 receptor that interacts with ADP released from damaged cells. P2Y12 receptor also interacts with misfolded Tau accumulated at the extracellular space and promotes receptor-mediated internalization. Immunocolocalization and co-immunoprecipitation studies demonstrated the interaction of Tau species with the P2Y12 receptor. Later, in-silico analyses were carried out with the repeat domain of Tau (TauRD), which has been identified as the interacting partner of P2Y12 receptor by in-vitro studies. Molecular docking and molecular dynamics simulation studies show the stability and the type of interaction in TauRD-receptor complex. Tau interaction with P2Y12 receptor plays a significant role in maintaining the active state of microglia which could lead to neuroinflammation and neuronal damage in AD brain. Hence, blocking P2Y12-Tau interaction and P2Y12-mediated Tau internalization in microglial cells could be possible therapeutic strategies in downregulating the severity of neuroinflammation in AD.


Alzheimer Disease , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Receptors, Purinergic P2Y12/metabolism , Purinergic P2Y Receptor Antagonists , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Microglia/metabolism , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism , tau Proteins/metabolism
20.
Phys Chem Chem Phys ; 26(14): 10698-10710, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38512140

Biased ligands selectively activating specific downstream signaling pathways (termed as biased activation) exhibit significant therapeutic potential. However, the conformational characteristics revealed are very limited for the biased activation, which is not conducive to biased drug development. Motivated by the issue, we combine extensive accelerated molecular dynamics simulations and an interpretable deep learning model to probe the biased activation features for two complex systems constructed by the inactive µOR and two different biased agonists (G-protein-biased agonist TRV130 and ß-arrestin-biased agonist endomorphin2). The results indicate that TRV130 binds deeper into the receptor core compared to endomorphin2, located between W2936.48 and D1142.50, and forms hydrogen bonding with D1142.50, while endomorphin2 binds above W2936.48. The G protein-biased agonist induces greater outward movements of the TM6 intracellular end, forming a typical active conformation, while the ß-arrestin-biased agonist leads to a smaller extent of outward movements of TM6. Compared with TRV130, endomorphin2 causes more pronounced inward movements of the TM7 intracellular end and more complex conformational changes of H8 and ICL1. In addition, important residues determining the two different biased activation states were further identified by using an interpretable deep learning classification model, including some common biased activation residues across Class A GPCRs like some key residues on the TM2 extracellular end, ECL2, TM5 intracellular end, TM6 intracellular end, and TM7 intracellular end, and some specific important residues of ICL3 for µOR. The observations will provide valuable information for understanding the biased activation mechanism for GPCRs.


Molecular Dynamics Simulation , Spiro Compounds , Thiophenes , GTP-Binding Proteins/metabolism , beta-Arrestins/metabolism , Machine Learning , Ligands
...