Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Metab Eng ; 79: 14-26, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406763

RESUMEN

Engineering the utilization of non-native substrates, or synthetic heterotrophy, in proven industrial microbes such as Saccharomyces cerevisiae represents an opportunity to valorize plentiful and renewable sources of carbon and energy as inputs to bioprocesses. We previously demonstrated that activation of the galactose (GAL) regulon, a regulatory structure used by this yeast to coordinate substrate utilization with biomass formation during growth on galactose, during growth on the non-native substrate xylose results in a vastly altered gene expression profile and faster growth compared with constitutive overexpression of the same heterologous catabolic pathway. However, this effort involved the creation of a xylose-inducible variant of Gal3p (Gal3pSyn4.1), the sensor protein of the GAL regulon, preventing this semi-synthetic regulon approach from being easily adapted to additional non-native substrates. Here, we report the construction of a variant Gal3pMC (metabolic coordinator) that exhibits robust GAL regulon activation in the presence of structurally diverse substrates and recapitulates the dynamics of the native system. Multiple molecular modeling studies suggest that Gal3pMC occupies conformational states corresponding to galactose-bound Gal3p in an inducer-independent manner. Using Gal3pMC to test a regulon approach to the assimilation of the non-native lignocellulosic sugars xylose, arabinose, and cellobiose yields higher growth rates and final cell densities when compared with a constitutive overexpression of the same set of catabolic genes. The subsequent demonstration of rapid and complete co-utilization of all three non-native substrates suggests that Gal3pMC-mediated dynamic global gene expression changes by GAL regulon activation may be universally beneficial for engineering synthetic heterotrophy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Factores de Transcripción/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Procesos Heterotróficos , Galactosa/genética , Galactosa/metabolismo , Xilosa/genética , Xilosa/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Mol Ecol ; 32(13): 3557-3574, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37052375

RESUMEN

Optimized nutrient utilization is crucial for the progression of microorganisms in competing communities. Here we investigate how different budding yeast species and ecological isolates have established divergent preferences for two alternative sugar substrates: Glucose, which is fermented preferentially by yeast, and galactose, which is alternatively used upon induction of the relevant GAL metabolic genes. We quantified the dose-dependent induction of the GAL1 gene encoding the central galactokinase enzyme and found that a very large diversification exists between different yeast ecotypes and species. The sensitivity of GAL1 induction correlates with the growth performance of the respective yeasts with the alternative sugar. We further define some of the mechanisms, which have established different glucose/galactose consumption strategies in representative yeast strains by modulating the activity of the Gal3 inducer. (1) Optimal galactose consumers, such as Saccharomyces uvarum, contain a hyperactive GAL3 promoter, sustaining highly sensitive GAL1 expression, which is not further improved upon repetitive galactose encounters. (2) Desensitized galactose consumers, such as S. cerevisiae Y12, contain a less sensitive Gal3 sensor, causing a shift of the galactose response towards higher sugar concentrations even in galactose experienced cells. (3) Galactose insensitive sugar consumers, such as S. cerevisiae DBVPG6044, contain an interrupted GAL3 gene, causing extremely reluctant galactose consumption, which is, however, improved upon repeated galactose availability. In summary, different yeast strains and natural isolates have evolved galactose utilization strategies, which cover the whole range of possible sensitivities by modulating the expression and/or activity of the inducible galactose sensor Gal3.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Azúcares/metabolismo , Galactosa/genética , Galactosa/metabolismo , Genes Fúngicos , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Metab Eng ; 74: 61-71, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152932

RESUMEN

Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.


Asunto(s)
Fucosa , Galactosa , Cricetinae , Animales , Células CHO , Cricetulus , Glicosilación , Fucosa/genética , Fucosa/metabolismo , Galactosa/genética , Galactosa/metabolismo , Polisacáridos/genética , Anticuerpos Monoclonales/genética , Inmunoglobulina G , Nucleótidos/metabolismo , Uridina Difosfato/metabolismo
4.
Microb Biotechnol ; 15(11): 2854-2860, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35829650

RESUMEN

Heavy metals, that is Cu(II), are harmful to the environment. There is an increasing demand to develop inexpensive detection methods for heavy metals. Here, we developed a yeast biosensor with reduced-noise and improved signal output for potential on-site copper ion detection. The copper-sensing circuit was achieved by employing a secondary genetic layer to control the galactose-inducible (GAL) system in Saccharomyces cerevisiae. The reciprocal control of the Gal4 activator and Gal80 repressor under copper-responsive promoters resulted in a low-noise and sensitive yeast biosensor for copper ion detection. Furthermore, we developed a betaxanthin-based colorimetric assay, as well as 2-phenylethanol and styrene-based olfactory outputs for the copper ion detection. Notably, our engineered yeast sensor confers a narrow range switch-like behaviour, which can give a 'yes/no' response when coupled with a betaxanthin-based visual phenotype. Taken together, we envision that the design principle established here might be applicable to develop other sensing systems for various chemical detections.


Asunto(s)
Técnicas Biosensibles , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cobre , Factores de Transcripción/genética , Betaxantinas , Proteínas Represoras , Galactosa/genética , Técnicas Biosensibles/métodos
5.
Trends Genet ; 38(1): 97-106, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34538504

RESUMEN

The Leloir galactose utilization or GAL pathway of budding yeasts, including that of the baker's yeast Saccharomyces cerevisiae and the opportunistic human pathogen Candida albicans, breaks down the sugar galactose for energy and biomass production. The GAL pathway has long served as a model system for understanding how eukaryotic metabolic pathways, including their modes of regulation, evolve. More recently, the physical linkage of the structural genes GAL1, GAL7, and GAL10 in diverse budding yeast genomes has been used as a model for understanding the evolution of gene clustering. In this review, we summarize exciting recent work on three different aspects of this iconic pathway's evolution: gene cluster organization, GAL gene regulation, and the population genetics of the GAL pathway.


Asunto(s)
Saccharomycetales , Galactosa/genética , Galactosa/metabolismo , Genes Fúngicos , Humanos , Familia de Multigenes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
6.
Plant Sci ; 313: 111063, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763857

RESUMEN

Kiwifruit is known as 'the king of vitamin C' because of the high content of ascorbic acid (AsA) in the fruit. Deciphering the regulatory network and identification of the key regulators mediating AsA biosynthesis is vital for fruit nutrition and quality improvement. To date, however, the key transcription factors regulating AsA metabolism during kiwifruit developmental and ripening processes remains largely unknown. Here, we generated a putative transcriptional regulatory network mediating ascorbate metabolism by transcriptome co-expression analysis. Further studies identified an ethylene response factor AcERF91 from this regulatory network, which is highly co-expressed with a GDP-galactose phosphorylase encoding gene (AcGGP3) during fruit developmental and ripening processes. Through dual-luciferase reporter and yeast one-hybrid assays, it was shown that AcERF91 is able to bind and directly activate the activity of the AcGGP3 promoter. Furthermore, transient expression of AcERF91 in kiwifruit fruits resulted in a significant increase in AsA content and AcGGP3 transcript level, indicating a positive role of AcERF91 in controlling AsA accumulation via regulation of the expression of AcGGP3. Overall, our results provide a new insight into the regulation of AsA metabolism in kiwifruit.


Asunto(s)
Actinidia/genética , Actinidia/metabolismo , Ácido Ascórbico/metabolismo , Etilenos/metabolismo , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Fosforilasas/metabolismo , Ácido Ascórbico/genética , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Frutas/genética , Frutas/metabolismo , Galactosa/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Guanosina Difosfato/genética , Fosforilasas/genética
7.
Plant Physiol ; 185(4): 1574-1594, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793952

RESUMEN

The enzymes involved in l-ascorbate biosynthesis in photosynthetic organisms (the Smirnoff-Wheeler [SW] pathway) are well established. Here, we analyzed their subcellular localizations and potential physical interactions and assessed their role in the control of ascorbate synthesis. Transient expression of C terminal-tagged fusions of SW genes in Nicotiana benthamiana and Arabidopsis thaliana mutants complemented with genomic constructs showed that while GDP-d-mannose epimerase is cytosolic, all the enzymes from GDP-d-mannose pyrophosphorylase (GMP) to l-galactose dehydrogenase (l-GalDH) show a dual cytosolic/nuclear localization. All transgenic lines expressing functional SW protein green fluorescent protein fusions driven by their endogenous promoters showed a high accumulation of the fusion proteins, with the exception of those lines expressing GDP-l-galactose phosphorylase (GGP) protein, which had very low abundance. Transient expression of individual or combinations of SW pathway enzymes in N. benthamiana only increased ascorbate concentration if GGP was included. Although we did not detect direct interaction between the different enzymes of the pathway using yeast-two hybrid analysis, consecutive SW enzymes, as well as the first and last enzymes (GMP and l-GalDH) associated in coimmunoprecipitation studies. This association was supported by gel filtration chromatography, showing the presence of SW proteins in high-molecular weight fractions. Finally, metabolic control analysis incorporating known kinetic characteristics showed that previously reported feedback repression at the GGP step, combined with its relatively low abundance, confers a high-flux control coefficient and rationalizes why manipulation of other enzymes has little effect on ascorbate concentration.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Ascórbico/biosíntesis , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fosforilasas/metabolismo , Ácido Ascórbico/genética , Galactosa/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Guanosina Difosfato/genética , Mutación , Fosforilasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
8.
Genetics ; 217(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33724406

RESUMEN

Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Hongos/genética , Galactosidasas/genética , Transferencia de Gen Horizontal , Hongos/clasificación , Galactosa/genética , Galactosa/metabolismo , Filogenia
10.
Sci Rep ; 11(1): 4000, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597579

RESUMEN

Galactomannan is a polymer of high economic importance and is extracted from the seed endosperm of clusterbean (C. tetragonoloba). In the present study, we worked to reveal the stage-specific galactomannan biosynthesis and its regulation in clusterbean. Combined electron microscopy and biochemical analysis revealed high protein and gum content in RGC-936, while high oil bodies and low gum content in M-83. A comparative transcriptome study was performed between RGC-936 (high gum) and M-83 (low gum) varieties at three developmental stages viz. 25, 39, and 50 days after flowering (DAF). Total 209,525, 375,595 and 255,401 unigenes were found at 25, 39 and 50 DAF respectively. Differentially expressed genes (DEGs) analysis indicated a total of 5147 shared unigenes between the two genotypes. Overall expression levels of transcripts at 39DAF were higher than 50DAF and 25DAF. Besides, 691 (RGC-936) and 188 (M-83) candidate unigenes that encode for enzymes involved in the biosynthesis of galactomannan were identified and analyzed, and 15 key enzyme genes were experimentally validated by quantitative Real-Time PCR. Transcription factor (TF) WRKY was observed to be co-expressed with key genes of galactomannan biosynthesis at 39DAF. We conclude that WRKY might be a potential biotechnological target (subject to functional validation) for developing high gum content varieties.


Asunto(s)
Cyamopsis/química , Endospermo/química , Galactosa/análogos & derivados , Mananos/biosíntesis , Mananos/química , Semillas/química , Metabolismo de los Hidratos de Carbono , Galactosa/biosíntesis , Galactosa/química , Galactosa/genética , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Mananos/genética , Microscopía , Microscopía Electrónica , Conformación Molecular , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
11.
Biochimie ; 183: 13-17, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33181226

RESUMEN

Type IV galactosemia is a recently discovered inherited metabolic disease. It is caused by mutations in the GALM gene which result in reduced activity of the enzyme galactose mutarotase. This enzyme catalyses the interconversion of the α- and ß-anomers of d-galactose and some other monosaccharides. Human galactose mutarotase is monomeric and its structure is largely composed of ß-sheets. The catalytic mechanism requires a histidine residue acting as an acid, and a glutamate acting as a base. Together, these residues open the pyranose ring of d-galactose enabling free rotation of the bond between the first two carbon atoms in the monosaccharide. This can cause reversal of the configuration of the hydroxyl group attached to carbon 1. Type IV galactosemia manifests with similar symptoms to type II galactosemia (galactokinase deficiency), i.e. early onset cataracts. However, as a recently discovered disease, the longer-term consequences are unknown. The physiological role, if any, of galactose mutarotase's reactions with other monosaccharides are not yet known. The possible associations with other proteins also require further investigation.


Asunto(s)
Carbohidrato Epimerasas , Galactosa , Galactosemias , Mutación , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Galactosa/química , Galactosa/genética , Galactosa/metabolismo , Galactosemias/genética , Galactosemias/metabolismo , Humanos , Conformación Proteica en Lámina beta
12.
Glycoconj J ; 37(6): 691-702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064245

RESUMEN

Changes in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well-established glycomic and glycopeptidomic assays has repeatedly demonstrated inflammation-induced changes in IgG glycosylation. However, these assays are usually based on specialized analytical instrumentation which could be considered a technical barrier for uptake by some laboratories. Hence there is a growing demand for simple biochemical assays for analyzing these glycosylation changes. We have addressed this need by introducing a novel glycosidase plate-based assay for the absolute quantification of galactosylation and sialylation on IgG. IgG glycoproteins are treated with specific exoglycosidases to release the galactose and/or sialic acid residues. The released galactose monosaccharides are subsequently used in an enzymatic redox reaction that produces a fluorescence signal that is quantitative for the amount of galactosylation and, in-turn, sialylation on IgG. The glycosidase plate-based assay has the potential to be a simple, initial screening assay or an alternative assay to the usage of high-end analytical platforms such as HILIC-FLD-MSn when considering the analysis of galactosylation and sialylation on IgG. We have demonstrated this by comparing our assay to an industrial established HILIC-FLD-MSn glycomic analysis of 15 patient samples and obtained a Pearson's r correlation coefficient of 0.8208 between the two methods.


Asunto(s)
Galactosa/genética , Inmunoglobulina G/química , Ácido N-Acetilneuramínico/genética , Galactosa/química , Glicoproteínas/química , Glicoproteínas/genética , Glicósido Hidrolasas/química , Glicosilación , Humanos , Inmunoglobulina G/genética
13.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33046563

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is a formidable human pathogen that is capable of asymptomatically colonizing the nasopharynx. Progression from colonization to invasive disease involves adaptation to distinct host niches, which vary markedly in the availability of key nutrients such as sugars. We previously reported that cell-cell signaling via the autoinducer 2 (AI-2)/LuxS quorum-sensing system boosts the capacity of S. pneumoniae to utilize galactose as a carbon source by upregulation of the Leloir pathway. This resulted in increased capsular polysaccharide production and a hypervirulent phenotype. We hypothesized that this effect was mediated by phosphorylation of GalR, the transcriptional activator of the Leloir pathway. GalR is known to possess three putative phosphorylation sites, S317, T319, and T323. In the present study, derivatives of S. pneumoniae D39 with putative phosphorylation-blocking alanine substitution mutations at each of these GalR sites (singly or in combination) were constructed. Growth assays and transcriptional analyses revealed complex phenotypes for these GalR mutants, with impacts on the regulation of both the Leloir and tagatose 6-phosphate pathways. The alanine substitution mutations significantly reduced the capacity of pneumococci to colonize the nasopharynx, middle ear, and lungs in a murine intranasal challenge model.IMPORTANCE Pneumococcal survival in the host and capacity to transition from a commensal to a pathogenic lifestyle are closely linked to the organism's ability to utilize specific nutrients in distinct niches. Galactose is a major carbon source for pneumococci in the upper respiratory tract. We have shown that both the Leloir and tagatose 6-phosphate pathways are necessary for pneumococcal growth in galactose and demonstrated GalR-mediated interplay between the two pathways. Moreover, the three putative phosphorylation sites in the transcriptional regulator GalR play a critical role in galactose metabolism and are important for pneumococcal colonization of the nasopharynx, middle ear, and lungs.


Asunto(s)
Galactosa/metabolismo , Mutación/genética , Proteínas Represoras/genética , Streptococcus pneumoniae/genética , Animales , Oído Medio/microbiología , Femenino , Galactosa/genética , Expresión Génica , Humanos , Pulmón/microbiología , Ratones , Mutagénesis Sitio-Dirigida , Nasofaringe/microbiología , Fosforilación , Proteínas Represoras/química , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo
14.
Front Immunol ; 11: 2068, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013875

RESUMEN

Background: Recurrence of IgA nephropathy (IgAN) in the transplanted kidney is associated with graft survival, but no specific treatment is available. Tonsillectomy (TE) reportedly arrests the progression of IgAN in the native kidney. Thus, we conducted a single-center retrospective cohort study to evaluate the effect of TE prior to IgAN recurrence. Methods: Of the 36 patients with biopsy-proven IgAN who underwent kidney transplantation, 27 were included in this study. Nine patients underwent TE at 1 year after kidney transplantation (group 1), and the remaining 18 did not undergo TE (group 2). Results: The rate of histological IgAN recurrence was significantly lower in group 1 than in group 2 (11.1 vs. 55.6%, log-rank p = 0.046). In addition, half of the recurrent patients in group 2 exhibited active lesions, compared to none in group 1. Serum Gd-IgA1 levels decreased after TE in group 1, whereas they remained stable or increased slightly in group 2. In the recurrent cases, IgA and Gd-IgA1 were found in the germinal center in addition to the mantle zone of tonsils. Finally, mesangial IgA and Gd-IgA1 immunoreactivity was reduced after TE in some cases. Conclusion: Our data suggest that TE at 1 year after kidney transplantation might be associated with the reduced rate of histological IgAN recurrence. TE arrested or reduced serum Gd-IgA1 and mesangial Gd-IgA1 immunoreactivity. Therefore, we generated a hypothesis that serum Gd-IgA1 derived from the tonsils may play a pivotal role in the pathogenesis of IgAN. Based on these findings, we need to conduct verification in a prospective randomized controlled trial.


Asunto(s)
Galactosa/inmunología , Centro Germinal/inmunología , Glomerulonefritis por IGA/inmunología , Trasplante de Riñón , Riñón/patología , Tonsila Palatina/fisiología , Adulto , Femenino , Estudios de Seguimiento , Galactosa/genética , Humanos , Inmunoglobulina A/metabolismo , Masculino , Recurrencia , Tonsilectomía , Trasplante Homólogo
15.
J Microbiol Biotechnol ; 30(12): 1919-1926, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-32958732

RESUMEN

CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN , Escherichia coli/genética , Galactosa/genética , Expresión Génica , Mutación , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida
16.
Glycoconj J ; 37(5): 577-588, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827291

RESUMEN

ß1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.


Asunto(s)
Galactosiltransferasas/genética , Glicosaminoglicanos/genética , Aparato de Golgi/genética , Polisacáridos/genética , Línea Celular , Galactosa/genética , Galactosiltransferasas/química , Técnicas de Inactivación de Genes , Glicosaminoglicanos/química , Glicosilación , Humanos , Sulfato de Queratano/química , Polisacáridos/metabolismo
17.
Curr Genet ; 66(6): 1029-1035, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32686056

RESUMEN

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae. We focus on methods and analyses of GAL (as well as MAL and INO) memory in single cells and discuss the challenges in unraveling the underlying mechanisms in yeast and higher eukaryotes.


Asunto(s)
Galactoquinasa/genética , Galactosa/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Cromatina/genética , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual , Azúcares/metabolismo
18.
Biotechnol Prog ; 36(6): e3045, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32627435

RESUMEN

Antibody-dependent cell-mediated cytotoxicity (ADCC) has been identified as one of the potentially critical effector functions underlying the clinical efficacy of some therapeutic immunoglobin G1 (IgG1) antibodies. It has been well established that higher levels of afucosylated N-linked glycan structures on the Fc region enhance the IgG binding affinity to the FcγIIIa receptor and lead to increased ADCC activity. However, whether terminal galactosylation of an IgG1 impacts its ADCC activity is less understood. Here, we used a new strategy for glycan enrichment and remodeling to study the impact of terminal galactose on ADCC activity for therapeutic IgG1s. Our results indicate that the degree of influence of terminal galactose on in vitro ADCC activity depends on the presence or absence of the core fucose, which is typically linked to the first N-acetyl glucosamine residue of an N-linked glycosylation core structure. Specifically, terminal galactose on afucosylated IgG1 mAbs enhanced ADCC activity with impact coefficients (ADCC%/Gal%) more than 20, but had minimal influence on ADCC activity on fucosylated structures with impact coefficient in the range of 0.1-0.2. Knowledge gained here can be used to guide product and process development activities for biotherapeutic antibodies that require effector function for efficacy, and also highlight the complexity in modulating the immune response through N-linked glycosylation of antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Fragmentos Fc de Inmunoglobulinas/química , Receptores de IgG/genética , Anticuerpos Monoclonales/genética , Fucosa/química , Fucosa/genética , Galactosa/química , Galactosa/genética , Glicosilación/efectos de los fármacos , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/química , Inmunoglobulina G/genética , Polisacáridos/química , Polisacáridos/genética , Receptores de IgG/química
19.
Sci Rep ; 10(1): 11498, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661246

RESUMEN

Chondrus crispus is a marine red alga with sulfated galactans, called carrageenans, in its extracellular matrix. Chondrus has a complex haplodiplontic life cycle, alternating between male and female gametophytes (n) and tetrasporophytes (2n). The Chondrus life cycle stages are isomorphic; however, a major phenotypic difference is that carrageenan composition varies significantly between the tetrasporophytes (mainly lambda-carrageenan) and the gametophytes (mainly kappa/iota-carrageenans). The disparity in carrageenan structures, which confer different chemical properties, strongly suggests differential regulation of carrageenan-active genes between the phases of the Chondrus life cycles. We used a combination of taxonomy, biochemistry and molecular biology to characterize the tetrasporophytes and male and female gametophytes from Chondrus individuals isolated from the rocky seashore off the northern coast of France. Transcriptomic analyses reveal differential gene expression of genes encoding several galactose-sulfurylases, carbohydrate-sulfotransferases, glycosyltransferases, and one family 16 glycoside hydrolase. Differential expression of carrageenan-related genes was found primarily between gametophytes and tetrasporophytes, but also between the male and female gametophytes. The differential expression of these multigenic genes provides a rare glimpse into cell wall biosynthesis in algae. Furthermore, it strongly supports that carrageenan metabolism holds an important role in the physiological differentiation between the isomorphic life cycle stages of Chondrus.


Asunto(s)
Carragenina/genética , Chondrus/genética , Receptores Inmunológicos/genética , Animales , Carragenina/metabolismo , Chondrus/crecimiento & desarrollo , Galactosa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Estadios del Ciclo de Vida/genética
20.
Biotechnol Prog ; 36(6): e3016, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32390308

RESUMEN

Quality control of monoclonal antibodies is challenging due in part to the diversity of post-translational modifications present. The regulation of the N-glycans of IgG-Fc domain is one of the key factors to maintain the safety and efficacy of antibody drugs. The FcγRIIIa affinity column is an attractive tool for the precise analysis of the N-glycans in IgG-Fc domain. We used the mutant FcγRIIIa, which is produced in Escherichia coli and is therefore not glycosylated, as an affinity reagent to analyze the N-glycans of monoclonal antibodies expressed in Expi293 and ExpiCHO cells. The monoclonal antibodies expressed in these cells showed very different chromatograms, because of differences in terminal galactose residues on the IgG-Fc domains. We also carried out kinetic and thermodynamic analyses to understand the interaction between monoclonal antibodies and the mutant FcγRIIIa. Expi293 cell-derived monoclonal antibodies had higher affinity for the mutant FcγRIIIa than those derived from ExpiCHO cells, due to slower off rates and lower binding entropy loss. Collectively, our results suggest that the FcγRIIIa column can be used to analyze the glycosylation of antibodies rapidly and specifically.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Inmunoglobulina G/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Receptores de IgG/genética , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Células CHO , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Galactosa/genética , Glicosilación , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ligandos , Polisacáridos/química , Polisacáridos/genética , Procesamiento Proteico-Postraduccional/genética , Receptores de IgG/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA