Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(9): 2754-2771, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224521

RESUMEN

l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.


Asunto(s)
Ácido Ascórbico , Frutas , Myrtaceae , Proteínas de Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Myrtaceae/metabolismo , Myrtaceae/genética , Galactosa Deshidrogenasas/metabolismo , Galactosa Deshidrogenasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética
2.
J Mol Biol ; 432(7): 2186-2203, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32087198

RESUMEN

3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.


Asunto(s)
Cisteína/química , Galactosa Deshidrogenasas/metabolismo , Galactosa/análogos & derivados , Ácido Glutámico/química , NADP/metabolismo , Vibrio/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cisteína/genética , Cisteína/metabolismo , Galactosa/metabolismo , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Modelos Moleculares , Mutación , Filogenia , Homología de Secuencia
3.
Protein Expr Purif ; 108: 41-47, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25591389

RESUMEN

Oxidoreductases are an important family of enzymes that are used in many biotechnological processes. An experimental design was applied to optimize partition and purification of two recombinant oxidoreductases, glucose dehydrogenase (GDH) from Bacillus subtilis and d-galactose dehydrogenase (GalDH) from Pseudomonas fluorescens AK92 in aqueous two-phase systems (ATPS). Response surface methodology (RSM) with a central composite rotatable design (CCRD) was performed to optimize critical factors like polyethylene glycol (PEG) concentration, concentration of salt and pH value. The best partitioning conditions was achieved in an ATPS composed of 12% PEG-6000, 15% K2HPO4 with pH 7.5 at 25°C, which ensured partition coefficient (KE) of 66.6 and 45.7 for GDH and GalDH, respectively. Under these experimental conditions, the activity of GDH and GalDH was 569.5U/ml and 673.7U/ml, respectively. It was found that these enzymes preferentially partitioned into the top PEG-rich phase and appeared as single bands on SDS-PAGE gel. Meanwhile the validity of the response model was confirmed by a good agreement between predicted and experimental results. Collectively, according to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of any enzyme from oxidoreductase family.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas , Galactosa Deshidrogenasas , Glucosa 1-Deshidrogenasa , Pseudomonas fluorescens/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Galactosa Deshidrogenasas/biosíntesis , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/aislamiento & purificación , Glucosa 1-Deshidrogenasa/biosíntesis , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/aislamiento & purificación , Pseudomonas fluorescens/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
4.
Mol Plant Microbe Interact ; 27(12): 1307-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25387133

RESUMEN

Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.


Asunto(s)
Medicago sativa/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Polisacáridos Bacterianos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología , Aminas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencenosulfonatos , Colorantes Fluorescentes , Galactosa/genética , Galactosa/metabolismo , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Genes Reporteros , Concentración de Iones de Hidrógeno , Medicago sativa/citología , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Nódulos de las Raíces de las Plantas/citología , Plantones/citología , Plantones/microbiología , Sinorhizobium meliloti/citología , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis , Factores de Tiempo
5.
Appl Microbiol Biotechnol ; 98(23): 9653-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25236800

RESUMEN

Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast.


Asunto(s)
Arabinosa/metabolismo , Galactosa Deshidrogenasas/metabolismo , Rhizobium leguminosarum/enzimología , Saccharomyces cerevisiae/metabolismo , Azúcares Ácidos/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Estabilidad de Enzimas , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/aislamiento & purificación , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , NAD/metabolismo , NADP/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rhizobium leguminosarum/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
6.
Biochemistry ; 53(28): 4661-70, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24963813

RESUMEN

A previously unknown metabolic pathway for the utilization of l-galactose was discovered in a prevalent gut bacterium, Bacteroides vulgatus. The new pathway consists of three previously uncharacterized enzymes that were found to be responsible for the conversion of l-galactose to d-tagaturonate. Bvu0219 (l-galactose dehydrogenase) was determined to oxidize l-galactose to l-galactono-1,5-lactone with kcat and kcat/Km values of 21 s(-1) and 2.0 × 10(5) M(-1) s(-1), respectively. The kinetic product of Bvu0219 is rapidly converted nonenzymatically to the thermodynamically more stable l-galactono-1,4-lactone. Bvu0220 (l-galactono-1,5-lactonase) hydrolyzes both the kinetic and thermodynamic products of Bvu0219 to l-galactonate. However, l-galactono-1,5-lactone is estimated to be hydrolyzed 300-fold faster than its thermodynamically more stable counterpart, l-galactono-1,4-lactone. In the final step of this pathway, Bvu0222 (l-galactonate dehydrogenase) oxidizes l-galactonate to d-tagaturonate with kcat and kcat/Km values of 0.6 s(-1) and 1.7 × 10(4) M(-1) s(-1), respectively. In the reverse direction, d-tagaturonate is reduced to l-galactonate with values of kcat and kcat/Km of 90 s(-1) and 1.6 × 10(5) M(-1) s(-1), respectively. d-Tagaturonate is subsequently converted to d-glyceraldehyde and pyruvate through enzymes encoded within the degradation pathway for d-glucuronate and d-galacturonate.


Asunto(s)
Bacteroides/metabolismo , Galactosa/metabolismo , Intestinos/microbiología , Microbiota , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/genética , Galactosa/genética , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Humanos
7.
Bioprocess Biosyst Eng ; 37(3): 383-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23820824

RESUMEN

D-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert D-galactose into D-galactonate, a valuable compound in the polymer and cosmetic industries. D-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L(-1) D-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L(-1) D-galactonate. Inherent metabolic pathways for assimilating both D-galactose and D-galactonate were blocked to enhance the production of D-galactonate. This approach finally led to a 7.3-fold increase with D-galactonate concentration of 1.24 g L(-1) and yield of 62.0 %. Batch fermentation in 20 g L(-1) D-galactose of E. coli ∆galK∆dgoK mutant expressing the gld resulted in 17.6 g L(-1) of D-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of D-galactonate.


Asunto(s)
Escherichia coli/metabolismo , Azúcares Ácidos/metabolismo , Secuencia de Bases , Clonación Molecular , Medios de Cultivo , Cartilla de ADN , Escherichia coli/genética , Galactosa Deshidrogenasas/genética , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Pseudomonas syringae/enzimología , Azúcares Ácidos/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-23832214

RESUMEN

In plants, L-galactose dehydrogenase (L-GalDH) is a key enzyme in the biosynthesis of ascorbic acid (AsA), which is well known as a unique antioxidant compound and a cofactor for many enzymes. L-GalDH catalyses the oxidation of L-galactose to L-galactono-1,4-lactone. Rice L-GalDH was overexpressed in Escherichia coli, purified and crystallized. Diffraction-quality rod-shaped crystals were grown using a sitting-drop vapour-diffusion method. The L-GalDH crystals exhibited the symmetry of space group P21 and diffracted to a resolution of 1.2 Å. The crystals had unit-cell parameters a = 46.8, b = 54.9, c = 56.9 Å, ß = 102.3°. On the basis of the Matthews coefficient (VM = 2.1 Å(3) Da(-1), solvent content of 42.3%), it was estimated that one peptide was present in the asymmetric unit.


Asunto(s)
Galactosa Deshidrogenasas/química , Oryza/enzimología , Proteínas Recombinantes/química , Cristalización , Cristalografía por Rayos X , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Plant Physiol Biochem ; 70: 269-77, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23800662

RESUMEN

Ascorbate is a primary antioxidant and an essential enzyme cofactor in plants, which has an important effect on the development of plant root system. To investigate the molecular mechanisms of ascorbate accumulation during root development and reveal the key genes of the ascorbate biosynthesis and recycling pathways, the expression of 16 related genes together with ascorbate abundance were analyzed in the flesh and skin of radish (Raphanus sativus L.) fleshy root. The content of ascorbate decreased with root growth in both the flesh and skin. Expression of GDP-d-mannose pyrophosphorylase, GDP-d-mannose-3',5'-epimerase and d-galacturonate reductase were also decreased and correlated with ascorbate levels in the flesh. In the skin, the expression of GDP-d-mannose pyrophosphorylase and l-galactose dehydrogenase was correlated with ascorbate levels. These results suggested that ascorbate accumulation is affected mainly by biosynthesis rather than recycling in radish root, and the l-galactose pathway may be the major biosynthetic route of ascorbate, and moreover, the salvage pathway may also contribute to ascorbate accumulation. The data suggested that GDP-d-mannose pyrophosphorylase could play an important role in the regulation of ascorbate accumulation during radish fleshy taproot development.


Asunto(s)
Ácido Ascórbico/genética , Expresión Génica , Genes de Plantas , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raphanus/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/biosíntesis , Ácido Ascórbico/metabolismo , Galactosa/genética , Galactosa/metabolismo , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+) , Fosforilasas/genética , Fosforilasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raphanus/enzimología , Raphanus/metabolismo , Transcriptoma
10.
Planta ; 230(1): 39-51, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19337748

RESUMEN

To further understand the regulatory mechanism of light on the formation of ascorbic acid (AsA) in the sink organs of plants, a systematical investigation on AsA levels, activities of two key biosynthsis enzymes and their mRNA expression as well as the recycling was performed in the fruits of apple (Malus domestica Borkh), under different levels of shade. After the whole trees were shaded with the sun-light about 50-55% for 20 days, AsA levels were significantly decreased in fruit peel, flesh and leaves, while mRNA expression levels and activities of L-galactose dehydrogenase (L-GalDH, EC 1.1.1.117) and L-galactono-1,4-lactone dehydrogenase (L-GalLDH, EC 1.3.2.3) as well as activities of recycling enzymes was clearly declined in the leaf and peel but not in the flesh. By shading fruits only for 20 days, AsA levels, relative mRNA levels and activities of L-GalDH and L-GalLDH as well as activities of recycling enzymes all showed obvious decrease in the peel, but not in the flesh. However, their levels in the peel were markedly increased after the full shade was removed and re-exposed these fruits on natural light for 5 days. It is concluded that light affects AsA biosynthesis and recycling in the peel and leaf, but did not in the fresh. Results also suggest that apple fruit is potential to biosynthesize AsA via the L-galactose pathway, and AsA content in the fruits may depend partly on levels of AsA or other photochemistry controlled by light in the leaves.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Luz , Malus/metabolismo , Northern Blotting , Frutas/genética , Frutas/efectos de la radiación , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glutatión/metabolismo , Malus/genética , Malus/efectos de la radiación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrofotometría/métodos
11.
Int J Biol Sci ; 2(1): 10-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16585948

RESUMEN

A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.


Asunto(s)
Proteínas Bacterianas/fisiología , Galactosa Deshidrogenasas/fisiología , L-Lactato Deshidrogenasa/fisiología , NAD/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Geobacillus stearothermophilus/enzimología , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , Ingeniería de Proteínas/métodos , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes de Fusión/química
12.
FEBS J ; 272(4): 1054-62, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15691337

RESUMEN

In Picrophilus torridus, a euryarchaeon that grows optimally at 60 degrees C and pH 0.7 and thus represents the most acidophilic thermophile known, glucose oxidation is the first proposed step of glucose catabolism via a nonphosphorylated variant of the Entner-Doudoroff pathway, as deduced from the recently completed genome sequence of this organism. The P. torridus gene for a glucose dehydrogenase was cloned and expressed in Escherichia coli, and the recombinant enzyme, GdhA, was purified and characterized. Based on its substrate and coenzyme specificity, physicochemical characteristics, and mobility during native PAGE, GdhA apparently resembles the main glucose dehydrogenase activity present in the crude extract of P. torridus DSM 9790 cells. The glucose dehydrogenase was partially purified from P. torridus cells and identified by MS to be identical with the recombinant GdhA. P. torridus GdhA preferred NADP+ over NAD+ as the coenzyme, but was nonspecific for the configuration at C-4 of the sugar substrate, oxidizing both glucose and its epimer galactose (Km values 10.0 and 4.5 mM, respectively). Detection of a dual-specific glucose/galactose dehydrogenase points to the possibility that a 'promiscuous' Entner-Doudoroff pathway may operate in P. torridus, similar to the one recently postulated for the crenarchaeon Sulfolobus solfataricus. Based on Zn2+ supplementation and chelation experiments, the P. torridus GdhA appears to contain structurally important zinc, and conserved metal-binding residues suggest that the enzyme also contains a zinc ion near the catalytic site, similar to the glucose dehydrogenase enzymes from yeast and Thermoplasma acidophilum. Strikingly, NADPH, one of the products of the GdhA reaction, is unstable under the conditions thought to prevail in Picrophilus cells, which have been reported to maintain the lowest cytoplasmic pH known (pH 4.6). At the optimum growth temperature for P. torridus, 60 degrees C, the half-life of NADPH at pH 4.6 was merely 2.4 min, and only 1.7 min at 65 degrees C (maximum growth temperature). This finding suggests a rapid turnover of NADPH in Picrophilus.


Asunto(s)
Galactosa Deshidrogenasas/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Thermoplasmales/enzimología , Clonación Molecular , Galactosa Deshidrogenasas/genética , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/aislamiento & purificación , Concentración de Iones de Hidrógeno , NADP/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Temperatura
13.
Plant Cell Physiol ; 45(9): 1271-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15509850

RESUMEN

We have studied the enzymological properties of L-galactose dehydrogenase (l-GalDH), a key enzyme in the biosynthetic pathway of l-ascorbate (AsA) in plants. L-GalDH was purified approximately 560-fold from spinach leaves. The enzyme was a homodimer with a subunit mass of 36 kDa. We also cloned the full-length cDNA of spinach L-GalDH, which contained an open reading frame encoding 322 amino acid residues with a calculated molecular mass of 35,261 Da. The deduced amino acid sequence of the cDNA showed 82, 79 and 75% homology to L-GalDH from kiwifruit, apple and Arabidopsis, respectively. Recombinant enzyme expressed from the cDNA in Escherichia coli showed L-GalDH activity. Southern blot analysis revealed that the spinach L-GalDH gene occurs in a single copy. Northern blot analysis suggests that L-GalDH is expressed in different organs of spinach. The purified native L-GalDH showed high specificity for L-galactose with a Km of 116.2+/-3.2 microM. Interestingly, spinach L-GalDH exhibited reversible inhibition by AsA, the end-product of the biosynthetic pathway. The inhibition kinetics indicated a linear-competitive inhibition with a Ki of 133.2+/-7.2 microM, suggesting feedback regulation in AsA synthesis in the plant.


Asunto(s)
Ácido Ascórbico/farmacología , Inhibidores Enzimáticos/farmacología , Galactosa Deshidrogenasas/antagonistas & inhibidores , Spinacia oleracea/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Cartilla de ADN , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Cinética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Hojas de la Planta/enzimología , Homología de Secuencia de Aminoácido
14.
Appl Environ Microbiol ; 70(10): 6086-91, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15466554

RESUMEN

Yeasts do not possess an endogenous biochemical pathway for the synthesis of vitamin C. However, incubated with l-galactose, L-galactono-1,4-lactone, or L-gulono-1,4-lactone intermediates from the plant or animal pathway leading to l-ascorbic acid, Saccharomyces cerevisiae and Zygosaccharomyces bailii cells accumulate the vitamin intracellularly. Overexpression of the S. cerevisiae enzymes d-arabinose dehydrogenase and D-arabinono-1,4-lactone oxidase enhances this ability significantly. In fact, the respective recombinant yeast strains even gain the capability to accumulate the vitamin in the culture medium. An even better result is obtainable by expression of the plant enzyme L-galactose dehydrogenase from Arabidopsis thaliana. Budding yeast cells overexpressing the endogenous D-arabinono-1,4-lactone oxidase as well as L-galactose dehydrogenase are capable of producing about 100 mg of L-ascorbic acid liter(-1), converting 40% (wt/vol) of the starting compound L-galactose.


Asunto(s)
Ácido Ascórbico/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Ácido Ascórbico/química , Secuencia de Bases , ADN de Hongos/genética , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Genes Fúngicos , Genes de Plantas , Ingeniería Genética , Modelos Biológicos , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Estereoisomerismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
15.
Plant J ; 30(5): 541-53, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12047629

RESUMEN

l-Galactose dehydrogenase (l-GalDH), a novel enzyme that oxidizes l-Gal to l-galactono-1,4-lactone (l-GalL), has been purified from pea seedlings and cloned from Arabidopsis thaliana. l-GalL is a proposed substrate for ascorbate biosynthesis in plants, therefore the function of l-GalDH in ascorbate biosynthesis was investigated by overexpression in tobacco and antisense suppression in A. thaliana. In tobacco the highest expressing lines had a 3.5-fold increase in extractable activity, but this did not increase leaf ascorbate concentration. Arabidopsis thaliana, transformed with an antisense l-GalDH construct, produced lines with 30% of wild-type activity. These had lower leaf ascorbate concentration when grown under high light conditions. l-Gal pool size increased in antisense transformants with low l-GalDH activity, and l-Gal concentration was negatively correlated with ascorbate. The results provide direct evidence for a role of l-GalDH in ascorbate biosynthesis. Ascorbate pool size in A. thaliana is increased by acclimation to high light, but l-GalDH expression was not affected. l-Gal accumulation was higher in antisense plants acclimated to high light, indicating that the capacity to synthesize l-Gal from GDP-mannose is increased. Because the only known function of l-GalL is ascorbate synthesis, these antisense plants provide an opportunity to investigate ascorbate function with minimal effects on carbohydrate metabolism. Measurements of other antioxidants revealed an increase in ascorbate- and pyrogallol-dependent peroxidase activity in low-ascorbate lines. As ascorbate is the major hydrogen peroxide-scavenging antioxidant in plants, this could indicate a compensatory mechanism for controlling hydrogen peroxide concentration.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Ácido Ascórbico/biosíntesis , ADN sin Sentido/metabolismo , Galactosa Deshidrogenasas/metabolismo , Galactosa/biosíntesis , Luz , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Ácido Ascórbico/genética , ADN sin Sentido/genética , Galactosa Deshidrogenasas/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Pisum sativum/enzimología , Nicotiana/genética , Nicotiana/metabolismo
16.
Biochim Biophys Acta ; 1293(1): 154-60, 1996 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-8652621

RESUMEN

To examine the role of the connecting region in the artificial bifunctional enzyme beta-galactosidase/galactose dehydrogenase, linkers of different length were inserted between the catalytic units. The specific activity of the galactose dehydrogenase part of the complex was increased when longer linkers (9 and 13 amino acids) were used as connectors. These bifunctional enzymes were predominantly found to comprise hexamers, however, complexes of higher molecular weight were also formed. The sequential reaction was carried out more efficiently when hybrid enzymes with the longer linkers were used as demonstrated both in vitro by using purified protein preparations as well as in vivo by determining the growth rates of recombinant E. coli cells on a minimal medium containing lactose.


Asunto(s)
Galactosa Deshidrogenasas/química , Complejos Multienzimáticos/química , Proteínas Recombinantes de Fusión/química , beta-Galactosidasa/química , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía en Gel , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Galactosa/metabolismo , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Lactosa/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Complejos Multienzimáticos/metabolismo , NAD/metabolismo , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Temperatura , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
Anal Biochem ; 218(2): 278-83, 1994 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-8074281

RESUMEN

Genetically prepared enzyme conjugates were used in soluble enzyme assays for determination of lactose and galactose with spectrophotometric, fluorimetric, and bioluminometric detection. The use of a bifunctional enzyme in biosensors based on calorimetric detection is also presented. Due to proximity of the enzymes to one another several advantages in the analyses were achieved. The lag phase of coupled enzymatic reactions was reduced and the steady-state rates were increased, which could increase the sensitivity of the assays and decrease the time of analysis.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Galactoquinasa/metabolismo , Galactosa/análisis , Lactosa/análisis , beta-Galactosidasa/metabolismo , Arabinosa/análisis , Técnicas Biosensibles , Clonación Molecular , Enzimas Inmovilizadas/genética , Galactoquinasa/genética , Galactosa/metabolismo , Galactosa Deshidrogenasas/genética , Galactosa Deshidrogenasas/metabolismo , Lactosa/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Espectrofotometría , Especificidad por Sustrato , Temperatura , beta-Galactosidasa/genética
18.
Eur J Biochem ; 204(1): 241-7, 1992 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-1740135

RESUMEN

The two structural genes encoding galactose dehydrogenase (Pseudomonas fluorescens) and the beta subunit of luciferase (Vibrio harveyi) were fused in-frame in order to prepare and subsequently characterize an artificial bifunctional enzyme complex. This hybrid enzyme exhibited both galactose dehydrogenase activity and bioluminescence when expressed in Escherichia coli together with the alpha subunit of luciferase. The purified conjugate was used to study possible proximity effects in a sequential three-enzyme reaction with the bifunctional enzyme catalyzing the first and the last reaction. The intermediate enzyme, diaphorase, was added separately. The engineered enzyme system, comprising the galactose dehydrogenase/luciferase conjugate, could display a twofold higher bioluminescence in the overall enzyme reaction compared to a corresponding reference system with separate native enzymes. The increased bioluminescence obtained for the engineered enzyme system is proposed to be due to an improved organization of the enzyme in solution.


Asunto(s)
Galactosa Deshidrogenasas/metabolismo , Luciferasas/metabolismo , Mediciones Luminiscentes , Proteínas Recombinantes de Fusión/metabolismo , Dihidrolipoamida Deshidrogenasa/metabolismo , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Galactosa Deshidrogenasas/química , Galactosa Deshidrogenasas/genética , Expresión Génica , Genes Bacterianos , Cinética , Luciferasas/química , Luciferasas/genética , Sustancias Macromoleculares , Plásmidos , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Vibrio/enzimología , Vibrio/genética
19.
Eur J Biochem ; 198(2): 499-504, 1991 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-1904025

RESUMEN

In this study, galactose dehydrogenase (EC 1.1.1.48) was chosen as a prototype target protein to investigate the capability of metal affinity precipitation to facilitate the purification of genetically engineered proteins. A DNA fragment encoding five histidine residues was fused to the 3'-terminal end of the galactose dehydrogenase gene from Pseudomonas fluorescens and thereafter expressed in Escherichia coli. The additional five histidines functioned as an affinity tail and the modified enzyme could be purified using metal affinity precipitation when the metal-chelate complex with ethylene glycol-bis-(beta-aminoethyl ether) N,N,N',N'-tetra-acetic acid, EGTA(Zn)2, was added to the protein solution. The affinity tail could also be applied for the purification of the fusion protein utilising immobilised metal affinity chromatography. After purification, the pentahistidine affinity tail could be removed enzymatically by carboxypeptidase A. Furthermore, growth rate experiments demonstrated that the expression of the metal-binding affinity tail in E. coli cells enhanced the tolerance to zinc ions when added to the growth medium.


Asunto(s)
Cromatografía de Afinidad/métodos , Escherichia coli/genética , Galactosa Deshidrogenasas/aislamiento & purificación , Histidina , Péptidos , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes/aislamiento & purificación , Zinc , Secuencia de Aminoácidos , Clonación Molecular/métodos , Ácido Egtácico , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Galactosa Deshidrogenasas/genética , Datos de Secuencia Molecular , Plásmidos , Pseudomonas fluorescens/genética , Mapeo Restrictivo , Zinc/farmacología
20.
FEBS Lett ; 275(1-2): 91-4, 1990 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-2124547

RESUMEN

The in-frame gene fusion between 3 enzymes, galactose dehydrogenase, beta-galactosidase and galactokinase, is described. The purified artificial tripartite enzyme displayed all three enzymic activities. Two major forms of the hybrid protein were found, consisting of 4 and 8 subunits respectively, but other forms could also be identified. Each subunit was made up of one monomer each of galactose dehydrogenase, beta-galactosidase and galactokinase. Proximity effects exhibited by the hybrid enzyme could be demonstrated using [14C]galactose as a reporter molecule.


Asunto(s)
Galactoquinasa/genética , Galactosa Deshidrogenasas/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , Secuencia de Bases , Clonación Molecular/métodos , Escherichia coli , Galactoquinasa/metabolismo , Galactosa/metabolismo , Galactosa Deshidrogenasas/metabolismo , Genes Bacterianos , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Desnaturalización Proteica , Relación Estructura-Actividad , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...