Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Commun Biol ; 7(1): 1088, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237682

RESUMEN

TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosylceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results suggest that TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.


Asunto(s)
Galactosilceramidasa , Metabolismo de los Lípidos , Lisosomas , Proteínas de la Membrana , Ratones Noqueados , Vaina de Mielina , Proteínas del Tejido Nervioso , Animales , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Lisosomas/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Vaina de Mielina/metabolismo , Galactosilceramidasa/metabolismo , Galactosilceramidasa/genética , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Sulfoglicoesfingolípidos/metabolismo , Células HEK293
2.
Ann Clin Transl Neurol ; 11(7): 1715-1731, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837642

RESUMEN

OBJECTIVE: Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS: Additionally to cerebral MRI, protein structural analyses of the ß-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of ß-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS: Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION: The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.


Asunto(s)
Catepsina B , Catepsina D , Galactosilceramidasa , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/diagnóstico , Masculino , Catepsina D/genética , Catepsina D/metabolismo , Galactosilceramidasa/genética , Adulto , Catepsina B/genética , Catepsina B/metabolismo , Paraplejía/genética , Edad de Inicio , Glucosilceramidasa/genética , Lisosomas , Fibroblastos/metabolismo , Fibroblastos/patología
3.
Mol Ther ; 32(9): 3163-3176, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937968

RESUMEN

Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge. Mechanistically, we found strong inflammatory demyelination without remyelination and an impaired fusion of lysosomes and autophagosomes with accumulation of myelin debris after a transcription factor EB-dependent increase in the lysosomal autophagosome flux. These results indicate that the physiological impact of GALC deficiency is highly influenced by the cell context (oligodendroglial vs. global expression), the presence of inflammation, and the developmental time when it happens (pre-myelination vs. post-myelination). We conclude that Galc expression in adult oligodendrocytes is crucial for the maintenance of adult central myelin and to decrease vulnerability to additional demyelinating insults.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Galactosilceramidasa , Vaina de Mielina , Oligodendroglía , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ratones , Vaina de Mielina/metabolismo , Galactosilceramidasa/metabolismo , Galactosilceramidasa/genética , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Ratones Noqueados , Índice de Severidad de la Enfermedad , Enfermedad Crónica
4.
Neurocase ; 30(2): 63-67, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38762762

RESUMEN

Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.


Asunto(s)
Galactosilceramidasa , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Adulto , Galactosilceramidasa/genética , Femenino , Mutación , Mutación Missense
5.
Mol Ther ; 32(7): 2207-2222, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38734898

RESUMEN

Lysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice. Here, we found that OL-specific Galc conditional knockout (CKO) in mice results in a phenotype that includes wasting, psychosine accumulation, and neuroinflammation. Microglia- or astrocyte-specific Galc deletion alone in mice did not show specific phenotypes. Interestingly, mice with CKO of Galc from both OLs and microglia have a more severe neuroinflammation with an increase in globoid cell accumulation than OL-specific CKO alone. Moreover, the enhanced phenotype occurred without additional accumulation of psychosine. Further studies revealed that Galc knockout (Galc-KO) microglia cocultured with Galc-KO OLs elicits globoid cell formation and the overexpression of osteopontin and monocyte chemoattractant protein-1, both proteins that are known to recruit immune cells and promote engulfment of debris and damaged cells. We conclude that OLs are the primary cells that initiate KD with an elevated psychosine level and microglia are required for the progression of neuroinflammation in a psychosine-independent manner.


Asunto(s)
Modelos Animales de Enfermedad , Galactosilceramidasa , Leucodistrofia de Células Globoides , Ratones Noqueados , Microglía , Oligodendroglía , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Microglía/metabolismo , Ratones , Galactosilceramidasa/metabolismo , Galactosilceramidasa/genética , Oligodendroglía/metabolismo , Psicosina/metabolismo
6.
Clin Genet ; 106(2): 150-160, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38515343

RESUMEN

Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.


Asunto(s)
Galactosilceramidasa , Estudios de Asociación Genética , Leucodistrofia de Células Globoides , Fenotipo , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/fisiopatología , Galactosilceramidasa/genética , Masculino , Femenino , República de Corea/epidemiología , Preescolar , Adulto , Lactante , Niño , Adolescente , Adulto Joven , Mutación/genética , Genotipo , Predisposición Genética a la Enfermedad , Edad de Inicio
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474307

RESUMEN

Mitochondrial plasticity, marked by a dynamism between glycolysis and oxidative phosphorylation due to adaptation to genetic and microenvironmental alterations, represents a characteristic feature of melanoma progression. Sphingolipids play a significant role in various aspects of cancer cell biology, including metabolic reprogramming. Previous observations have shown that the lysosomal sphingolipid-metabolizing enzyme ß-galactosylceramidase (GALC) exerts pro-oncogenic functions in melanoma. Here, mining the cBioPortal for a Cancer Genomics data base identified the top 200 nuclear-encoded genes whose expression is negatively correlated with GALC expression in human melanoma. Their categorization indicated a significant enrichment in Gene Ontology terms and KEGG pathways related to mitochondrial proteins and function. In parallel, proteomic analysis by LC-MS/MS of two GALC overexpressing human melanoma cell lines identified 98 downregulated proteins when compared to control mock cells. Such downregulation was confirmed at a transcriptional level by a Gene Set Enrichment Analysis of the genome-wide expression profiling data obtained from the same cells. Among the GALC downregulated proteins, we identified a cluster of 42 proteins significantly associated with GO and KEGG categorizations related to mitochondrion and energetic metabolism. Overall, our data indicate that changes in GALC expression may exert a significant impact on mitochondrial plasticity in human melanoma cells.


Asunto(s)
Galactosilceramidasa , Melanoma , Humanos , Galactosilceramidasa/genética , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 215-220, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311562

RESUMEN

OBJECTIVE: To explore the clinical features and genetic etiology of a patient with Adult-onset globoid cell leukodystrophy/Krabbe disease (KD). METHODS: A patient who was admitted to the Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology on February 15, 2022 due to exacerbation of right leg weakness for over 4 years was selected as the study subject. Clinical data and results of medical imaging and genetic analysis were analyzed. Candidate variants were verified by family analysis. RESULTS: The patient, a 36-year-old woman, had spasmodic gait as the primary presentation. Cranial magnetic resonance imaging (MRI) revealed symmetrical abnormalities in the bilateral corticospinal tracts, and the activity of ß-galactocerebrosidase (GALC) in her white blood cells was significantly decreased. The patient was found to harbor compound heterozygous variants of the GALC gene, namely c.461C>A (p.Pro154His) and c.1901T>C (p.Leu634Ser). Her mother, sister and nephew were heterozygous carriers of the c.461C>A (p.Pro154His) variant, whilst her father was heterozygous for the c.1901T>C (p.Leu634Ser) variant. CONCLUSION: The patient was ultimately diagnosed with adult-onset KD, for which the compound heterozygous variants of the GALC gene may be accountable.


Asunto(s)
Leucodistrofia de Células Globoides , Humanos , Adulto , Femenino , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa/genética , Imagen por Resonancia Magnética , Hermanos , Madres , Mutación
9.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37952085

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucodistrofia de Células Globoides , Perros , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidasa/genética , Psicosina , Trasplante de Células Madre Hematopoyéticas/métodos , Terapia Genética/métodos , Modelos Animales de Enfermedad
10.
Clin Pediatr (Phila) ; 63(10): 1364-1370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38135922

RESUMEN

This study was designed to screen 6 lysosomal storage diseases (LSDs) in neonates using tandem mass spectrometry (MS/MS), and establish cutoff values for these LSDs with 3000 dried blood spots (DBS) samples. Cutoff values for α-L-iduronidase (IDUA), α-galactosidase (GLA), acid beta glucosidase (ABG), ß-galactocerebrosidase (GALC), acid sphingomyelinase (ASM), and acid alpha glucosidase (GAA) were as follows: GLA, > 2.06 µmol/L·h; ABG, > 1.78 µmol/L·h; ASM, > 0.99 µmol/L·h; IDUA, > 1.33 µmol/L·h; GALC, > 0.84 µmol/L·h; and GAA, > 2.06 µmol/L·h. There were 30 positives in initial MS/MS screening test, and 15 samples were still positive with repeat testing. Their parents/guardians were recontacted and DBS samples were collected again for test. Only 1 child showed abnormal GAA enzyme activity after recontacting process, and was diagnosed with Pompe disease after genetic screening. Eventually, cutoff values of 6 specific enzyme activities were established and MS/MS is effective for early LSDs screening.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Tamizaje Neonatal , Espectrometría de Masas en Tándem , alfa-Glucosidasas , Humanos , Espectrometría de Masas en Tándem/métodos , Recién Nacido , Tamizaje Neonatal/métodos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/sangre , alfa-Glucosidasas/sangre , alfa-Glucosidasas/análisis , Femenino , alfa-Galactosidasa/sangre , alfa-Galactosidasa/análisis , Masculino , Pruebas con Sangre Seca/métodos , Iduronidasa/sangre , Iduronidasa/análisis , Galactosilceramidasa/sangre , Esfingomielina Fosfodiesterasa/sangre , Esfingomielina Fosfodiesterasa/análisis
11.
Adv Drug Deliv Rev ; 203: 115132, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918668

RESUMEN

The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades por Almacenamiento Lisosomal , Humanos , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Nanomedicina , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico
12.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37724332

RESUMEN

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Asunto(s)
Gangliosidosis GM1 , Leucodistrofia de Células Globoides , Enfermedades por Almacenamiento Lisosomal , Mucopolisacaridosis IV , Humanos , beta-Galactosidasa/metabolismo , Galactosilceramidasa
13.
Genes (Basel) ; 14(8)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37628569

RESUMEN

Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken ß-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.


Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Animales , Ratones , Galactosilceramidasa , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Psicosina , Longevidad/genética , Hidrolasas , Prosencéfalo , Peso Corporal
14.
J Vet Intern Med ; 37(5): 1710-1715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593836

RESUMEN

BACKGROUND: Globoid cell leukodystrophy (GCL) is a fatal autosomal recessive disease caused by variants in the galactosylceramidase (GALC) gene. Two dog breed-specific variants are reported. OBJECTIVES: Characterize the putatively causative GALC variant for GCL in a family of dogs and determine population allele frequency. ANIMALS: Four related mixed-breed puppies with signs of neurologic disease were evaluated. Subsequently, 33 related dogs were tested for genetic markers for parentage and the identified GALC variant. Additional GALC genotyping was performed on 278 banked samples from various breeds. METHODS: The 4 affected puppies had neurological exams and necropsies. DNA was isolated from blood samples. Variants in GALC were identified via Sanger sequencing. Parentage testing was performed using short tandem repeat markers. Prevalence of the GALC variant of interest was investigated in other breeds. RESULTS: GCL was confirmed histopathologically. A novel missense variant in GALC (NC_006590.4:g.58893972G>A) was homozygous in all affected animals (n = 4). A recessive mode of inheritance was confirmed by parentage testing as was variant linkage with the phenotype (LOD = 3.36). Among the related dogs (n = 33), 3 dogs were homozygous and 7 heterozygous. The variant allele was not detected in screening 278 dogs from 5 breeds. The novel variant is either unique to this family or has an extremely low allele frequency in the general population. CONCLUSIONS AND CLINICAL IMPORTANCE: A novel GALC variant was identified that likely explains GCL in this cohort. The identification of multiple causal variants for GCL in dogs is consistent with findings in humans.


Asunto(s)
Enfermedades de los Perros , Leucodistrofia de Células Globoides , Humanos , Perros , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/veterinaria , Galactosilceramidasa/genética , ADN , Frecuencia de los Genes , Homocigoto , Enfermedades de los Perros/genética
15.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445731

RESUMEN

ß-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing ß-galactosyl moieties from ß-galactosylceramide and ß-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.


Asunto(s)
Melanoma Experimental , Neoplasias Cutáneas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Galactosilceramidasa/genética , Esfingolípidos , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Mutación , Línea Celular Tumoral , Melanoma Cutáneo Maligno
16.
J Neurochem ; 166(4): 720-746, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337846

RESUMEN

Krabbe disease is an inherited demyelinating disease caused by a genetic deficiency of the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase (GALC). The Twitcher (Twi) mouse is a naturally occurring, genetically and enzymatically authentic mouse model that mimics infantile-onset Krabbe disease. The major substrate for GALC is the myelin lipid GalCer. However, the pathogenesis of Krabbe disease has long been explained by the accumulation of psychosine, a lyso-derivative of GalCer. Two metabolic pathways have been proposed for the accumulation of psychosine: a synthetic pathway in which galactose is transferred to sphingosine and a degradation pathway in which GalCer is deacylated by acid ceramidase (ACDase). Saposin-D (Sap-D) is essential for the degradation of ceramide by ACDase in lysosome. In this study, we generated Twi mice with a Sap-D deficiency (Twi/Sap-D KO), which are genetically deficient in both GALC and Sap-D and found that very little psychosine accumulated in the CNS or PNS of the mouse. As expected, demyelination with the infiltration of multinucleated macrophages (globoid cells) characteristic of Krabbe disease was milder in Twi/Sap-D KO mice than in Twi mice both in the CNS and PNS during the early disease stage. However, at the later disease stage, qualitatively and quantitatively comparable demyelination occurred in Twi/Sap-D KO mice, particularly in the PNS, and the lifespans of Twi/Sap-D KO mice were even shorter than that of Twi mice. Bone marrow-derived macrophages from both Twi and Twi/Sap-D KO mice produced significant amounts of TNF-α upon exposure to GalCer and were transformed into globoid cells. These results indicate that psychosine in Krabbe disease is mainly produced via the deacylation of GalCer by ACDase. The demyelination observed in Twi/Sap-D KO mice may be mediated by a psychosine-independent, Sap-D-dependent mechanism. GalCer-induced activation of Sap-D-deficient macrophages/microglia may play an important role in the neuroinflammation and demyelination in Twi/Sap-D KO mice.


Asunto(s)
Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Saposinas/genética , Psicosina/metabolismo , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Modelos Animales de Enfermedad
17.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048066

RESUMEN

We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.


Asunto(s)
Enfermedades Desmielinizantes , Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/patología , Galactosilceramidasa/metabolismo , Galactosilceramidasa/uso terapéutico , Agregado de Proteínas , Enfermedades Neuroinflamatorias , Sirolimus/farmacología , Sirolimus/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Ubiquitinas , Serina-Treonina Quinasas TOR
18.
Brain Dev ; 45(7): 408-412, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37080866

RESUMEN

BACKGROUND: Late-onset Krabbe disease is a disorder with autosomal recessive inheritance caused by a deficiency in galactocerebrosidase (GALC) activity. Its late-onset form usually shows slow disease progression with atypical symptoms including spastic paresis. The efficacy of hematopoietic stem cell transplantation (HSCT) in late-onset Krabbe disease has not been fully established. CASE REPORT: We describe the case of a patient with late-onset Krabbe disease showing progressive spastic paraparesis. At the age of 18, one and a half years after the development of symptoms, the patient underwent HSCT. After HSCT, the patient's GALC activity returned to a normal level and the lesions in the brain and spinal cord became faint on images. Over two and a half years after the HSCT, the patient's gait remained spastic, however, an improvement in gait speed and modified Rankin Scale score was observed. No severe adverse events occurred during this period. CONCLUSION: Our experience reported herein provides additional evidence for a favorable course in HSCT conducted in the early course of late-onset Krabbe disease.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/patología , Espasticidad Muscular , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Síncope , Galactosilceramidasa/genética
20.
Brain ; 146(5): 1859-1872, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370000

RESUMEN

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Glucosilceramidasa/genética , Estudio de Asociación del Genoma Completo , Mutación , Hidrolasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA