Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Carbohydr Polym ; 345: 122551, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227094

RESUMEN

Even though Stellaria dichotoma L. var. lanceolate (S. dichotoma) is a well-known medicinal plant in the family Caryophyllaceae, its oligosaccharides remain unexplored in terms of their potential as bioactive agents. Here, we isolated a mixture of oligosaccharides from S. dichotoma (Yield: 12 % w/w), that are primarily non-classical raffinose family oligosaccharides (RFOs). Nine major oligosaccharides were purified and identified from the mixture, including sucrose, raffinose, 1-planteose, lychnose, stellariose, along with four new non-classical RFOs. Two of the four new oligosaccharides are linear hexose pentamers with α-galactosyl extensions on their lychnose moieties, and the other two are branched hexose hexamers with α-galactosyl extensions on their stellariose groups. Their interactions with galectin-3 (Gal-3) revealed significant binding, with the terminal galactose providing enhanced affinity for the lectin. Notably, Gal-3 residues Arg144, His158, Asn160, Arg162, Asn174, Trp181, Glu184 and Arg186 coordinate with the lychnose. In vivo studies using the dextran sulfate sodium (DSS) mouse model for colitis demonstrated the ability of these carbohydrates in mitigating ulcerative colitis (UC). Overall, our study has provided structural information and potential applications of S. dichotoma oligosaccharides, also offers new approaches for the development of medicinal oligosaccharides.


Asunto(s)
Colitis , Galectina 3 , Oligosacáridos , Animales , Oligosacáridos/química , Oligosacáridos/farmacología , Ratones , Galectina 3/metabolismo , Galectina 3/química , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Caryophyllaceae/química , Sulfato de Dextran , Ratones Endogámicos C57BL , Masculino , Humanos
2.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39201412

RESUMEN

Galectins are ß-galactoside-binding animal lectins involved in various biological functions, such as host defense. Galectin-2 and -3 are members of the galectin family that are expressed in the stomach, including the gastric mucosa and surface mucous cells. Galectin-3 exhibits aggregation and bactericidal activity against Helicobacter pylori in a ß-galactoside-dependent manner. We previously reported that galectin-2 has the same activity under neutral pH conditions. In this study, the H. pylori aggregation activity of galectin-2 was examined under weakly acidic conditions, in which H. pylori survived. Galectin-2 agglutinated H. pylori even at pH 6.0, but not at pH 5.0, correlating with its structural stability, as determined using circular dichroism. Additionally, galectin-2 binding to the lipopolysaccharide (LPS) of H. pylori cultured under weakly acidic conditions was investigated using affinity chromatography and Western blotting. Galectin-2 could bind to H. pylori LPS containing H type I, a Lewis antigen, in a ß-galactoside-dependent manner. In contrast, galectin-3 was structurally more stable than galectin-2 under acidic conditions and bound to H. pylori LPS containing H type I and Lewis X. In conclusion, galectin-2 and -3 might function cooperatively in the defense against H. pylori in the stomach under different pH conditions.


Asunto(s)
Galectina 2 , Helicobacter pylori , Lipopolisacáridos , Helicobacter pylori/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/química , Concentración de Iones de Hidrógeno , Galectina 2/metabolismo , Galectina 2/química , Humanos , Galectina 3/metabolismo , Galectina 3/química , Unión Proteica , Aglutinación , Galectinas/metabolismo , Galectinas/química
3.
Biochemistry ; 63(17): 2207-2216, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39008798

RESUMEN

Structural characterization of protein-ligand binding interfaces at atomic resolution is essential for improving the design of specific and potent inhibitors. Herein, we explored fast 19F- and 1H-detected magic angle spinning NMR spectroscopy to investigate the interaction between two fluorinated ligand diastereomers with the microcrystalline galectin-3 carbohydrate recognition domain. The detailed environment around the fluorine atoms was mapped by 2D 13C-19F and 1H-19F dipolar correlation experiments and permitted characterization of the binding interface. Our results demonstrate that 19F MAS NMR is a powerful tool for detailed characterization of protein-ligand interfaces and protein interactions at the atomic level.


Asunto(s)
Flúor , Galectina 3 , Galectinas , Galectina 3/química , Galectina 3/metabolismo , Ligandos , Flúor/química , Galectinas/química , Galectinas/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Humanos , Unión Proteica , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Modelos Moleculares , Dominios Proteicos , Carbohidratos/química
4.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930833

RESUMEN

Galectin-3 is a protein involved in many intra- and extra-cellular processes. It has been identified as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease and cancer. Galectin-3 comprises a carbohydrate recognition domain (CRD) and an N-terminal domain (NTD), which is unstructured and contains eight collagen-like Pro-Gly-rich tandem repeats. While the structure of the CRD has been solved using protein crystallography, current knowledge about conformations of full-length galectin-3 is limited. To fill in this knowledge gap, we performed molecular dynamics (MD) simulations of full-length galectin-3. We systematically re-scaled the solute-solvent interactions in the Martini 3 force field to obtain the best possible agreement between available data from SAXS experiments and the ensemble of conformations generated in the MD simulations. The simulation conformations were found to be very diverse, as reflected, e.g., by (i) large fluctuations in the radius of gyration, ranging from about 2 to 5 nm, and (ii) multiple transient contacts made by amino acid residues in the NTD. Consistent with evidence from NMR experiments, contacts between the CRD and NTD were observed to not involve the carbohydrate-binding site on the CRD surface. Contacts within the NTD were found to be made most frequently by aromatic residues. Formation of fuzzy complexes with unspecific stoichiometry was observed to be mediated mostly by the NTD. Taken together, we offer a detailed picture of the conformational ensemble of full-length galectin-3, which will be important for explaining the biological functions of this protein at the molecular level.


Asunto(s)
Galectina 3 , Humanos , Sitios de Unión , Proteínas Sanguíneas/química , Galectina 3/química , Galectina 3/metabolismo , Galectinas/química , Galectinas/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína
5.
Carbohydr Res ; 542: 109195, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908217

RESUMEN

Non-enzymatic cascade reactions between amines and reducing sugars are known as Maillard reaction. The late phase of these reactions consists of advanced glycation end products (AGEs), which have been implicated in the pathogenesis of numerous human diseases. Recent evidence suggests that galectin-3 acts as a receptor for AGEs and some early products of the Maillard reaction. The early phase of the Maillard reaction, which consists of 1-amino-1-deoxyketoses (Amadori compounds) and 2-amino-2-deoxyaldoses (Heyns compounds), was the subject of our study. The binding interactions between galectin-3 and the Amadori and Heyns compounds of leucine-enkephalin (YGGFL), leucine-enkephalin methyl ester (YGGFL-OMe), truncated enkephalin (YGG and Y) and tetrapeptide (LSKL) were measured using the AlphaScreen competitive binding assay. The affinity of galectin-3 for Amadori and Heyns compounds depends on both the sugar moiety and the amino acid sequence of the model compounds. The best results were obtained with Leu-enkephalin derivatives of Amadori (IC50 = 6.06 µm) and Heyns (IC50 = 8.6 µm) compound, respectively.


Asunto(s)
Galectina 3 , Galectina 3/química , Galectina 3/metabolismo , Ligandos , Humanos , Péptidos/química , Galectinas/metabolismo , Galectinas/química , Unión Proteica , Encefalinas/química , Encefalinas/metabolismo , Encefalina Leucina/química , Encefalina Leucina/metabolismo , Proteínas Sanguíneas
6.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801985

RESUMEN

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Asunto(s)
Escherichia coli , Galectina 3 , Isopropil Tiogalactósido , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/biosíntesis , Galectina 3/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isopropil Tiogalactósido/farmacología , Expresión Génica , Galectinas/genética , Galectinas/metabolismo , Galectinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
7.
Chem Biodivers ; 21(7): e202400104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588017

RESUMEN

Diabetic nephropathy (DN) is a significant global health concern with a high morbidity rate. Accumulating evidence reveals that Galectin-3 (Gal-3), a ß-galactoside-binding lectin, is a biomarker in kidney diseases. Our study aimed to assess the advantageous impacts of modified citrus pectin (MCP) as an alternative therapeutic strategy for the initial and ongoing progression of DN in mice with type 2 diabetes mellitus (T2DM). The animal model has been split into four groups: control group, T2DM group (mice received intraperitoneal injections of nicotinamide (NA) and streptozotocin (STZ), T2DM+MCP group (mice received 100 mg/kg/day MCP following T2DM induction), and MCP group (mice received 100 mg/kg/day). After 4 weeks, kidney weight, blood glucose level, serum kidney function tests, histopathological structure alterations, oxidative stress, inflammation, apoptosis, and fibrosis parameters were determined in renal tissues. Our findings demonstrated that MCP treatment reduced blood glucose levels, renal histological damage, and restored kidney weight and kidney function tests. Additionally, MCP reduced malondialdehyde level and restored glutathione level, and catalase activity. MCP demonstrated a notable reduction in inflammatory and apoptosis mediators TNF-α, iNOS, TGF-ßRII and caspase-3. Overall, MCP could alleviate renal injury in an experimental model of DN by suppressing renal oxidative stress, inflammation, fibrosis, and apoptosis mediators.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Pectinas , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pectinas/farmacología , Pectinas/química , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Estreptozocina , Galectina 3/química , Galectina 3/farmacología
8.
SLAS Discov ; 28(5): 233-239, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990319

RESUMEN

Galectin-3 is a beta-galactoside-binding mammalian lectin that is one of a 15-member galectin family that can bind several cell surface glycoproteins via its carbohydrate recognition domain (CRD). As a result, it can influence a range of cellular processes including cell activation, adhesion and apoptosis. Galectin-3 has been implicated in various diseases, including fibrotic disorders and cancer, and is now being therapeutically targeted by both small and large molecules. Historically, the screening and triaging of small molecule glycomimetics that bind to the galectin-3 CRD has been completed in fluorescence polarisation (FP) assays to determine KD values. Surface plasmon resonance (SPR) has not been widely used for compound screening and in this study it was used to compare human and mouse galectin-3 affinity measures between FP and SPR, as well as investigate compound kinetics. The KD estimates for a set of compounds selected from mono- and di-saccharides with affinities across a 550-fold range, correlated well between FP and SPR assay formats for both human and mouse galectin-3. Increases in affinity for compounds binding to human galectin-3 were driven by changes in both kon and koff whilst for mouse galectin-3 this was primarily due to kon. The reduction in affinity observed between human to mouse galectin-3 was also comparable between assay formats. SPR has been shown to be a viable alternative to FP for early drug discovery screening and determining KD values. In addition, it can also provide early kinetic characterisation of small molecule galectin-3 glycomimetics with robust kon and koff values generated in a high throughput manner.


Asunto(s)
Galectina 3 , Resonancia por Plasmón de Superficie , Humanos , Animales , Ratones , Galectina 3/genética , Galectina 3/química , Galectina 3/metabolismo , Cinética , Galectinas/química , Galectinas/metabolismo , Carbohidratos/química , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835132

RESUMEN

Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((ß-D-galactopyranosyl)-(1→4)-ß-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-ß-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl ß-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.


Asunto(s)
Galectina 3 , Lactosa , Humanos , Galectina 3/química , Galectina 3/farmacología , Galectinas/química , Lactosa/química , Ligandos
10.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770718

RESUMEN

Galectins are ß-galactosyl-binding proteins that fulfill essential physiological functions. In the biotechnological field, galectins are versatile tools, such as in the development of biomaterial coatings or the early-stage diagnosis of cancer diseases. Recently, we introduced galectin-1 (Gal-1) and galectin-3 (Gal-3) as fusion proteins of a His6-tag, a SNAP-tag, and a fluorescent protein. We characterized their binding in ELISA-type assays and their application in cell-surface binding. In the present study, we have constructed further fusion proteins of galectins with fluorescent protein color code. The fusion proteins of Gal-1, Gal-3, and Gal-8 were purified by affinity chromatography. For this, we have prepared glycoprotein affinity resins based on asialofetuin (ASF) and fetuin and combined this in a two-step purification with Immobilized Metal Affinity chromatography (IMAC) to get pure and active galectins. Purified galectin fractions were analyzed by size-exclusion chromatography. The binding characteristics to ASF of solely His6-tagged galectins and galectin fusion proteins were compared. As an example, we demonstrate a 1.6-3-fold increase in binding efficiency for HSYGal-3 (His6-SNAP-yellow fluorescent protein-Gal-3) compared to the HGal-3 (His6-Gal-3). Our results reveal an apparent higher binding efficiency for galectin SNAP-tag fusion proteins compared to His6-tagged galectins, which are independent of the purification mode. This is also demonstrated by the binding of galectin fusion proteins to extracellular glycoconjugates laminin, fibronectin, and collagen IV. Our results indicate the probable involvement of the SNAP-tag in apparently higher binding signals, which we discuss in this study.


Asunto(s)
Galectinas , Glicoproteínas , Galectinas/química , Glicoproteínas/metabolismo , Galectina 3/química , Membrana Celular/metabolismo , Unión Proteica
11.
Medicine (Baltimore) ; 102(1): e32621, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607856

RESUMEN

BACKGROUND: Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS: In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ±â€…standard deviations. RESULTS: The mean blood anti-galectin-8 value of the patient group was 4.84 ±â€…4.53 ng/mL, while it was 4.67 ±â€…3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION: This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.


Asunto(s)
Galectina 3 , Esclerosis Múltiple , Humanos , Alanina , Biomarcadores , Galectina 3/química , Mamíferos , Transaminasas
12.
Biophys J ; 121(22): 4342-4357, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209362

RESUMEN

Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.


Asunto(s)
Galectina 3 , Simulación de Dinámica Molecular , Galectina 3/genética , Galectina 3/química , Galectina 3/metabolismo , Espectroscopía de Resonancia Magnética , Péptidos/metabolismo , Unión Proteica
13.
Front Immunol ; 13: 915890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812455

RESUMEN

4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL's bioactivity.


Asunto(s)
Galectina 3 , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Ligando 4-1BB/química , Ligando 4-1BB/metabolismo , Galectina 3/química , Células HEK293 , Humanos , Receptores de Antígenos de Linfocitos T , Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
14.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831271

RESUMEN

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Asunto(s)
Galectina 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Neurogénesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , COVID-19/metabolismo , COVID-19/patología , Movimiento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamación , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/citología , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33952698

RESUMEN

Galectin-3 (Gal-3) has a long, aperiodic, and dynamic proline-rich N-terminal tail (NT). The functional role of the NT with its numerous prolines has remained enigmatic since its discovery. To provide some resolution to this puzzle, we individually mutated all 14 NT prolines over the first 68 residues and assessed their effects on various Gal-3-mediated functions. Our findings show that mutation of any single proline (especially P37A, P55A, P60A, P64A/H, and P67A) dramatically and differentially inhibits Gal-3-mediated cellular activities (i.e., cell migration, activation, endocytosis, and hemagglutination). For mechanistic insight, we investigated the role of prolines in mediating Gal-3 oligomerization, a fundamental process required for these cell activities. We showed that Gal-3 oligomerization triggered by binding to glycoproteins is a dynamic process analogous to liquid-liquid phase separation (LLPS). The composition of these heterooligomers is dependent on the concentration of Gal-3 as well as on the concentration and type of glycoprotein. LLPS-like Gal-3 oligomerization/condensation was also observed on the plasma membrane and disrupted endomembranes. Molecular- and cell-based assays indicate that glycan binding-triggered Gal-3 LLPS (or LLPS-like) is driven mainly by dynamic intermolecular interactions between the Gal-3 NT and the carbohydrate recognition domain (CRD) F-face, although NT-NT interactions appear to contribute to a lesser extent. Mutation of each proline within the NT differentially controls NT-CRD interactions, consequently affecting glycan binding, LLPS, and cellular activities. Our results unveil the role of proline polymorphisms (e.g., at P64) associated with many diseases and suggest that the function of glycosylated cell surface receptors is dynamically regulated by Gal-3.


Asunto(s)
Galectina 3/química , Galectina 3/metabolismo , Polisacáridos/metabolismo , Prolina/metabolismo , Sitios de Unión , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Carbohidratos , Galectina 3/genética , Galectinas , Glicosilación , Humanos , Unión Proteica
17.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920014

RESUMEN

Galectins represent ß-galactoside-binding proteins with numerous functions. Due to their role in tumor progression, human galectins-1, -3 and -7 (Gal-1, -3 and -7) are potential targets for cancer therapy. As plant derived glycans might act as galectin inhibitors, we prepared galactans by partial degradation of plant arabinogalactan-proteins. Besides commercially purchased galectins, we produced Gal-1 and -7 in a cell free system and tested binding capacities of the galectins to the galactans by biolayer-interferometry. Results for commercial and cell-free expressed galectins were comparable confirming functionality of the cell-free produced galectins. Our results revealed that galactans from Echinacea purpurea bind to Gal-1 and -7 with KD values of 1-2 µM and to Gal-3 slightly stronger with KD values between 0.36 and 0.70 µM depending on the sensor type. Galactans from the seagrass Zostera marina with higher branching of the galactan and higher content of uronic acids showed stronger binding to Gal-3 (0.08-0.28 µM) compared to galactan from Echinacea. The results contribute to knowledge on interactions between plant polysaccharides and galectins. Arabinogalactan-proteins have been identified as a new source for production of galactans with possible capability to act as galectin inhibitors.


Asunto(s)
Galectina 1/genética , Galectina 3/genética , Galectinas/genética , Sistema Libre de Células , Galactanos/química , Galactanos/metabolismo , Galectina 1/química , Galectina 3/química , Galectinas/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Unión Proteica , Zosteraceae/química
18.
Immunol Lett ; 233: 57-67, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33753135

RESUMEN

Galectin-3 (Gal-3) is the only member of galectin family able to form pentamers and heterodimers with chemokines. Its presence in various cells and tissues suggests variety of regulatory functions in physiological conditions, but increasing body of evidence indicates involvement of Gal-3 in pathological cascades of many diseases. Gal-3 exerts different, sometimes opposite, effects in various disorders or in different phases of the same disease. These differences in action of Gal-3 are related to the localization of Gal-3 in the cell, types of receptors through which it acts, or the types of cells that secrete it. As a regulator of immune response and T-cell activity, Gal-3 appears to have important role in development of autoimmunity mediated by T cells. Absence of Gal-3 in C57Bl6 mice favors Th2 mediated inflammatory myocarditis but attenuate fibrosis. Recent data also indicate Gal-3 involvement in development atherosclerosis. In pathogenesis of diabetes type 1 and autoimmune components of diabetes type 2 Gal-3 may have detrimental or protective role depending on its intracellular or extracellular localization. Gal-3 mediates autoimmune hepatic damage through activation of T-cells or natural killer T cells. Gal-3 is an important mediator in neurodevelopment, neuropathology and behavior due to its expression both in neurons and glial cells. All together, assessing the role of Gal-3 in immunopathology and autoimmunity it could be concluded that it is an important participant in pathogenesis, as well as promising monitoring marker and therapeutic target.


Asunto(s)
Autoinmunidad , Susceptibilidad a Enfermedades , Galectina 3/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Autoinmunidad/genética , Biomarcadores , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Descubrimiento de Drogas , Galectina 3/antagonistas & inhibidores , Galectina 3/química , Galectina 3/genética , Regulación de la Expresión Génica , Humanos , Ratones , Terapia Molecular Dirigida , Especificidad de Órganos , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
19.
Glycobiology ; 31(3): 341-350, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909036

RESUMEN

Galectin-3 is crucial to many physiological and pathological processes. The generally accepted dogma is that galectins function extracellularly by binding specifically to ß(1→4)-galactoside epitopes on cell surface glycoconjugates. Here, we used crystallography and NMR spectroscopy to demonstrate that negatively charged homogalacturonans (HG, linear polysaccharides of α(1→4)-linked-D-galacturonate (GalA)) bind to the galectin-3 carbohydrate recognition domain. The HG carboxylates at the C6 positions in GalA rings mandate that this saccharide bind galectin-3 in an unconventional, "topsy-turvy" orientation that is flipped by about 180o relative to that of the canonical ß-galactoside lactose. In this binding mode, the reducing end GalA ß-anomer of HGs takes the position of the nonreducing end galactose residue in lactose. This novel orientation maintains interactions with the conserved tryptophan and seven of the most crucial lactose-binding residues, albeit with different H-bonding interactions. Nevertheless, the HG molecular orientation and new interactions have essentially the same thermodynamic binding parameters as lactose. Overall, our study provides structural details for a new type of galectin-sugar interaction that broadens glycospace for ligand binding to Gal-3 and suggests how the lectin may recognize other negatively charged polysaccharides like glycoaminoglycans (e.g. heparan sulfate) on the cell surface. This discovery impacts on our understanding of galectin-mediated biological function.


Asunto(s)
Galectina 3/química , Oligosacáridos/química , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares
20.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 1025-1032, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021504

RESUMEN

The structure and function of proteins are strongly affected by the surrounding solvent water, for example through hydrogen bonds and the hydrophobic effect. These interactions depend not only on the position, but also on the orientation, of the water molecules around the protein. Therefore, it is often vital to know the detailed orientations of the surrounding ordered water molecules. Such information can be obtained by neutron crystallography. However, it is tedious and time-consuming to determine the correct orientation of every water molecule in a structure (there are typically several hundred of them), which is presently performed by manual evaluation. Here, a method has been developed that reliably automates the orientation of a water molecules in a simple and relatively fast way. Firstly, a quantitative quality measure, the real-space correlation coefficient, was selected, together with a threshold that allows the identification of water molecules that are oriented. Secondly, the refinement procedure was optimized by varying the refinement method and parameters, thus finding settings that yielded the best results in terms of time and performance. It turned out to be favourable to employ only the neutron data and a fixed protein structure when reorienting the water molecules. Thirdly, a method has been developed that identifies and reorients inadequately oriented water molecules systematically and automatically. The method has been tested on three proteins, galectin-3C, rubredoxin and inorganic pyrophosphatase, and it is shown that it yields improved orientations of the water molecules for all three proteins in a shorter time than manual model building. It also led to an increased number of hydrogen bonds involving water molecules for all proteins.


Asunto(s)
Galectina 3/química , Pirofosfatasa Inorgánica/química , Rubredoxinas/química , Agua/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Difracción de Neutrones , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA