Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.444
1.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735871

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Endoplasmic Reticulum Stress , Gallic Acid , HMGB1 Protein , NF-kappa B , Oxidative Stress , Reperfusion Injury , Spermatic Cord Torsion , Testis , Male , Animals , Gallic Acid/pharmacology , Gallic Acid/administration & dosage , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
2.
Int J Oncol ; 65(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38818827

Clear cell renal cell carcinoma (ccRCC), the most common type of renal cell carcinoma (RCC), is not sensitive to traditional radiotherapy and chemotherapy. The polyphenolic compound Gallic acid (GA) can be naturally found in a variety of fruits, vegetables and plants. Autophagy, an intracellular catabolic process, regulates the lysosomal degradation of organelles and portions in cytoplasm. It was reported that autophagy and GA could affect the development of several cancers. Therefore, the aim of the present study was to evaluate the effects of GA on ccRCC development and clarify the role of autophagy in this process. In the present study, the effects of GA on the proliferation, migration and invasion of ccRCC cells were investigated in vitro by Cell Counting Kit­8, colony formation, flow cytometry, wound healing and Transwell migration assays, respectively. Additionally, the effects of GA on ccRCC growth and metastasis were evaluated using hematoxylin­eosin and immunohistochemical staining in vivo. Moreover, it was sought to explore the underlying molecular mechanisms using transmission electron microscopy, western blotting and reverse transcription­quantitative PCR analyses. In the present study, it was revealed that GA had a more potent viability inhibitory effect on ccRCC cells (786­O and ACHN) than the effect on normal renal tubular epithelial cell (HK­2), which demonstrated that GA selectively inhibits the viability of cancer cells. Furthermore, it was identified that GA dose­dependently inhibited the proliferation, migration and invasion of ccRCC cells in vitro and in vivo. It was demonstrated that GA promoted the release of autophagy markers, which played a role in regulating the PI3K/Akt/Atg16L1 signaling pathway. All the aforementioned data provided evidence for the great potential of GA in the treatment of ccRCC.


Autophagy-Related Proteins , Autophagy , Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Gallic Acid , Kidney Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Gallic Acid/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Phosphatidylinositol 3-Kinases/metabolism , Cell Movement/drug effects , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Xenograft Model Antitumor Assays , Disease Progression , Male , Female , Gene Expression Regulation, Neoplastic/drug effects , Carrier Proteins/metabolism
3.
Pak J Pharm Sci ; 37(1): 1-8, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741394

The current study was proposed to evaluate the mortal impacts of either alone or mixed treatments of zinc oxide nanoparticles (ZnO NPs) and mureer or Senecio glaucus L. plant (SP) on spleen tissue via immunological and histological studies and to estimate the likely immunomodulatory effect of gallic acid (GA) for 30 days in rats. Rats were classified into eight groups with orally treated: Control, GA (100mg/kg), ZnO NPs (150mg/kg), SP (400mg/kg), GA+ZnO NPs (100,150mg/kg), GA+SP (100,400mg/kg), ZnONPs+SP (150,400mg/kg) and GA+ZnONPs+SP (100,150,400mg/kg). Interleukin-6 (IL-6) level was measured using an enzyme-linked immunoassay (ELISA). Also, the pro-apoptotic protein (caspase-3) expression was estimated using an immunohistochemistry assay. Our data revealed that ZnO NPs and SP triggered a significant increase in the levels of IL-6 and total lipids (TL) and the activity of lactate dehydrogenase (LDH), (p<0.001). Furthermore, they overexpressed caspase-3 and caused lymphoid depletion. They revealed that the immunotoxic outcome of mixed treatment was more than the outcome of the alone treatment. However, GA restored the spleen damage from these adverse results. Finally, this study indicated that ZnO NPs and SP might be immunotoxic and splenotoxic agents; however, GA may be displayed as an anti-inflammatory and splenic-protective agent.


Anti-Inflammatory Agents , Caspase 3 , Gallic Acid , Interleukin-6 , Spleen , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/toxicity , Gallic Acid/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism , Rats , Caspase 3/metabolism , Male , Nanoparticles , Metal Nanoparticles , Rats, Wistar , Plant Extracts/pharmacology , Immunohistochemistry
4.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731487

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
5.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731489

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Gallic Acid , Lipoproteins, LDL , Receptors, LDL , Humans , Gallic Acid/pharmacology , Receptors, LDL/metabolism , Hep G2 Cells , Lipoproteins, LDL/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
6.
Pak J Pharm Sci ; 37(2): 275-289, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767094

The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.


Bacterial Proteins , Molecular Docking Simulation , Streptococcus pneumoniae , Zingiber officinale , Zingiber officinale/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Computer Simulation , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Gallic Acid/pharmacology , Gallic Acid/chemistry
7.
Phytomedicine ; 129: 155591, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692075

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Acute Lung Injury , Gallic Acid , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NF-kappa B , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Macrophages/drug effects , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Lung/drug effects , Lung/pathology , RAW 264.7 Cells , Interleukin-1beta/metabolism , Bronchoalveolar Lavage Fluid , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism
8.
Pathol Res Pract ; 258: 155320, 2024 Jun.
Article En | MEDLINE | ID: mdl-38728794

The objective of this study to examine the effects of curcumin and gallic acid use against oxidative stress damage in the autologous intraperitoneal ovarian transplantation model created in rats on ovarian follicle reserve, ovarian surface epithelium, and oxidant-antioxidant systems. 42 adult female Sprague Dawley rats (n=7) were allocated into 6 groups. Group 1 served as the control. In Group 2, rats underwent ovarian transplantation (TR) to their peritoneal walls. Group 3 received corn oil (CO) (0.5 ml/day) one day before and 14 days after transplantation. Group 4 was administered curcumin (CUR) (100 mg/kg/day), Group 5 received gallic acid (GA) (20 mg/kg/day), and Group 6 was treated with a combination of curcumin and gallic acid via oral gavage after transplantation. Rats were sacrificed on the 14th postoperative day, and blood along with ovaries were collected for analysis. The removed ovaries were analyzed at light microscopic, fluorescence microscopic, and biochemical levels. In Group 2 and Group 3, while serum and tissue Total Oxidant Levels (TOS) and Oxidative Stress Index (OSI) increased, serum Total Antioxidant Levels (TAS) decreased statistically significantly (p˂0.05) compared to the other groups (Groups 1, 4, 5, and 6). The ovarian follicle reserve was preserved and the changes in the ovarian surface epithelium and histopathological findings were reduced in the antioxidant-treated groups (Groups 4, 5, and 6). In addition, immunofluorescence examination revealed that the expression of Cytochrome C and Caspase 3 was stronger and Ki-67 was weaker in Groups 2 and 3, in comparison to the groups that were given antioxidants. It can be said that curcumin and gallic acid have a histological and biochemical protective effect against ischemia-reperfusion injury due to ovarian transplantation, and this effect is stronger when these two antioxidants are applied together compared to individual use.


Antioxidants , Curcumin , Gallic Acid , Ovarian Follicle , Ovarian Reserve , Ovary , Oxidative Stress , Rats, Sprague-Dawley , Animals , Female , Gallic Acid/pharmacology , Curcumin/pharmacology , Oxidative Stress/drug effects , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Rats , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Ovarian Reserve/drug effects , Antioxidants/pharmacology , Epithelium/drug effects , Epithelium/pathology , Epithelium/metabolism , Transplantation, Autologous , Drug Synergism
9.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Article En | MEDLINE | ID: mdl-38647021

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Antifungal Agents , Antineoplastic Agents , Apoptosis , Drug Repositioning , Flucytosine , Prostatic Neoplasms , Signal Transduction , Apoptosis/drug effects , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Male , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Repositioning/methods , Flucytosine/pharmacology , Flucytosine/chemistry , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Crystallization , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
10.
Ren Fail ; 46(1): 2344656, 2024 Dec.
Article En | MEDLINE | ID: mdl-38685608

Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.


Antioxidants , Gallic Acid , Kidney , Nickel , Oxidative Stress , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Animals , Nickel/toxicity , Male , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Oxidative Stress/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Nanoparticles
11.
Biotech Histochem ; 99(3): 147-156, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644776

The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-ß (TGF-ß), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.


Apoptosis , Gallic Acid , Indomethacin , Inflammation , Oxidative Stress , Stomach Ulcer , Animals , Indomethacin/pharmacology , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Male , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Esomeprazole/pharmacology
12.
Arch Biochem Biophys ; 756: 109978, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636693

A 2D-intestinal epithelial Caco-2/RAW 264.7 macrophage co-culture model was developed to demonstrate the relative efficacy of different phenolic acids to mitigate changes in Caco-2 epithelial cell redox state initiated both directly by autoxidation products, H2O2, and indirectly through cell communication events originating from cytokine stimulated macrophage. An inducer cocktail (lipopolysaccharide + interferon gamma) was used to activate RAW 264.7 cells in the 2D- Caco-2/RAW co-culture and intracellular changes in Caco-2 cell redox signaling occurred in response to positive changes (p < 0.05) in inflammatory biomarkers derived in macrophage that included IL-6, TNF-α, nitric oxide and peroxynitrite, respectively. Phenolic acids varied in relative capacity to reduce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in cocktail inflamed induced macrophage. This response in addition to the relative predisposition of gallic acid (GA) to undergo autoxidation to generate H2O2 activity (p < 0.05), culminated in downstream cell signaling in Caco-2 nuclear factor erythroid 2-related factor (Nrf2) activity (increase 26.9 %), altered monolayer integrity (increase 33.7 %), and release of interleukin 8 (IL-8) (decrease 80.5 %) (p < 0.05). It can be concluded that the co-culture model described herein was useful to assess the importance of communication between cytokine stimulated macrophage and intestinal cells. Moreover, the relative unique efficacy of GA, compared to other phenolic acids tested to protect against activated macrophage induced changes related to intestinal dysfunction were particularly relevant to epithelial redox signaling, intestinal permeability and regulation of tight junction proteins. This study concludes that phenolic acids are not equal in the capacity to protect against intestinal cell dysfunction despite some indication of biological activity.


Coculture Techniques , Gallic Acid , Tight Junction Proteins , Caco-2 Cells , Gallic Acid/pharmacology , Humans , Mice , Animals , RAW 264.7 Cells , Tight Junction Proteins/metabolism , Inflammation/metabolism , Oxidation-Reduction/drug effects , Hydrogen Peroxide/metabolism , Macrophages/metabolism , Macrophages/drug effects , Intestines/cytology , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
13.
Genes (Basel) ; 15(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674441

Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.


Disease Models, Animal , Gallic Acid , Gallic Acid/analogs & derivatives , Polycystic Ovary Syndrome , Animals , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Female , Mice , Gallic Acid/pharmacology , Luteinizing Hormone/blood , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Follicle Stimulating Hormone/blood , Gene Expression Profiling , Testosterone/blood , Transcriptome
14.
Nanoscale ; 16(19): 9496-9508, 2024 May 16.
Article En | MEDLINE | ID: mdl-38651386

"Transition" metal-coordinated plant polyphenols are a type of promising antitumor nanodrugs owing to their high biosafety and catalytic therapy potency; however, the major obstacle restricting their clinical application is their poor tumor accumulation. Herein, Fe-doped ZIF-8 was tailored using tannic acid (TA) into a hollow mesoporous nanocarrier for gallic acid (GA) loading. After hyaluronic acid (HA) modification, the developed nanosystem of HFZIF-8/GA@HA was used for the targeted delivery of Fe ions and GA, thereby intratumorally achieving the synthesis of an Fe-GA coordinated complex. The TA-etching strategy facilitated the development of a cavitary structure and abundant coordination sites of ZIF-8, thus ensuring an ideal loading efficacy of GA (23.4 wt%). When HFZIF-8/GA@HA accumulates in the tumor microenvironment (TME), the framework is broken due to the competitive protonation ability of overexpressed protons in the TME. Interestingly, the intratumoral degradation of HFZIF-8/GA@HA provides the opportunity for the in situ "meeting" of GA and Fe ions, and through the coordination of polyhydroxyls assisted by conjugated electrons on the benzene ring, highly stable Fe-GA nanochelates are formed. Significantly, owing to the electron delocalization effect of GA, intratumorally coordinated Fe-GA could efficiently absorb second near-infrared (NIR-II, 1064 nm) laser irradiation and transfer it into thermal energy with a conversion efficiency of 36.7%. The photothermal performance could speed up the Fenton reaction rate of Fe-GA with endogenous H2O2 for generating more hydroxyl radicals, thus realizing thermally enhanced chemodynamic therapy. Overall, our research findings demonstrate that HFZIF-8/GA@HA has potential as a safe and efficient anticancer nanodrug.


Gallic Acid , Gallic Acid/chemistry , Gallic Acid/pharmacology , Mice , Animals , Humans , Cell Line, Tumor , Tannins/chemistry , Hyaluronic Acid/chemistry , Iron/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Catalysis , Drug Carriers/chemistry , Nanoparticles/chemistry , Imidazoles
15.
Bioorg Chem ; 147: 107381, 2024 Jun.
Article En | MEDLINE | ID: mdl-38669781

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Dose-Response Relationship, Drug , Enzyme Inhibitors , Hyperuricemia , Organic Anion Transporters , Organic Cation Transport Proteins , Hyperuricemia/drug therapy , Humans , Animals , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Structure-Activity Relationship , Molecular Structure , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Urate Oxidase/chemistry , Drug Discovery , Molecular Docking Simulation , Mice , Male , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Rats, Sprague-Dawley
16.
Food Chem ; 448: 139073, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38574713

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
17.
Chem Biol Interact ; 395: 111016, 2024 May 25.
Article En | MEDLINE | ID: mdl-38670420

Acute kidney injury (AKI) is a common and serious global health problem with high risks of mortality and the development of chronic kidney diseases. Leonurine is a unique bioactive component from Leonurus japonicus Houtt. and exerts antioxidant, antiapoptotic or anti-inflammatory properties. This study aimed to explore the benefits of leonurine on AKI and the possible mechanisms involved, with a particular foc on the regulation of ferroptosis and endoplasmic reticulum (ER) stress. Our results showed that leonurine exhibited prominent protective effects against AKI, as evidenced by the amelioration of histopathological alterations and reduction of renal dysfunction. In addition, leonurine significantly suppressed ferroptosis in AKI both in vivo and in vitro by effectively restoring ultrastructural abnormalities in mitochondria, decreasing ASCL4 and 4-HNE levels, scavenging reactive oxygen species (ROS), as well as increasing GPX4 and GSH levels. In parallel, leonurine also markedly mitigated ER stress via down-regulating PERK, eIF-2α, ATF4, CHOP and CHAC1. Further studies suggested that ER stress was closely involved in erastin-induced ferroptosis, and leonurine protected tubular epithelial cells in vitro by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway. Mechanistically, ATF4 silencing in vitro regulated CHOP and ACSL4 expressions, ultimately weakening both ER stress and ferroptosis. Notably, analyses of single-cell RNA sequencing data revealed that ATF4, CHOP and ASCL4 in renal tubular cells were all abnormally upregulated in patients with AKI compared to healthy controls, suggesting their contributions to the pathogenesis of AKI. Altogether, these findings suggest that leonurine alleviates AKI by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway, thus providing novel mechanisms for AKI treatment.


Activating Transcription Factor 4 , Acute Kidney Injury , Endoplasmic Reticulum Stress , Ferroptosis , Gallic Acid , Signal Transduction , Transcription Factor CHOP , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Activating Transcription Factor 4/metabolism , Endoplasmic Reticulum Stress/drug effects , Animals , Transcription Factor CHOP/metabolism , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Mice , Signal Transduction/drug effects , Male , Mice, Inbred C57BL , Humans , Reactive Oxygen Species/metabolism , Protective Agents/pharmacology
18.
Food Funct ; 15(6): 3130-3140, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38436057

Nitrite widely exists in meat products, and has the functions of bacteriostasis, antisepsis, and color development. However, in an acidic environment, nitrite will react with amines, and further generate nitrosamines with carcinogenic and teratogenic effects. Polyphenols have good antioxidant and nitrite-scavenging effects. This study aimed to evaluate the inhibitory effects of gallic acid, catechin, and procyanidin B2 on the nitrosation reaction under stomach simulating conditions and discuss the potential inhibitory mechanism. The nitrite scavenging rate and nitrosamine synthesis blocking rate of gallic acid, catechin, and procyanidin B2 under different reaction times and contents was determined by UV-vis spectrophotometry. The possible products of the reaction of the three polyphenols with nitrite were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to reveal the mechanism of inhibiting nitrification. The results showed that the scavenging rate of the three polyphenols on nitrite and the blocking rate of nitrosamine synthesis increased with the increase of the content and reaction time. The ability of the three polyphenols to inhibit nitrosation was catechin > procyanidin B2 > gallic acid. HPLC-MS analysis showed that under simulated gastric juice conditions, the three phenolics were oxidized by nitrous acid to form their semiquinone radicals as the intermediates and nitrosated derivatives, while nitrite might be converted to ˙NO. These results suggested that gallic acid, catechin, and procyanidin B2 could inhibit nitrosation reactions in an acidic environment and may be used as food additives to reduce nitrite residues and nitrosamines in food.


Biflavonoids , Catechin , Nitrosamines , Proanthocyanidins , Gallic Acid/pharmacology , Nitrites , Nitrosation , Polyphenols , Stomach
19.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Article En | MEDLINE | ID: mdl-38467553

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Antioxidants , Polyphenols , Antioxidants/pharmacology , Antioxidants/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Peptides/pharmacology , Peptides/chemistry , Gallic Acid/pharmacology , Gallic Acid/chemistry , Anti-Bacterial Agents/chemistry
20.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474103

Maize ranks as the second most widely produced crop globally, yielding approximately 1.2 billion tons, with corn cob being its primary byproduct, constituting 18 kg per 100 kg of corn. Agricultural corn production generates bioactive polysaccharide-rich byproducts, including xylan (Xyl). In this study, we used the redox method to modify corn cob xylan with gallic acid, aiming to enhance its antioxidant and protective capacity against oxidative stress. The conjugation process resulted in a new molecule termed conjugated xylan-gallic acid (Xyl-GA), exhibiting notable improvements in various antioxidant parameters, including total antioxidant capacity (1.4-fold increase), reducing power (1.2-fold increase), hydroxyl radical scavenging (1.6-fold increase), and cupric chelation (27.5-fold increase) when compared with unmodified Xyl. At a concentration of 1 mg/mL, Xyl-GA demonstrated no cytotoxicity, significantly increased fibroblast cell viability (approximately 80%), and effectively mitigated intracellular ROS levels (reduced by 100%) following oxidative damage induced by H2O2. Furthermore, Xyl-GA exhibited non-toxicity toward zebrafish embryos, offered protection against H2O2-induced stress, and reduced the rate of cells undergoing apoptosis resulting from H2O2 exposure. In conclusion, our findings suggest that Xyl-GA possesses potential therapeutic value in addressing oxidative stress-related disturbances. Further investigations are warranted to elucidate the molecular structure of this novel compound and establish correlations with its pharmacological activities.


Antioxidants , Gallic Acid , Animals , Antioxidants/pharmacology , Gallic Acid/pharmacology , Xylans/pharmacology , Zea mays/metabolism , Hydrogen Peroxide/pharmacology , Zebrafish/metabolism , Oxidative Stress
...