Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.807
1.
Pak J Biol Sci ; 27(4): 168-181, 2024 Mar.
Article En | MEDLINE | ID: mdl-38812108

<b>Background and Objective:</b> Prenatal ionizing radiation exposure may hinder fetal and embryonic growth depending on the dose and gestational age. The current study's objective was to discover how bone marrow transplants affected the spleens of pregnant rats that had been subjected to γ (Gamma) radiation. <b>Materials and Methods:</b> Sixty rats that were pregnant were separated into five different groups, each with 6 females. The pregnant rats in the second Group were exposed to 2Gy of γ-rays. Group III; pregnant rats subjected to 2Gy of γ-rays, followed by an intraperitoneal injection of newly prepared bone marrow transplantation (BMT). The fifth Group were exposed to 2Gy γ-rays and received 1 dosage of BMT an hour later. Spleen samples from the pregnant rats as well as their fetuses were taken for histological and histochemical analyses. <b>Results:</b> Gamma rays damaged the splenic tissue of women and their fetuses on days 7 or 14 of pregnancy in a variety of histological and histochemical ways, although bone marrow transplantation significantly reduced the damage. Treated mothers with bone marrow post-radiation showed a noticeable recovery in spleen of their fetuses. Improved spleen architecture was accompanied by appearance of normal content of collagen, polysaccharides and total protein in the fetal spleen tissue especially on day 7 of gestation. <b>Conclusion:</b> Bone marrow transplantation can lessen the damage caused by gamma radiation.


Bone Marrow Transplantation , Fetus , Gamma Rays , Spleen , Animals , Female , Pregnancy , Spleen/radiation effects , Spleen/metabolism , Rats , Fetus/radiation effects
2.
Mol Med Rep ; 30(1)2024 07.
Article En | MEDLINE | ID: mdl-38785154

Although there are several types of radiation exposure, it is debated whether low­dose­rate (LDR) irradiation (IR) affects the body. Since the small intestine is a radiation­sensitive organ, the present study aimed to evaluate how it changes when exposed to LDR IR and identify the genes sensitive to these doses. After undergoing LDR (6.0 mGy/h) γ radiation exposure, intestinal RNA from BALB/c mice was extracted 1 and 24 h later. Mouse whole genome microarrays were used to explore radiation­induced transcriptional alterations. Reverse transcription­quantitative (RT­q) PCR was used to examine time­ and dose­dependent radiation responses. The histopathological status of the jejunum in the radiated mouse was not changed by 10 mGy of LDR IR; however, 23 genes were upregulated in response to LDR IR of the jejunum in mice after 1 and 24 h of exposure. Upregulated genes were selected to validate the results of the RNA sequencing analysis for RT­qPCR detection and results showed that only Na+/K+ transporting subunit α4, glucose­6­phosphatase catalytic subunit 2 (G6PC2), mucin 6 (MUC6) and transient receptor potential cation channel subfamily V member 6 levels significantly increased after 24 h of LDR IR. Furthermore, G6PC2 and MUC6 were notable genes induced by LDR IR exposure according to protein expression via western blot analysis. The mRNA levels of G6PC2 and MUC6 were significantly elevated within 24 h under three conditions: i) Exposure to LDR IR, ii) repeated exposure to LDR IR and iii) exposure to LDR IR in the presence of inflammatory bowel disease. These results could contribute to an improved understanding of immediate radiation reactions and biomarker development to identify radiation­susceptible individuals before histopathological changes become noticeable. However, further investigation into the specific mechanisms involving G6PC2 and MUC6 is required to accomplish this.


Inflammatory Bowel Diseases , Mucin-6 , Animals , Mice , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/genetics , Mucin-6/metabolism , Mucin-6/genetics , Mice, Inbred BALB C , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphatase/genetics , Male , Jejunum/radiation effects , Jejunum/metabolism , Jejunum/pathology , Gamma Rays/adverse effects , Intestines/radiation effects , Intestines/pathology , Dose-Response Relationship, Radiation , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology
3.
Sci Rep ; 14(1): 12450, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816571

The effects of low doses of ionizing radiation on atherosclerosis remain uncertain, particularly as regards the generation of pro- or anti-inflammatory responses, and the time scale at which such effects can occur following irradiation. To explore these phenomena, we exposed atheroprone ApoE(-/-) mice to a single dose of 0, 0.05, 0.5 or 1 Gy of 137Cs (γ) administered at a 10.35 mGy min-1 dose rate and evaluated short-term (1-10 days) and long-term consequences (100 days). Bone marrow-derived macrophages were derived from mice 1 day after exposure. Irradiation was associated with a significant skewing of M0 and M2 polarized macrophages towards the M2 phenotype, as demonstrated by an increased mRNA expression of Retnla, Arg1, and Chil3 in cells from mice exposed to 0.5 or 1 Gy compared with non-irradiated animals. Minimal effects were noted in M1 cells or M1 marker mRNA. Concurrently, we observed a reduced secretion of IL-1ß but enhanced IL-10 release from M0 and M2 macrophages. Effects of irradiation on circulating monocytes were most marked at day 10 post-exposure, when the 1 Gy dose was associated with enhanced numbers of both Ly6CHigh and Ly6Low cells. By day 100, levels of circulating monocytes in irradiated and non-irradiated mice were equivalent, but anti-inflammatory Ly6CLow monocytes were significantly increased in the spleen of mice exposed to 0.05 or 1 Gy. Long term exposures did not affect atherosclerotic plaque size or lipid content, as determined by Oil red O staining, whatever the dose applied. Similarly, irradiation did not affect atherosclerotic plaque collagen or smooth muscle cell content. However, we found that lesion CD68+ cell content tended to decrease with rising doses of radioactivity exposure, culminating in a significant reduction of plaque macrophage content at 1 Gy. Taken together, our results show that short- and long-term exposures to low to moderate doses of ionizing radiation drive an anti-inflammatory response, skewing bone marrow-derived macrophages towards an IL-10-secreting M2 phenotype and decreasing plaque macrophage content. These results suggest a low-grade athero-protective effect of low and moderate doses of ionizing radiation.


Apolipoproteins E , Cesium Radioisotopes , Gamma Rays , Macrophages , Plaque, Atherosclerotic , Animals , Macrophages/metabolism , Macrophages/radiation effects , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Mice , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice, Knockout , CD68 Molecule
4.
Cell Biochem Funct ; 42(4): e4026, 2024 Jun.
Article En | MEDLINE | ID: mdl-38693631

This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.


Cholecalciferol , Escherichia coli Infections , Escherichia coli , Gamma Rays , Animals , Mice , Cholecalciferol/pharmacology , Male , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Liver/pathology , Liver/drug effects , Liver/metabolism , Lung/pathology , Lung/metabolism , Cytokines/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Aspartate Aminotransferases/blood
5.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Article En | MEDLINE | ID: mdl-38727954

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Drosophila melanogaster , Gamma Rays , Animals , Drosophila melanogaster/radiation effects , Drosophila melanogaster/genetics , Gamma Rays/adverse effects , Electromagnetic Radiation , Dose-Response Relationship, Radiation , Electromagnetic Fields/adverse effects , Embryo, Nonmammalian/radiation effects , Radiation, Ionizing , Mutation/radiation effects , Mutagenesis/radiation effects
6.
Radiat Environ Biophys ; 63(2): 195-202, 2024 May.
Article En | MEDLINE | ID: mdl-38709277

This study investigated natural sand thermoluminescence (TL) response as a possible option for retrospective high-dose gamma dosimetry. The natural sand under investigation was collected from six locations with selection criteria for sampling sites covering the highest probability of exposure to unexpected radiation on the Egyptian coast. Dose-response, glow curve, chemical composition, linearity, and fading rate for different sand samples were studied. Energy Dispersive X-ray Spectroscopy (EDX) analysis revealed differences in chemical composition among the various geological sites, leading to variations in TL glow curve intensity. Sand samples collected from Ras Sedr, Taba, Suez, and Enshas showed similar TL patterns, although with different TL intensities. Beach sands of Matrouh and North Coastal with a high calcite content did not show a clear linear response to the TL technique, in the dose range of 10 Gy up to 30 kGy. The results show that most sand samples are suitable as a radiation dosimeter at accidental levels of exposure. It is proposed here that for high-dose gamma dosimetry with doses ranging from 3 to 10 kGy, a single calibration factor might be enough for TL measurements using sand samples. However, proper calibration might allow dose assessment for doses even up to 30 kGy. Most of the investigated sand samples had nearly stable fading rates after seven days of storage. The Ras Sedr sands sample was the most reliable for retrospective dose reconstruction.


Sand , Thermoluminescent Dosimetry , Gamma Rays , Radiation Dosage , Calibration
7.
Sci Rep ; 14(1): 11524, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773212

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Dose-Response Relationship, Radiation , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Monte Carlo Method , Radiometry/methods , Cell Line , Gamma Rays/adverse effects
8.
Molecules ; 29(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38792087

In this work, we present the modification of a medical-grade silicone catheter with the N-vinylimidazole monomer using the grafting-from method at room temperature and induced by gamma rays. The catheters were modified by varying the monomer concentration (20-100 vol%) and the irradiation dose (20-100 kGy). Unlike the pristine material, the grafted poly(N-vinylimidazole) chains provided the catheter with hydrophilicity and pH response. This change allowed for the functionalization of the catheters to endow it with antimicrobial features. Thus, the quaternization of amines with iodomethane and bromoethane was performed, as well as the immobilization of silver and ampicillin. The inhibitory capacity of these materials, functionalized with antimicrobial agents, was challenged against Escherichia coli and Staphylococcus aureus strains, showing variable results, where loaded ampicillin was amply better at eliminating bacteria.


Escherichia coli , Imidazoles , Silicones , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Silicones/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Catheters/microbiology , Microbial Sensitivity Tests , Polyvinyls/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ampicillin/chemistry , Ampicillin/pharmacology , Gamma Rays
9.
Environ Sci Pollut Res Int ; 31(23): 34170-34183, 2024 May.
Article En | MEDLINE | ID: mdl-38696014

The study gives a morphofunctional assessment of the state of the thyroid gland of tundra voles (Microtus oeconomus Pall.) in conditions of an increased radiation background (the Ukhta district of the Komi Republic (Russia) and the 30-km zone of the Chernobyl NPP), as well as in an experiment with chronic external gamma irradiation in the low dose range. The work summarizes the experience of more than 35 years of field and laboratory research. The authors have noted the high sensitivity of the thyroid gland to chronic radiation against the general irradiation of the organism both in natural conditions and in the experiment. The repeatability of the observed effects in voles from natural populations and the comparability of some effects with the morphological changes occurring in animals after exposure to ionizing radiation in the experiment indicates the radiation nature of these effects. The tundra voles living in conditions of increased radiation background have been identified for a greater variety of morphological rearrangements in the thyroid parenchyma than the experimental animals. The complex and ambiguous nature of the thyroid gland responses to radiation exposure indicates the possibility of a significant increase in the risk of negative effects of ionizing radiation in contrast with the expected results of biological effects' extrapolation from high to low doses.


Arvicolinae , Thyroid Gland , Animals , Thyroid Gland/radiation effects , Radiation, Ionizing , Russia , Gamma Rays
10.
Sci Rep ; 14(1): 11535, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773159

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Gamma Rays , Graphite , Hesperidin , Matrix Metalloproteinase 2 , Nanocomposites , Smad4 Protein , Humans , Graphite/chemistry , Graphite/pharmacology , Nanocomposites/chemistry , Hesperidin/pharmacology , Hesperidin/chemistry , Smad4 Protein/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Green Chemistry Technology/methods , Signal Transduction/drug effects , Caco-2 Cells , Hep G2 Cells , Cell Line, Tumor , MAP Kinase Kinase 4/metabolism
11.
Front Public Health ; 12: 1365161, 2024.
Article En | MEDLINE | ID: mdl-38807988

Introduction: Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods: The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results: No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion: This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.


Ciprofloxacin , Gastrointestinal Microbiome , Animals , Ciprofloxacin/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/radiation effects , Mice , Anti-Bacterial Agents/pharmacology , Acute Radiation Syndrome/drug therapy , Gamma Rays , Male , Female
12.
Phys Med Biol ; 69(11)2024 May 30.
Article En | MEDLINE | ID: mdl-38729180

The design of prompt-gamma detectors necessitates numerous Monte Carlo simulations to precisely develop and optimize the detection stages in proton therapy. Alongside the advancement of MC simulations, various variance reduction methods have been explored to speed-up calculations. Among these techniques, track-length estimators are interesting scoring methods for achieving both speed and accuracy in Monte Carlo simulations of rare events. This paper introduces an extension of the GATE vpgTLE module that incorporates the prompt-gamma emission time, which is tagged from the proton tracking, enhancing its utility for studies focused on detector design and optimization that rely on time measurements. The results obtained from a clinical radiotherapy plan are presented. We demonstrate that the new vpgTLE tally with time tagging is accurate, except for certain prompt-gamma lines corresponding to long mean-life nuclei.


Gamma Rays , Monte Carlo Method , Proton Therapy , Time Factors , Protons , Radiotherapy Planning, Computer-Assisted/methods
13.
Sci Rep ; 14(1): 12160, 2024 05 28.
Article En | MEDLINE | ID: mdl-38802452

The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033-1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.


Cell Survival , DNA Breaks, Double-Stranded , Dose-Response Relationship, Radiation , Epithelial Cells , Histones , Lens, Crystalline , Humans , Epithelial Cells/radiation effects , Epithelial Cells/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/cytology , DNA Breaks, Double-Stranded/radiation effects , Histones/metabolism , Cell Survival/radiation effects , Radiation, Ionizing , Cell Line , DNA Repair/radiation effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , X-Rays , Gamma Rays/adverse effects
14.
Chemosphere ; 357: 141915, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582162

Standard OECD tests are used to generate data on biodegradation (OECD 307) and sorption (OECD 106) of test chemicals in soil. In such tests, data on abiotic degradation using sterile samples are utilised to investigate any losses due to abiotic processes. The data from sterile samples are also used to interpret results and findings of non-sterile samples, especially in the context of sorption and non-extractable residue (NER) formation. However, to ensure the comparability of the data obtained from sterile and non-sterile experiments, effects of sterilisation on the soil matrix should be minimal. The objective of this study was to investigate the efficiencies of different sterilisation techniques and the impact of the sterilisation on sorption and NER formation in soil. In this study, experiments in accordance with OECD 307 and OECD 106 guidelines were performed with two soils covering wide range of soil characteristics and treated with the three sterilisation techniques autoclaving, gamma(γ)-radiation and adding 1% (w/w) sodium azide. As a test item, 14C-labelled phenanthrene and bromoxynil was used for OECD 307 test, whereas non-labelled phenanthrene and atrazine was used for OECD 106. The sterilisation efficiencies were investigated using traditional viable plate count and molecular approaches (RNA extraction method). The results suggest that none of the tested techniques resulted in completely sterilised soil with autoclaving being the most efficient technique. Adding sodium azide led to most inefficient sterilisation and a significant increase (0.56 units) in soil pH. OECD 307 results showed differences in NER formation of the test chemicals, especially for soil poisoning and γ-radiation, which could be due to inefficient sterilisation and/or change in soil physico-chemical properties. OECD 106 results suggest that none of the sterilisation techniques considerably affected sorption behaviour of the test chemicals. Based on our results, we recommend autoclaving as most suitable sterilisation technique.


Biodegradation, Environmental , Soil Pollutants , Soil , Sterilization , Soil Pollutants/chemistry , Soil Pollutants/analysis , Sterilization/methods , Soil/chemistry , Adsorption , Gamma Rays , Phenanthrenes/chemistry
15.
Int J Radiat Biol ; 100(6): 890-902, 2024.
Article En | MEDLINE | ID: mdl-38631047

Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.


Fibroblasts , Gamma Rays , Mitochondria , Reactive Oxygen Species , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/radiation effects , Mitochondria/metabolism , Gamma Rays/adverse effects , Cell Line , Radiation Exposure/adverse effects , Organophosphorus Compounds , Piperidines
16.
Methods Mol Biol ; 2788: 243-255, 2024.
Article En | MEDLINE | ID: mdl-38656518

Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.


Gamma Rays , Mutagenesis , Oryza , Seeds , Oryza/genetics , Oryza/radiation effects , Oryza/growth & development , Mutagenesis/radiation effects , Seeds/genetics , Seeds/radiation effects , Seeds/growth & development , Regeneration/genetics , Plant Somatic Embryogenesis Techniques/methods
17.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602532

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Microbiota , Mycorrhizae , China , Forests , Gamma Rays , Soil
18.
Carbohydr Polym ; 336: 122121, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38670753

This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.


Chitosan , Nanoparticles , Neurons , Polylactic Acid-Polyglycolic Acid Copolymer , Chitosan/chemistry , Humans , Nanoparticles/chemistry , Neurons/drug effects , Neurons/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Carriers/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Particle Size , Gamma Rays
19.
Radiol Phys Technol ; 17(2): 451-457, 2024 Jun.
Article En | MEDLINE | ID: mdl-38687457

Measurement-based verification is impossible for the patient-specific quality assurance (QA) of online adaptive magnetic resonance imaging-guided radiotherapy (oMRgRT) because the patient remains on the couch throughout the session. We assessed a deep learning (DL) system for oMRgRT to predict the gamma passing rate (GPR). This study collected 125 verification plans [reference plan (RP), 100; adapted plan (AP), 25] from patients with prostate cancer treated using Elekta Unity. Based on our previous study, we employed a convolutional neural network that predicted the GPRs of nine pairs of gamma criteria from 1%/1 mm to 3%/3 mm. First, we trained and tested the DL model using RPs (n = 75 and n = 25 for training and testing, respectively) for its optimization. Second, we tested the GPR prediction accuracy using APs to determine whether the DL model could be applied to APs. The mean absolute error (MAE) and correlation coefficient (r) of the RPs were 1.22 ± 0.27% and 0.29 ± 0.10 in 3%/2 mm, 1.35 ± 0.16% and 0.37 ± 0.15 in 2%/2 mm, and 3.62 ± 0.55% and 0.32 ± 0.14 in 1%/1 mm, respectively. The MAE and r of the APs were 1.13 ± 0.33% and 0.35 ± 0.22 in 3%/2 mm, 1.68 ± 0.47% and 0.30 ± 0.11 in 2%/2 mm, and 5.08 ± 0.29% and 0.15 ± 0.10 in 1%/1 mm, respectively. The time cost was within 3 s for the prediction. The results suggest the DL-based model has the potential for rapid GPR prediction in Elekta Unity.


Deep Learning , Magnetic Resonance Imaging , Particle Accelerators , Prostatic Neoplasms , Radiotherapy, Image-Guided , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Male , Radiotherapy Planning, Computer-Assisted/methods , Gamma Rays
20.
Appl Environ Microbiol ; 90(5): e0153823, 2024 May 21.
Article En | MEDLINE | ID: mdl-38587394

A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE: Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.


Bacterial Proteins , Deinococcus , Gene Expression Regulation, Bacterial , RNA, Bacterial , Reactive Oxygen Species , Deinococcus/genetics , Deinococcus/radiation effects , Deinococcus/metabolism , Reactive Oxygen Species/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Radiation, Ionizing , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Oxidative Stress , Gamma Rays
...