Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
J Neurosci Res ; 102(8): e25371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39078068

RESUMEN

Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.


Asunto(s)
Carnosina , Lipopolisacáridos , Lymnaea , Memoria a Largo Plazo , Animales , Lymnaea/efectos de los fármacos , Carnosina/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Lipopolisacáridos/farmacología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Condicionamiento Operante/efectos de los fármacos , Conducta Animal/efectos de los fármacos
2.
J Comp Neurol ; 532(6): e25628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852042

RESUMEN

Gastropod molluscs such as Aplysia, Lymnaea, and Tritonia have been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain-wide structure-function relations. Here we combine high-throughput, single-cell RNA sequencing with in situ hybridization chain reaction in the nudibranch Berghia stephanieae to identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.


Asunto(s)
Ganglios de Invertebrados , Gastrópodos , Animales , Gastrópodos/genética , Ganglios de Invertebrados/metabolismo , Neuronas/metabolismo , Neuronas/química , Cabeza , Expresión Génica
3.
J Neurochem ; 168(9): 2848-2867, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922726

RESUMEN

The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.


Asunto(s)
Endocannabinoides , Lymnaea , Animales , Lymnaea/metabolismo , Endocannabinoides/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/enzimología , Estrés Fisiológico/fisiología , Lipopolisacáridos/farmacología
4.
Tissue Cell ; 88: 102348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493758

RESUMEN

Pomacea canaliculata is an invasive snail species causing major problems in agriculture. The snail biology was then investigated. The main objective of the present study was to investigate the nervous system of the snail. The nervous system comprises pairs of cerebral, buccal, pedal, pleural, parietal ganglia and an unpaired visceral ganglion. Most neurons were concentrated at the periphery of the ganglia. The neurons were classified into four types: NR1, NR2, NR3, and NR4. The percentages of the NR3 and NR4 in the pleural and pedal ganglia were significantly higher than those of other ganglia. Ultrastructural study revealed that nuclei of all neuronal types exhibited mostly euchromatins. Many organelles including ribosomes and endoplasmic reticulum were found in their cytoplasm. However, various mitochondria were found in the NR2 and NR3. The immunohistochemistry revealed immunoreactivity of ghrelin-like peptide in the neurons of the cerebral, pleural and pedal ganglia. However, immunoreactivity of GHS-R1a-like peptide existed only in the neurons of the pleural and pedal ganglia. The present study is the first to demonstrate the existence of ghrelin-like peptide and its receptor in P. canaliculata nervous system.


Asunto(s)
Neuronas , Caracoles , Animales , Caracoles/metabolismo , Caracoles/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Ghrelina/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/ultraestructura , Ganglios/metabolismo , Ganglios/ultraestructura
5.
Curr Biol ; 32(6): 1439-1445.e3, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148862

RESUMEN

In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.


Asunto(s)
Braquiuros , Neoplasias , Animales , Braquiuros/fisiología , Ganglios , Ganglios de Invertebrados/metabolismo , Neoplasias/metabolismo , Neuronas/fisiología , Periodicidad
6.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415334

RESUMEN

Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a 'command center' that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved.


Asunto(s)
Axones/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Proyección Neuronal , Factores de Transcripción/metabolismo , Tribolium/metabolismo , Animales , Axones/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética , Tribolium/embriología , Tribolium/genética
7.
Cell ; 184(18): 4819-4837.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380046

RESUMEN

Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.


Asunto(s)
Forma de la Célula , Regulación de la Expresión Génica , Poliquetos/citología , Poliquetos/genética , Análisis de la Célula Individual , Animales , Núcleo Celular/metabolismo , Ganglios de Invertebrados/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Imagen Multimodal , Cuerpos Pedunculados/metabolismo , Poliquetos/ultraestructura
8.
J Neurosci ; 41(13): 2911-2929, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33531417

RESUMEN

In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ganglios de Invertebrados/metabolismo , Proteínas de Insectos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Femenino , Ganglios de Invertebrados/química , Proteínas de Insectos/análisis , Proteínas de Insectos/genética , Insectos , Músculo Esquelético/química
9.
Peptides ; 136: 170466, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253775

RESUMEN

The SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The SN2 axon terminals surround rather than directly innervate the salivary gland acini. Therefore one may expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide may also have a hormonal function. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.


Asunto(s)
Neuronas/metabolismo , Neuropéptidos/genética , Receptores de Neuropéptido/genética , Glándulas Salivales/metabolismo , Animales , Ganglios de Invertebrados/metabolismo , Regulación de la Expresión Génica/genética , Neuropéptidos/metabolismo , Periplaneta/genética , Periplaneta/metabolismo , Glándulas Salivales/inervación
10.
Cell Tissue Res ; 383(3): 959-977, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33237479

RESUMEN

Although it is now established that neurons in crustacea contain multiple transmitter substances, little is know about patterns of expression and co-expression or about the functional effects of such co-transmission. The present study was designed to characterize the distributions and potential colocalization of choline acetyltransferase (ChAT), serotonin (5-HT) and neuropeptide H-Phe-Met-Arg-Phe-NH2 (FMRFamide) in the central nervous system (CNS) of the Asian shore crab, Hemigrapsus sanguineus using immunohistochemical analyses in combination with laser scanning confocal microscopy. ChAT was found to be expressed by small, medium-sized, and large neurons in all regions of the brain and ventral nerve cord (VNC). For the most part, ChAT, FMRFamide, and 5-HT are expressed in different neurons, although some colocalization of ChAT- with FMRFamide- or 5-HT-LIR is observed in small and medium-sized cells, mostly neurons that immunostain only weakly. In the brain, such double immunolabeling is observed primarily in neurons of the protocerebrum and, to a particularly great extent, in local olfactory interneurons of the deutocerebrum. The clusters of neurons in the VNC that stain most intensely for ChAT, FMRFamide, and 5-HT, with colocalization in some cases, are located in the subesophageal ganglia. This colocalization appears to be related to function, since it is present in regions of the CNS characterized by multiple afferent projections and outputs to a variety of functionally related centers involved in various physiological and behavioral processes. Further elucidation of the functional significance of these neurons and of the widespread process of co-transmission in the crustaceans should provide fascinating new insights.


Asunto(s)
Braquiuros , Sistema Nervioso Central , Ganglios de Invertebrados , Neuronas , Animales , Braquiuros/metabolismo , Braquiuros/ultraestructura , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/ultraestructura , Colina O-Acetiltransferasa/metabolismo , FMRFamida/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA