Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
J Neurosci Res ; 102(8): e25371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39078068

RESUMEN

Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.


Asunto(s)
Carnosina , Lipopolisacáridos , Lymnaea , Memoria a Largo Plazo , Animales , Lymnaea/efectos de los fármacos , Carnosina/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Lipopolisacáridos/farmacología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Condicionamiento Operante/efectos de los fármacos , Conducta Animal/efectos de los fármacos
2.
J Comp Neurol ; 532(6): e25628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852042

RESUMEN

Gastropod molluscs such as Aplysia, Lymnaea, and Tritonia have been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain-wide structure-function relations. Here we combine high-throughput, single-cell RNA sequencing with in situ hybridization chain reaction in the nudibranch Berghia stephanieae to identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.


Asunto(s)
Ganglios de Invertebrados , Gastrópodos , Animales , Gastrópodos/genética , Ganglios de Invertebrados/metabolismo , Neuronas/metabolismo , Neuronas/química , Cabeza , Expresión Génica
3.
Tissue Cell ; 88: 102348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493758

RESUMEN

Pomacea canaliculata is an invasive snail species causing major problems in agriculture. The snail biology was then investigated. The main objective of the present study was to investigate the nervous system of the snail. The nervous system comprises pairs of cerebral, buccal, pedal, pleural, parietal ganglia and an unpaired visceral ganglion. Most neurons were concentrated at the periphery of the ganglia. The neurons were classified into four types: NR1, NR2, NR3, and NR4. The percentages of the NR3 and NR4 in the pleural and pedal ganglia were significantly higher than those of other ganglia. Ultrastructural study revealed that nuclei of all neuronal types exhibited mostly euchromatins. Many organelles including ribosomes and endoplasmic reticulum were found in their cytoplasm. However, various mitochondria were found in the NR2 and NR3. The immunohistochemistry revealed immunoreactivity of ghrelin-like peptide in the neurons of the cerebral, pleural and pedal ganglia. However, immunoreactivity of GHS-R1a-like peptide existed only in the neurons of the pleural and pedal ganglia. The present study is the first to demonstrate the existence of ghrelin-like peptide and its receptor in P. canaliculata nervous system.


Asunto(s)
Neuronas , Caracoles , Animales , Caracoles/metabolismo , Caracoles/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Ghrelina/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/ultraestructura , Ganglios/metabolismo , Ganglios/ultraestructura
4.
Curr Biol ; 32(6): 1439-1445.e3, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148862

RESUMEN

In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.


Asunto(s)
Braquiuros , Neoplasias , Animales , Braquiuros/fisiología , Ganglios , Ganglios de Invertebrados/metabolismo , Neoplasias/metabolismo , Neuronas/fisiología , Periodicidad
5.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415334

RESUMEN

Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a 'command center' that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved.


Asunto(s)
Axones/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Proyección Neuronal , Factores de Transcripción/metabolismo , Tribolium/metabolismo , Animales , Axones/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética , Tribolium/embriología , Tribolium/genética
6.
Cell ; 184(18): 4819-4837.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380046

RESUMEN

Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.


Asunto(s)
Forma de la Célula , Regulación de la Expresión Génica , Poliquetos/citología , Poliquetos/genética , Análisis de la Célula Individual , Animales , Núcleo Celular/metabolismo , Ganglios de Invertebrados/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Imagen Multimodal , Cuerpos Pedunculados/metabolismo , Poliquetos/ultraestructura
7.
J Neurosci ; 41(13): 2911-2929, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33531417

RESUMEN

In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ganglios de Invertebrados/metabolismo , Proteínas de Insectos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Femenino , Ganglios de Invertebrados/química , Proteínas de Insectos/análisis , Proteínas de Insectos/genética , Insectos , Músculo Esquelético/química
8.
Peptides ; 136: 170466, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253775

RESUMEN

The SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The SN2 axon terminals surround rather than directly innervate the salivary gland acini. Therefore one may expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide may also have a hormonal function. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.


Asunto(s)
Neuronas/metabolismo , Neuropéptidos/genética , Receptores de Neuropéptido/genética , Glándulas Salivales/metabolismo , Animales , Ganglios de Invertebrados/metabolismo , Regulación de la Expresión Génica/genética , Neuropéptidos/metabolismo , Periplaneta/genética , Periplaneta/metabolismo , Glándulas Salivales/inervación
9.
Cell Tissue Res ; 383(3): 959-977, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33237479

RESUMEN

Although it is now established that neurons in crustacea contain multiple transmitter substances, little is know about patterns of expression and co-expression or about the functional effects of such co-transmission. The present study was designed to characterize the distributions and potential colocalization of choline acetyltransferase (ChAT), serotonin (5-HT) and neuropeptide H-Phe-Met-Arg-Phe-NH2 (FMRFamide) in the central nervous system (CNS) of the Asian shore crab, Hemigrapsus sanguineus using immunohistochemical analyses in combination with laser scanning confocal microscopy. ChAT was found to be expressed by small, medium-sized, and large neurons in all regions of the brain and ventral nerve cord (VNC). For the most part, ChAT, FMRFamide, and 5-HT are expressed in different neurons, although some colocalization of ChAT- with FMRFamide- or 5-HT-LIR is observed in small and medium-sized cells, mostly neurons that immunostain only weakly. In the brain, such double immunolabeling is observed primarily in neurons of the protocerebrum and, to a particularly great extent, in local olfactory interneurons of the deutocerebrum. The clusters of neurons in the VNC that stain most intensely for ChAT, FMRFamide, and 5-HT, with colocalization in some cases, are located in the subesophageal ganglia. This colocalization appears to be related to function, since it is present in regions of the CNS characterized by multiple afferent projections and outputs to a variety of functionally related centers involved in various physiological and behavioral processes. Further elucidation of the functional significance of these neurons and of the widespread process of co-transmission in the crustaceans should provide fascinating new insights.


Asunto(s)
Braquiuros , Sistema Nervioso Central , Ganglios de Invertebrados , Neuronas , Animales , Braquiuros/metabolismo , Braquiuros/ultraestructura , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/ultraestructura , Colina O-Acetiltransferasa/metabolismo , FMRFamida/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Serotonina/metabolismo
10.
J Neurophysiol ; 124(4): 1241-1256, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755328

RESUMEN

The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.


Asunto(s)
Ganglios de Invertebrados/metabolismo , Neuronas Motoras/metabolismo , Neuropéptidos/metabolismo , Potenciales Sinápticos , Animales , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/fisiología , Corazón/inervación , Neuronas Motoras/fisiología , Nephropidae , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo
11.
J Neurophysiol ; 123(5): 2075-2089, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32319837

RESUMEN

Elevated potassium concentration ([K+]) is often used to alter excitability in neurons and networks by shifting the potassium equilibrium potential (EK) and, consequently, the resting membrane potential. We studied the effects of increased extracellular [K+] on the well-described pyloric circuit of the crab Cancer borealis. A 2.5-fold increase in extracellular [K+] (2.5×[K+]) depolarized pyloric dilator (PD) neurons and resulted in short-term loss of their normal bursting activity. This period of silence was followed within 5-10 min by the recovery of spiking and/or bursting activity during continued superfusion of 2.5×[K+] saline. In contrast, when PD neurons were pharmacologically isolated from pyloric presynaptic inputs, they exhibited no transient loss of spiking activity in 2.5×[K+], suggesting the presence of an acute inhibitory effect mediated by circuit interactions. Action potential threshold in PD neurons hyperpolarized during an hour-long exposure to 2.5×[K+] concurrent with the recovery of spiking and/or bursting activity. Thus the initial loss of activity appears to be mediated by synaptic interactions within the network, but the secondary adaptation depends on changes in the intrinsic excitability of the pacemaker neurons. The complex sequence of events in the responses of pyloric neurons to elevated [K+] demonstrates that electrophysiological recordings are necessary to determine both the transient and longer term effects of even modest alterations of K+ concentrations on neuronal activity.NEW & NOTEWORTHY Solutions with elevated extracellular potassium are commonly used as a depolarizing stimulus. We studied the effects of high potassium concentration ([K+]) on the pyloric circuit of the crab stomatogastric ganglion. A 2.5-fold increase in extracellular [K+] caused a transient loss of activity that was not due to depolarization block, followed by a rapid increase in excitability and recovery of spiking within minutes. This suggests that changing extracellular potassium can have complex and nonstationary effects on neuronal circuits.


Asunto(s)
Braquiuros/fisiología , Generadores de Patrones Centrales/fisiología , Fenómenos Electrofisiológicos/fisiología , Ganglios de Invertebrados/fisiología , Potasio/metabolismo , Píloro/fisiología , Animales , Generadores de Patrones Centrales/metabolismo , Ganglios de Invertebrados/metabolismo , Masculino , Píloro/metabolismo
12.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225106

RESUMEN

Oxytocin (OT)/vasopressin (VP) signaling system is important to the regulation of metabolism, osmoregulation, social behaviours, learning, and memory, while the regulatory mechanism on ovarian development is still unclear in invertebrates. In this study, Spot/vp-like and its receptor (Spot/vpr-like) were identified in the mud crab Scylla paramamosain. Spot/vp-like transcripts were mainly expressed in the nervous tissues, midgut, gill, hepatopancreas, and ovary, while Spot/vpr-like were widespread in various tissues including the hepatopancreas, ovary, and hemocytes. In situ hybridisation revealed that Spot/vp-like mRNA was mainly detected in 6-9th clusters in the cerebral ganglion, and oocytes and follicular cells in the ovary, while Spot/vpr-like was found to localise in F-cells in the hepatopancreas and oocytes in the ovary. In vitro experiment showed that the mRNA expression level of Spvg in the hepatopancreas, Spvgr in the ovary, and 17ß-estradiol (E2) content in culture medium were significantly declined with the administration of synthetic SpOT/VP-like peptide. Besides, after the injection of SpOT/VP-like peptide, it led to the significantly reduced expression of Spvg in the hepatopancreas and subduced E2 content in the haemolymph in the crabs. In brief, SpOT/VP signaling system might inhibit vitellogenesis through neuroendocrine and autocrine/paracrine modes, which may be realised by inhibiting the release of E2.


Asunto(s)
Braquiuros/metabolismo , Oxitocina/metabolismo , Vasopresinas/metabolismo , Vitelogénesis , Animales , Braquiuros/genética , Femenino , Ganglios de Invertebrados/metabolismo , Hepatopáncreas/metabolismo , Ovario/metabolismo , Oxitocina/genética , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Transcriptoma , Vasopresinas/genética
13.
Invert Neurosci ; 20(2): 7, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32215729

RESUMEN

In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DAα2R) receptors, octopamine alpha (Homam-OctαR), beta-1, beta-2, beta-3, beta-4, and octopamine-tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DAα2R, Homam-OctαR, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.


Asunto(s)
Encéfalo/metabolismo , Ganglios de Invertebrados/metabolismo , Nephropidae/metabolismo , Receptores de Amina Biogénica/metabolismo , Animales
14.
Invert Neurosci ; 20(2): 5, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32115669

RESUMEN

Gap junctions are physical channels that connect adjacent cells, permitting the flow of small molecules/ions between the cytoplasms of the coupled units. Innexin/innexin-like proteins are responsible for the formation of invertebrate gap junctions. Within the nervous system, gap junctions often function as electrical synapses, providing a means for coordinating activity among electrically coupled neurons. While some gap junctions allow the bidirectional flow of small molecules/ions between coupled cells, others permit flow in one direction only or preferentially. The complement of innexins present in a gap junction determines its specific properties. Thus, understanding innexin diversity is key for understanding the full potential of electrical coupling in a species/system. The decapod crustacean cardiac ganglion (CG), which controls cardiac muscle contractions, is a simple pattern-generating neural network with extensive electrical coupling among its circuit elements. In the lobster, Homarus americanus, prior work suggested that the adult neuronal innexin complement consists of six innexins (Homam-Inx1-4 and Homam-Inx6-7). Here, using a H. americanus CG-specific transcriptome, we explored innexin complement in this portion of the lobster nervous system. With the exception of Homam-Inx4, all of the previously described innexins appear to be expressed in the H. americanus CG. In addition, transcripts encoding seven novel putative innexins (Homam-Inx8-14) were identified, four (Homam-Inx8-11) having multiple splice variants, e.g., six for Homam-Inx8. Collectively, these data indicate that the innexin complement of the lobster nervous system in general, and the CG specifically, is likely significantly greater than previously reported, suggesting the possibility of expanded gap junction diversity and function in H. americanus.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Conexinas/metabolismo , Ganglios de Invertebrados/metabolismo , Corazón/fisiología , Nephropidae/metabolismo , Animales , Simulación por Computador , Uniones Comunicantes/metabolismo
15.
Gene Expr Patterns ; 35: 119101, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105761

RESUMEN

Sex determination is a rapidly evolving biological process controlled by differential gene expression. One family of transcription factors that initiate sex-specific gene expression and differentiation in many animal species are the Doublesex and Mab-3 (DM) domain proteins. While much is known about Doublesex-related proteins in various insect orders and commonly studied model systems, little is known about their function in basally branching arthropods. Spiders are an emerging model for molecular and evolutionary development that could fill this gap. Arachnids share an ancient whole-genome duplication providing a unique opportunity to study the effect of major genomic rearrangements on the evolution of developmental processes. In this study, we aimed to identify the repertoire of Dsx-related proteins encoded by the genome of the common house spider, Parasteatoda tepidariorum. While insects have four DM domain proteins, the P. tepidariorum genome encodes seven, indicating the possibility of duplicate retention. At least four of the DM protein genes demonstrated sex bias expression in adult spiders. Embryonic expression of these genes suggests roles in development of the spinnerets, nervous system, and appendages.


Asunto(s)
Proteínas de Artrópodos/genética , Regulación del Desarrollo de la Expresión Génica , Arañas/genética , Factores de Transcripción/genética , Animales , Proteínas de Artrópodos/metabolismo , Femenino , Ganglios de Invertebrados/embriología , Ganglios de Invertebrados/metabolismo , Masculino , Procesos de Determinación del Sexo , Arañas/embriología , Arañas/metabolismo , Factores de Transcripción/metabolismo
16.
Gen Comp Endocrinol ; 285: 113248, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31430448

RESUMEN

Neuroparsin (NP) is an important neuropeptide in invertebrates. It is well-known that NP displays multiple biological activities, including antidiuretic and inhibition of vitellogenesis in insects. However, the information about its effect in crustaceans is scarce. In this study, the sequence of Sp-NP1 was selected from the transcriptome database from the mud crab, Scylla paramamosain. Sequence analyses indicate that the Sp-NP1 amino acid (AA) sequences consist of a 27 AA signal peptide and a 74 AA mature peptide, which contains 12 cysteine residues. qRT-PCR analysis has revealed that the expressions of Sp-NP1 gene are high in the nervous tissues and extremely low in the ovary and hepatopancreas. In situ hybridization has shown that the positive signals are localized in cell cluster 6 of protocerebrum and cell clusters 10 and 11 of deutocerebrum. The presence of Sp-NP1 in the haemolymph has been detected in S. paramamosain through western blot, which indicates that Sp-NP1 serves as an endocrine factor in the regulation of physiological activities. In vitro experiments have further shown that the mRNA level of vitellogenin in the hepatopancreas notably decreases following administration of recombinant Sp-NP1, while the mRNA level of vitellogenin receptor and cyclin B in the ovary shows no significant differences. Collectively, Sp-NP1 possibly can inhibit the production of vitellogenin in the hepatopancreas and has no direct effect on the ovary in S. paramamosain.


Asunto(s)
Braquiuros/metabolismo , Neuropéptidos/metabolismo , Vitelogénesis , Secuencia de Aminoácidos , Animales , Femenino , Ganglios de Invertebrados/metabolismo , Regulación de la Expresión Génica , Hemolinfa/metabolismo , Hepatopáncreas/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Distribución Tisular , Vitelogénesis/genética
17.
G3 (Bethesda) ; 10(1): 43-55, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31694853

RESUMEN

Locomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function. In order to define the microRNAs required for normal locomotion in Drosophila melanogaster, we utilized a set of transgenic Gal4-dependent competitive inhibitors (microRNA sponges, or miR-SPs) to functionally assess ca. 140 high-confidence Drosophila microRNAs using automated quantitative movement tracking systems followed by multiparametric analysis. Using ubiquitous expression of miR-SP constructs, we identified a large number of microRNAs that modulate aspects of normal baseline adult locomotion. Addition of temperature-dependent Gal80 to identify microRNAs that act during adulthood revealed that the majority of these microRNAs play developmental roles. Comparison of ubiquitous and neural-specific miR-SP expression suggests that most of these microRNAs function within the nervous system. Parallel analyses of spontaneous locomotion in adults and in larvae also reveal that very few of the microRNAs required in the adult overlap with those that control the behavior of larval motor circuits. These screens suggest that a rich regulatory landscape underlies the formation and function of motor circuits and that many of these mechanisms are stage and/or parameter-specific.


Asunto(s)
Locomoción/genética , MicroARNs/genética , Animales , Drosophila melanogaster , Ganglios de Invertebrados/metabolismo , MicroARNs/metabolismo
18.
Invert Neurosci ; 19(4): 12, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31549228

RESUMEN

In decapod crustaceans, the amines dopamine, octopamine, serotonin, and histamine are known to serve as locally released and/or circulating neuromodulators. While many studies have focused on determining the modulatory actions of amines on decapod nervous systems, comparatively little is known about the identity of the receptors through which they exert their actions. Here, a crayfish, Procambarus clarkii, tissue-specific transcriptome was used to identify putative amine receptors in the eyestalk, a structure composed largely of the eyestalk ganglia, including the neuroendocrine X-organ-sinus gland system, and retina. Transcripts encoding 17 distinct putative amine receptors, three dopamine (one dopamine 1-like, one dopamine 2-like, and one dopamine/ecdysteroid-like), five octopamine (one alpha-like, three beta-like, and one octopamine/tyramine-like), three serotonin (two type-1-like and one type-7-like), and six histamine (five histamine-gated chloride channel A-like and one histamine-gated chloride channel B-like) were identified in the assembly. Comparison of the nucleotide sequence of the transcript encoding one predicted type-1-like serotonin receptor with that cloned previously from the P. clarkii nervous system shows the two sequences to be essentially identical, providing increased support for the validity of the transcripts used to deduce the proteins reported here. Reciprocal BLAST and structural/functional domain analyses support the protein family annotations ascribed to the putative P. clarkii receptors. These data represent the first large-scale description of amine receptors from P. clarkii, and as such provide a new resource for initiating gene-based studies of aminergic control of physiology/behavior at the level of receptors in this species.


Asunto(s)
Astacoidea/metabolismo , Ganglios de Invertebrados/metabolismo , Receptores de Amina Biogénica/metabolismo , Retina/metabolismo , Animales
19.
Mol Cell Neurosci ; 100: 103398, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31472221

RESUMEN

Neurogenesis is driven by spatially and temporally regulated proliferation of neuronal progenitor cells that generates enormous number of assorted neurons to drive the complex behavior of an organism. Drosophila nervous system provides an advantageous model for identification and elucidation of the functional significance of the novel gene(s) involved in neurogenesis. The present study attempts to investigate the role(s) of globin1 (glob1) in the development and maintenance of the nervous system in Drosophila. It is increasingly clear now that globin genes play important role(s) in the various biological phenomena. The vertebrate neuroglobin has been reported to profoundly express in neuronal tissues and provides neuroprotection. We noted ubiquitous presence of Glob1 in the developing neuronal tissues with enhanced concentration throughout the VNC which comprises of midline cell clusters, which subsequently forms numerous types of progenitor cells and finally differentiate into specific neurons of the nervous system. Ubiquitous or pan-neuronal downregulation of glob1 causes partial lethality and mis-positioning of various neural-progenitor cells present in the embryonic midline cell clusters. Subsequently, profound expression of Glob1 was noted in the outer proliferation center of larval brain and photoreceptor axons of optic stalk. The overall arrangement of photoreceptor axons and stereotype positioning of neuroblast cells present in the central region of the brain were severally affected due to reduced expression of glob1. In addition, such larvae and surviving adults develop significant neuro-muscular disabilities. For the first time, our study suggests a novel role of glob1 in development and maintenance of the nervous system adding a new dimension to the functional significance of the multi-tasking glob1 gene in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Ganglios de Invertebrados/metabolismo , Neurogénesis , Globinas alfa/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/embriología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Globinas alfa/metabolismo
20.
J Neurosci Res ; 97(11): 1469-1482, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31379045

RESUMEN

Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross-reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems of Biomphalaria alexandrina. The results revealed KLH-like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH-LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH-LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH-LIR cells did not co-localize with tyrosine hydroxylase (TH)-LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH-like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross-reactivity. In addition, this study is the first to describe neuronal cross-reactivity with KLH in Biomphalaria, which could provide a substrate for host-parasite interactions with a parasitic trematode, Schistosoma.


Asunto(s)
Biomphalaria/metabolismo , Ganglios de Invertebrados/metabolismo , Hemocianinas/análisis , Neuronas/metabolismo , Animales , Anticuerpos/administración & dosificación , Hemocianinas/inmunología , Inmunohistoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA