Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.627
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 961-969, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38884231

Research about feeding ecology of fish is important to understand individual behavior and population development, which is also the basic to analyze trophic structure and function of aquatic ecosystems. Chaetrichthys stigmatias is one of the key species in the Haizhou Bay fisheries ecosystem, which has critical ecological niche within the food web. In this study, we collected samples through bottom trawl surveys during the fall of 2018 in the Haizhou Bay, and analyzed the feeding ecology of C. stigmatias based on both stomach content analysis and stable isotope technology. The results showed that the primary diet groups for C. stigmatias were Ophiuroidea and Shrimp, including Ophiothrix marenzelleri, Ophiopholis mirabilis, Ophiura sarsii, Penaeidae, and Alpheus japonicus. The range of δ13C values of C. stigmatias was from -19.39‰ to -15.74‰, with an average value of (-18.07±0.87)‰, which had no significant correlation with body length. The range of δ15N values was from 8.16‰ to 12.86‰, with an average value of (10.14±1.51)‰, which was positively correlated with body length. The trophic level of C. stigmatias showed a positive relationship with body length, with an average value of (3.74±0.34) and a range value of 3.32 to 4.20 among different size groups. The contribution rates of different prey groups varied significantly. Based on the structural equation modeling, we found that the feeding intensity of C. stigmatias was primally influenced by body length, sea bottom salinity, sea bottom temperature, and water depth, with a particularly signi-ficant positive correlation with body length. The combination of stable isotope technology and stomach content analysis methods could contribute to comprehensive understanding on the feeding ecology of C. stigmatias, providing essential data and foundation for research on trophic structures and resource conservation in the Haizhou Bay ecosystem.


Bays , Ecosystem , Feeding Behavior , Seasons , Animals , China , Food Chain , Fishes , Oceans and Seas , Gastrointestinal Contents/chemistry
2.
PLoS One ; 19(5): e0302518, 2024.
Article En | MEDLINE | ID: mdl-38820525

Predation by invasive species can threaten local ecosystems and economies. The European green crab (Carcinus maenas), one of the most widespread marine invasive species, is an effective predator associated with clam and crab population declines outside of its native range. In the U.S. Pacific Northwest, green crab has recently increased in abundance and expanded its distribution, generating concern for estuarine ecosystems and associated aquaculture production. However, regionally-specific information on the trophic impacts of invasive green crab is very limited. We compared the stomach contents of green crabs collected on clam aquaculture beds versus intertidal sloughs in Willapa Bay, Washington, to provide the first in-depth description of European green crab diet at a particularly crucial time for regional management. We first identified putative prey items using DNA metabarcoding of stomach content samples. We compared diet composition across sites using prey presence/absence and an index of species-specific relative abundance. For eight prey species, we also calibrated metabarcoding data to quantitatively compare DNA abundance between prey taxa, and to describe an 'average' green crab diet at an intertidal slough versus a clam aquaculture bed. From the stomach contents of 61 green crabs, we identified 54 unique taxa belonging to nine phyla. The stomach contents of crabs collected from clam aquaculture beds were significantly different from the stomach contents of crabs collected at intertidal sloughs. Across all sites, arthropods were the most frequently detected prey, with the native hairy shore crab (Hemigrapsus oregonensis) the single most common prey item. Of the eight species calibrated with a quantitative model, two ecologically-important native species-the sand shrimp (Crangon franciscorum) and the Pacific staghorn sculpin (Leptocottus armatus)-had the highest average DNA abundance when detected in a stomach content sample. In addition to providing timely information on green crab diet, our research demonstrates the novel application of a recently developed model for more quantitative DNA metabarcoding. This represents another step in the ongoing evolution of DNA-based diet analysis towards producing the quantitative data necessary for modeling invasive species impacts.


Brachyura , DNA Barcoding, Taxonomic , Estuaries , Introduced Species , Predatory Behavior , Animals , Brachyura/genetics , Brachyura/physiology , Washington , DNA Barcoding, Taxonomic/methods , Gastrointestinal Contents/chemistry , Bivalvia/genetics , Ecosystem , Food Chain
3.
Eur J Pharm Biopharm ; 200: 114341, 2024 Jul.
Article En | MEDLINE | ID: mdl-38795785

Mathematical models that treat the fed stomach content as a uniform entity emptied with a constant rate may not suffice to explain pharmacokinetic profiles recorded in clinical trials. In reality, phenomena such as the Magenstrasse or chyme areas of different pH and viscosity, play an important role in the intragastric drug dissolution and its transfer to the intestine. In this study, we investigated the data gathered in the bioequivalence trial between an immediate-release tablet (Reference) and an orally dispersible tablet (Test) with a poorly soluble weak base drug administered with or without water after a high-fat high-calorie breakfast. Maximum concentrations (Cmax) were significantly greater after administering the Reference product than the Test tablets, despite similar in vitro dissolution profiles. To explain this difference, we constructed a novel semi-mechanistic IVIVP model including a heterogeneous gastric chyme. The drug dissolution in vivo was modeled from the in vitro experiments in biorelevant media simulating gastric and intestinal fluids in the fed state (FEDGAS and FeSSIF). The key novelty of the model was separating the stomach contents into two compartments: isolated chyme (the viscous food content) that carries the drug slowly, and aq_chyme open for rapid Magenstrasse-like routes of drug transit. Drug distribution between these two compartments was both formulation- and administration-dependent, and recognized the respective drug fractions from the clinical pharmacokinetic data. The model's assumption about the nonuniform mixing of the API with the chyme, influencing differential drug dissolution and transit kinetics, led to simulating plasma concentration profiles that reflected well the variability observed in the clinical trial. The model indicated that, after administration, the Reference product mixes to a greater extent with aq_chyme, where the released drug dissolves better and transfers faster to the intestine. In conclusion, this novel approach underlines that diverse gastric emptying of different oral dosage forms may significantly impact pharmacokinetics and affect the outcomes of bioequivalence trials.


Drug Liberation , Gastric Emptying , Solubility , Tablets , Therapeutic Equivalency , Humans , Administration, Oral , Gastric Emptying/physiology , Models, Biological , Male , Adult , Gastrointestinal Transit , Gastrointestinal Contents/chemistry , Viscosity , Hydrogen-Ion Concentration , Stomach/drug effects , Computer Simulation , Young Adult , Gastric Mucosa/metabolism , Cross-Over Studies
4.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582125

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Environmental Monitoring , Fishes , Food Chain , Microplastics , Water Pollutants, Chemical , Animals , Fishes/physiology , Water Pollutants, Chemical/analysis , Gastrointestinal Contents/chemistry , Plastics/analysis , Ecosystem
5.
Mar Environ Res ; 198: 106493, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626629

The influences of oceanographic changes on diet composition and trophic level for pollock (Gadus chalcogrammus) inhabiting the East Sea off the Korean coast were examined based on stomach content and stable isotope analyses during 2016 and 2017. The diets of pollock consisted mainly of benthic crustaceans (particularly carid shrimps and euphausiids) and cephalopods, with a predominance of teleosts in the diets of larger individuals in deeper habitats. In 2016, amphipods, carid shrimps and cephalopods featured strongly in pollock diets, and the contribution of amphipods decreased in the diets of larger individuals and deeper depths. In 2017, euphausiids dominated at shallower depths, whereas the contributions of carid shrimps and teleosts increased in deeper habitats. Body-size-related differences in carbon stable isotope (δ13C) values were present in both 2016 and 2017, but size-related differences in nitrogen stable isotope (δ15N) values were only observed in 2017. The increased contribution of euphausiids during 2017 resulted in a distinct decrease in the trophic level of pollock compared to co-occurring higher trophic level predators, which can be linked to changes in habitat water temperature. Combined stomach contents and isotopic analyses provide a more comprehensive understanding of how fish diets and trophic levels fluctuate with changes in the type and abundance of prey resources in response to environmental changes.


Carbon Isotopes , Diet , Food Chain , Nitrogen Isotopes , Animals , Republic of Korea , Diet/veterinary , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Ecosystem , Gadiformes/metabolism , Gastrointestinal Contents/chemistry , Environmental Monitoring
6.
Environ Toxicol Chem ; 43(5): 943-951, 2024 May.
Article En | MEDLINE | ID: mdl-38441271

Pesticides, which are vital for agriculture, pose a significant threat to wildlife in transformed Japanese landscapes. Despite global reports of pesticide poisoning in animals, limited studies have examined current wildlife exposure in croplands or metropolitan areas in the region. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), our study aimed to assess the contamination status of 368 commonly used pesticides. The stomach contents of raccoons living in croplands contained 13 pesticides, including six herbicides and 11 fungicides. Neonicotinoid insecticides, some fungicides, and previously banned insecticides (benzene hexachloride and dichlofenthion) were most frequently detected and found at the highest concentrations, suggesting direct soil-plant transfer and direct consumption by crop-eating species. In masked palm civets living in metropolitan areas, four insecticides and six fungicides were detected, indicating urban wildlife exposure from raided dustbins, urban gardens, and lumber from houses. Although the maximum measured concentrations of all pesticides were lower than the acceptable daily intake for humans, it remains unclear whether these concentrations may have toxic or adverse health effects on the species evaluated in these transformed landscapes. Our study is the first to examine recent pesticide exposures in wild mammals in Japan. Application of the method we developed will lay the foundation for the examination of pesticides in other wildlife species to assist conservation management efforts in the region. Environ Toxicol Chem 2024;43:943-951. © 2024 SETAC.


Raccoons , Viverridae , Animals , Japan , Environmental Monitoring , Gastrointestinal Contents/chemistry , Pesticides/analysis , Tandem Mass Spectrometry , Environmental Pollutants/analysis
7.
Aquat Toxicol ; 269: 106867, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432024

Sea turtle mortality is often related to materials that reach the coast from different anthropic activities worldwide. This study aimed to investigate whether sea turtle mortality was related to older marine problems, such as solid waste, or one of the largest oil spill accidents on the Brazilian coast, that occurred in 2019. We posed three questions: 1) Are there solid residues in the digestive tract samples, and which typology is the most abundant? 2) Can meso­ and macro-waste marine pollutants cause mortality? 3) Is the dark material found really oil? A total of 25 gastrointestinal content (GC) samples were obtained, of which 22 ingested waste of anthropogenic origin and 18 were necropsied. These 22 samples were obtained during or after the 2019 oil spill, of which 17 specimens were affected, making it possible to suggest oil ingestion with the cause of death in the animals that could be necropsied. Macroscopic data showed that the most abundant solid waste was plastic (76.05 %), followed by fabrics (12.18 %) and oil-like materials. However, chemical data confirmed only three specimens with oil levels ranging from remnants to high. It was possible to infer possible causes of death in 16 of the total 18 necropsied cases: Most deaths were due to respiratory arrest (62.5 %), followed by pulmonary edema (12.5 %), cachexia syndrome (12.5 %), circulatory shock (6.25 %), and head trauma (6.25 %), which may have been caused by contact with solid waste, oil, or both. The study showed that not all dark material found in the GCs of turtles killed in oiled areas is truly oil, and in this sense, a chemical analysis step to prove the evidence of oil must be added to international protocols.


Petroleum Pollution , Turtles , Water Pollutants, Chemical , Animals , Petroleum Pollution/adverse effects , Petroleum Pollution/analysis , Gastrointestinal Contents/chemistry , Brazil , Water Pollutants, Chemical/toxicity , Solid Waste/analysis , Plastics , Eating
8.
Int J Legal Med ; 138(4): 1653-1658, 2024 Jul.
Article En | MEDLINE | ID: mdl-38321300

Food aspiration is one of the major health risks for elderly people in nursing homes which could lead to death. Moreover, misconducts in pharmacotherapy may represent a potential risk of adverse drug reactions. It is reported here the toxicological evaluation of a combined death by food aspiration and acute escitalopram intoxication of a psychiatric subject, occurred in a nursing home. An 89-year-old man, suffering from dysphagia and Alzheimer's, was resident in a nursing home. He was fed with a liquid diet administered directly in mouth using a syringe. The man was also being treated with escitalopram 10 mg tablet. One evening, after receiving the meal in the usual way, the man complained of sudden illness. Carried to the emergency room, the man died about 3 h later with a diagnosis of cardiogenic shock subsequentially to ab ingestis. The histological findings revealed the presence of exogenous material, probably food, up to the finest bronchial branches. The toxicological examination revealed the presence of escitalopram and its main metabolite, desmethylcitalopram: in the blood 1972 ng/ml and 285 ng/ml, in the brain 4657 ng/g and 1025 ng/g, in the gastric content 2317 ng/g and 423 ng/g, in the lung 21,771 ng/g and 468 ng/g, respectively. The bad practice of the nurses to dissolve the escitalopram tablet in the liquefied food and to administer the therapy with a syringe directly into the mouth emerged thanks this investigation. Following food aspiration, escitalopram was absorbed by inhalation route, reaching high concentrations in blood and tissues. The death occurred due to a combined mechanism between food aspiration and the escitalopram toxic action.


Citalopram , Nursing Homes , Respiratory Aspiration , Selective Serotonin Reuptake Inhibitors , Humans , Citalopram/analysis , Citalopram/poisoning , Citalopram/analogs & derivatives , Male , Aged, 80 and over , Selective Serotonin Reuptake Inhibitors/poisoning , Selective Serotonin Reuptake Inhibitors/analysis , Brain/pathology , Gastrointestinal Contents/chemistry , Lung/pathology , Deglutition Disorders/chemically induced , Alzheimer Disease
9.
Leg Med (Tokyo) ; 68: 102400, 2024 May.
Article En | MEDLINE | ID: mdl-38237272

A man in his 50 s, who was found vomiting and in a disturbed state when the emergency medical team arrived, then went into cardiopulmonary arrest during transport and died without responding to resuscitation. The hospital initially suspected that the death may have been caused by internal causes, but since the deceased had previously been transported to the hospital in a suicide attempt, the hospital called police regarding suspicions of unnatural death. The police investigation revealed two empty bottles of nicotine liquid for e-cigarettes in his house and a search history of "nicotine suicide" on his cellphone. In a forensic autopsy, he was found to be highly obese, and abundant fat deposits were observed in his organs. A stent was placed in the aorta, but no abnormality was found. There was no obvious stenosis or obstruction in the coronary arteries. Drug screening using liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on cardiac blood, urine, and stomach contents collected at autopsy, which revealed the presence of some medical products such as aripiprazole, nicotine, and cotinine. Further quantitative testing revealed high concentrations of nicotine in all samples. The left and right femoral venous blood concentrations were above the lethal dose, suggesting that arrhythmia or respiratory failure due to nicotine intoxication was the cause of death. With the widespread use of e-cigarettes, high concentrations of nicotine are readily available, and case reports of serious nicotine addiction are increasing. It is important to always consider addiction when conducting forensic evaluations in the medical field.


Autopsy , Nicotine , Suicide, Completed , Humans , Male , Nicotine/poisoning , Nicotine/analysis , Middle Aged , Chromatography, Liquid , Tandem Mass Spectrometry , Electronic Nicotine Delivery Systems , Gastrointestinal Contents/chemistry , Forensic Toxicology
10.
Mar Pollut Bull ; 200: 116049, 2024 Mar.
Article En | MEDLINE | ID: mdl-38290360

Concerning microplastics (MPs) contamination is increasing due their negative impacts on marine food webs and their potential toxicity to wildlife and humans. In this study, we analyze the presence of MPs in the stomachs of the commercial fish species Scomber colias (Atlantic chub mackerel) in the Gulf of Cadiz (GoC). Out of the 104 analyzed stomachs, 90.4 % contained some type of MPs, with an average of 5.4 MPs per individual. Of the 1152 MPs analyzed, 91.1 % were fibers, and 8.9 % fragments type. Fourier Transformation Infrared Spectrometry analysis was performed on 152 items, revealing that 73.6 % were MPs. The most common synthetic polymers found were polyamide (64 %), polypropylene (15 %), polystyrene (12 %), polyvinyl chloride (5 %), and polyethylene (4 %). The consistent ingestion of synthetic polymers by the individuals of Atlantic chub mackerel across different zones might suggest an even distribution of MP contamination throughout the GoC.


Cyprinidae , Perciformes , Water Pollutants, Chemical , Humans , Animals , Microplastics/analysis , Plastics/analysis , Gastrointestinal Contents/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fishes , Europe
11.
Mar Pollut Bull ; 196: 115646, 2023 Nov.
Article En | MEDLINE | ID: mdl-37832498

An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.


Plastics , Water Pollutants, Chemical , Humans , Animals , Plastics/analysis , Microplastics/analysis , Gastrointestinal Contents/chemistry , Environmental Monitoring/methods , Birds , Eating , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 896: 165313, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37406705

The feeding habit of large-head hairtail (Trichiurus lepturus) in the northern South China Sea was investigated through isotopic and stomach content analyses. The isotopic features of the hairtail at the same body size differed among regions, with the fish in coastal waters presenting higher δ15N and δ13C values compared to those in the open sea, indicating different trophic levels (TL), food habits, and isotopic baselines. According to the partial correlation of water depth with δ15N values, the sampling stations were divided into three regions based on the depth of water: coastal (20-40 m), near coastal (60-80 m), and open sea (100-200 m) regions. In the coastal region, the hairtail from stations affected by the Pearl River plume exhibited lower δ15N and δ13C values. The stomach content analysis indicated different feeding habits of the hairtail from different regions. The hairtail in the coastal and near coastal waters fed more on fish and less on crustaceans compared to the hairtail in the open sea. The relationship between δ15N and fish size exhibited two contrary patterns. First, the δ15N values increased with increasing preanal length in the hairtail sampled from the water depth of 30-40 m in section F (in fish with preanal length < 200 mm) and those samples from the water depth of 100-200 m. This finding reflected an ontogenetic shift in diet and TL. However, the δ15N values tended to decrease with the increasing preanal length of the hairtail samples collected from the water depth of 30-40 m in section F (fish with a preanal length of ~200-300 mm). These findings suggested that under the conditions of insufficient availability of high-quality prey, the larger hairtail fed more on low-TL prey to compensate for the increase energy demand, arising due to growth, which led to the observed decrease in δ15N values.


Gastrointestinal Contents , Perciformes , Animals , Gastrointestinal Contents/chemistry , Fishes , Carbon Isotopes/analysis , China , Water/analysis
13.
Sci Total Environ ; 894: 164684, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37315594

Microplastics are one of the major environmental issues that need to be addressed because they are starting to impact food chains and are also affecting human populations. The size, colour, form, and abundance of microplastics in young blennies of the species Eleginops maclovinus were examined in the current study. While the stomach contents of 70 % of the studied individuals contained microplastics, 95 % of them included fibres. Individual size and the largest particle size that can be eaten, which ranges between 0.09 and 1.5 mm present no statistical correlation. The quantity of particles taken in by each individual does not change with size. The most present microfibers colours were blue and red. Sampled fibres were analysed with FT-IR and no natural fibres were detected, proving the synthetic origin of the detected particles. These findings suggest that protected coastlines create conditions that favour the encounter of microplastics increasing local wildlife exposure to microplastics, raising the danger of their ingestion with potential physiological, ecological, economical and human health consequences.


Perciformes , Water Pollutants, Chemical , Humans , Animals , Microplastics , Plastics , Gastrointestinal Contents/chemistry , Environmental Monitoring , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
14.
J Fish Biol ; 102(5): 1049-1066, 2023 May.
Article En | MEDLINE | ID: mdl-36794305

In the northern Gulf of St. Lawrence (nGSL), redfish (Sebastes mentella and Sebastes fasciatus combined) are at record levels of abundance following the strong recruitment of three consecutive cohorts in 2011-2013 and have become by far the most abundant demersal fish in the region. Understanding redfish trophic relationships is essential for the effective management and conservation of species in the nGSL ecosystem. To date, description and quantification of redfish diet in the region have been restricted to conventional stomach content analysis (SCA). Using analysis of fatty acid (FA) profiles as complementary dietary tracers, the authors conducted multivariate analyses on 350 livers of redfish which were collected in combination with stomach contents during a bottom-trawl scientific survey in August 2017. The predator FA profiles were compared to those of eight different redfish prey types identified as dietary important with SCA. Results suggested similitude between SCA and FA results, with zooplankton prey being more related to small (<20 cm) and medium (20-30 cm) redfish (16:1n7, 20:1n?, 22:1n9 and 20:5n3) than large (≥30 cm) ones, whereas shrimp prey seemed more related to large redfish size classes (18:2n6 and 22:6n3) relative to the small and medium ones. Although the SCA offers a glimpse in the diet only based on the most recently consumed prey, analysis of FA profiles provides a mid-term view indicating pelagic zooplankton consumption on calanoid copepod and confirming high predation pressure on shrimp. This study constitutes the first attempt of combining FA with SCA to assess the diet of redfish, highlights the benefits of FA as a qualitative tool and suggests improvements for future studies.


Gastrointestinal Contents , Perciformes , Animals , Gastrointestinal Contents/chemistry , Ecosystem , Fatty Acids/analysis , Fishes , Diet/veterinary
15.
Mar Pollut Bull ; 185(Pt B): 114333, 2022 Dec.
Article En | MEDLINE | ID: mdl-36372049

The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.


Gastrointestinal Contents , Plastics , Animals , Plastics/analysis , Gastrointestinal Contents/chemistry , Environmental Monitoring/methods , Svalbard , Birds , Arctic Regions , Polyethylene/analysis
16.
Mar Environ Res ; 182: 105770, 2022 Dec.
Article En | MEDLINE | ID: mdl-36265253

Assessing organic matter fluxes and species interactions in food webs is of main interest to understand the ecological functioning in bays and estuaries characterised by a wide diversity of primary producers and consumers. Demersal fish and cephalopod assemblages were studied across a network of 24 shallow subtidal stations in the bay of Saint-Brieuc for their diversity, stable isotope compositions and stomach contents. The community was composed of 21 taxa, eight species accounting for 94.4% of the total abundance. Three different assemblages were identified along bathymetric gradient and spatial patterns in fish dredging. Marine POM and SOM were the most likely bases of food webs regarding δ13C range displayed by fish and cephalopod without differences among assemblages. Amphipoda was the main prey item in stomachs leading to significant diet overlaps among fish species, with some variations in additional items. Sepia officinalis was characterised by a singular diet and very low dietary overlap with other species. Contrasted stable isotope values and niche overlaps among species were evidenced in the δ13C/δ15N space. Callionymus lyra and Buglossidium luteum, characterised by the widest isotopic niches, encompassed those of other species, except the singular 13C-depleted Spondyliosoma cantharus. Coupling taxonomic assemblages, stomach contents and stable isotope analyses help disentangling the resources uses and evidencing trophic pathways. Contrasts in fish and cephalopod demersal assemblages occurring at different depths not necessarily imply differences in the trophic resources uses in such complex shallow coastal ecosystems under anthropogenic influences.


Ecosystem , Perciformes , Animals , Gastrointestinal Contents/chemistry , Anthropogenic Effects , Food Chain , Fishes , Nitrogen Isotopes/analysis
17.
Mar Pollut Bull ; 184: 114096, 2022 Nov.
Article En | MEDLINE | ID: mdl-36113176

Plastic is an omnipresent pollutant in marine ecosystems and is widely documented to be ingested among seabird species. Procellariiformes are particularly vulnerable to plastic ingestion, which can cause internal damage, starvation, and occasionally mortality. In this study, 34 fledgling Fairy Prions (Pachyptila turtur) recovered during a wreck event in south-eastern Tasmania in 2022 were examined for ingested plastics and body condition (e.g., wing chord length). While many of the birds exhibited poor body condition, this was not correlated with the count or mass of ingested plastics. We hypothesise the marine heatwave event, and resulting lack of prey, contributed to bird body condition and subsequent mortality. We provide some of the first data on the size of individual plastic particles ingested by seabirds and make recommendations for future studies to report this important metric in a consistent manner that ensures data are comparable.


Environmental Pollutants , Prions , Animals , Plastics , Gastrointestinal Contents/chemistry , Ecosystem , Tasmania , Environmental Monitoring/methods , Eating , Birds , Waste Products/analysis
18.
Mar Environ Res ; 179: 105676, 2022 Jul.
Article En | MEDLINE | ID: mdl-35803050

The ingestion of anthropogenic plastic debris by marine wildlife is widespread in the Mediterranean Sea. The endangered status (in the IUCN Red List) of Loggerhead turtle (Caretta caretta, Linnaeus, 1758) is a consequence of its vulnerability. In this study, macro-/meso-plastics (5-170 mm) collected from faeces of twelve loggerhead turtles rescued (live) in the Aeolian Archipelago (Southern Tyrrhenian Sea, Italy) were analyzed by size, weight, shape, color and polymer type through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR). The defecation rate during hospitalization (7-14 days) varied among turtles (from 0.08 to 0.58). The mean number of plastic expulsions (2.7 ± 1.8 items for turtle) was higher during the 5th day of hospitalization (Kruskal-Wallis test, P = 0.01). However, the mean number of plastic-like items defecated during the common days of hospitalization did not vary among turtles (Kruskal-Wallis test, P > 0.05). All turtles were found to have ingested plastic. A total of 114 debris items were recovered from their faeces, 113 of which were identified as plastic. Their color was mostly white-transparent (64.9%) and light (19.3%). Shape was mainly fragments (52.6%), sheets (38.6%), followed by nylon, net-fragments, elastic plastic, foamed plastic and industrial granules (8.8%). Meso-plastics (5-25 mm) represented 72% of the total number of debris and were found more frequently in turtle with Curved Carapace Length (CCL) ≤ 60 cm (CCL = 30-60 cm, n = 5) than those with CCL >60 cm (CCL = 60-71 cm, n = 7). Plastic items were composed mainly of polyethylene (48.2%) and polypropylene (34.2%). Polypropylene (R2 = 0.95, P < 0.001) and polyisoprene (R2 = 0.45, P = 0.017) were more common in meso-plastics while polyethylene (R2 = 0.44, P < 0.01) in macro-plastics. Finally, high-density polyethylene, polyvinyl chloride, polyamide and polyurethane were also found in some turtles. This study reveals high spreads of plastic contamination in faeces of both turtles with CCL ≤60 cm and CCL >60 cm, particularly vulnerable to the increasing quantity of floating plastic into their foraging sites highlighting the need of further research to associate debris ingestion with turtle diet and their size.


Turtles , Water Pollutants , Animals , Gastrointestinal Contents/chemistry , Plastics/analysis , Polyethylene/analysis , Polymers/analysis , Polypropylenes/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants/analysis
19.
Sci Rep ; 12(1): 10244, 2022 06 17.
Article En | MEDLINE | ID: mdl-35715497

Understanding the impacts of microplastics on living organisms in aquatic habitats is one of the hottest research topics worldwide. Despite increased attention, investigating microplastics in underwater environments remains a problematic task, due to the ubiquitous occurrence of microplastic, its multiple modes of interactions with the biota, and to the diversity of the synthetic organic polymers composing microplastics in the field. Several studies on microplastics focused on marine invertebrates, but to date, the benthic sea slugs (Mollusca, Gastropoda, Heterobranchia) were not yet investigated. Sea slugs are known to live on the organisms on which they feed on or to snack while gliding over the sea floor, but also as users of exogenous molecules or materials not only for nutrition. Therefore, they may represent a potential biological model to explore new modes of transformation and/or management of plastic, so far considered to be a non-biodegradable polymer. In this study we analysed the stomachal content of Bursatella leachii, an aplysiid heterobranch living in the Mar Piccolo, a highly polluted coastal basin near Taranto, in the northern part of the Ionian Sea. Microplastics were found in the stomachs of all the six sampled specimens, and SEM/EDX analyses were carried out to characterize the plastic debris. The SEM images and EDX spectra gathered here should be regarded as a baseline reference database for future investigations on marine Heterobranchia and their interactions with microplastics.


Gastropoda , Water Pollutants, Chemical , Animals , Diet , Environmental Monitoring/methods , Gastrointestinal Contents/chemistry , Microplastics , Plastics , Polymers , Snacks , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
J Fish Biol ; 101(3): 560-572, 2022 Sep.
Article En | MEDLINE | ID: mdl-35638307

Trophic ecology studies on predator-prey interactions reveal insights into ecological communities and help understand a species' role in the food web by contributing to improved fisheries management and conservation capabilities. Understanding the ecological role of overexploited and endangered predators is essential to deciphering how their feeding behaviour influences food web dynamics. In this study, the authors investigated the feeding behaviour of the common and IUCN-listed Near Threatened (NT) thornback ray Raja clavata, using carbon and nitrogen stable isotope and stomach content analysis (SCA). It has recently suffered an 87% decline in reported catches from the Sea of Marmara within the last decade. These results show that thornback ray mainly feeds on teleost species, except in summer, with both methods showing this species changes its diet ontogenetically by SCA. This ontogenetic diet shift was at lengths 40-50 cm by changing group preferences from Crustacea to Teleostei. MixSIAR results showed that both adult and juvenile individuals of R. clavata feed mainly on the crustaceans, but the contribution of teleosts represented by Trachurus sp. was very low (<15%). The trophic position increased total length and was higher than other batoid species in the Sea of Marmara.


Skates, Fish , Animals , Carbon Isotopes/analysis , Crustacea , Diet/veterinary , Fishes , Food Chain , Gastrointestinal Contents/chemistry , Nitrogen Isotopes/analysis , Nutritional Status
...