Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.482
1.
Medicine (Baltimore) ; 103(19): e38088, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728472

Microbiota modulation, the intentional change in the structure and function of the microbial community, is an emerging trajectory that holds the promise to mitigate an infinite number of health issues. The present review illustrates the underlying principles of microbiota modulation and the various applications of this fundamental process to human health, healthcare management, and pharmacologic interventions. Different strategies, directing on dietary interventions, fecal microbiota transplantation, treatment with antibiotics, bacteriophages, microbiome engineering, and modulation of the immune system, are described in detail. This therapeutic implication is reflected in clinical applications to gastrointestinal disorders and immune-mediated diseases for microbiota-modulating agents. In addition to this, the review outlines the challenges of translating researched outcomes into clinical practice to consider safety and provides insights into future research directions of this rapidly developing area.


Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/physiology , Anti-Bacterial Agents/therapeutic use , Probiotics/therapeutic use , Gastrointestinal Diseases/therapy , Gastrointestinal Diseases/microbiology
2.
Mol Nutr Food Res ; 68(9): e2300382, 2024 May.
Article En | MEDLINE | ID: mdl-38659179

Gut fungi are important parts of intestinal microbes. Dietary ingredients have the potential to regulate the structure of gut fungi in different directions and modulate mycobiome composition by changing dietary patterns, which have been applied to neurological disorders. Emerging pieces of evidence have revealed the regulatory functions of gut mycobiome in gastrointestinal diseases, but the relationships between gut fungi and functional gastrointestinal disorders (FGIDs) are ignored in the past. This review discusses the impact of dietary nutrients and patterns on mycobiome, and the possible ways in which gut fungi are involved in the pathogenesis of FGIDs. Besides affecting host immunity, intestinal fungi can be involved in the pathogenesis of FGIDs by endosymbiosis or bidirectional regulation with gut bacteria as well. In addition, the Mediterranean diet may be the most appropriate dietary pattern for subjects with FGIDs. A full understanding of these associations may have important implications for the pathogenesis and treatment of FGIDs.


Diet , Gastrointestinal Diseases , Gastrointestinal Microbiome , Mycobiome , Humans , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome/physiology , Fungi , Diet, Mediterranean , Animals
3.
PLoS One ; 19(4): e0300835, 2024.
Article En | MEDLINE | ID: mdl-38652719

BACKGROUND: Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD: This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS: Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION: Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.


Diabetes Mellitus, Type 2 , Helicobacter Infections , Helicobacter pylori , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/genetics , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Antibodies, Bacterial/blood , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/complications , Obesity/complications , Obesity/microbiology , Genome-Wide Association Study , Peptic Ulcer/microbiology , Peptic Ulcer/epidemiology , Gastritis/microbiology , Gastritis/complications , Chaperonin 60/genetics , Risk Factors
4.
Article En | MEDLINE | ID: mdl-38673400

The underreporting of laboratory-reported cases of community-based gastrointestinal (GI) infections poses a challenge for epidemiologists understanding the burden and seasonal patterns of GI pathogens. Syndromic surveillance has the potential to overcome the limitations of laboratory reporting through real-time data and more representative population coverage. This systematic review summarizes the utility of syndromic surveillance for early detection and surveillance of GI infections. Relevant articles were identified using the following keyword combinations: 'early warning', 'detection', 'gastrointestinal activity', 'gastrointestinal infections', 'syndrome monitoring', 'real-time monitoring', 'syndromic surveillance'. In total, 1820 studies were identified, 126 duplicates were removed, and 1694 studies were reviewed. Data extraction focused on studies reporting the routine use and effectiveness of syndromic surveillance for GI infections using relevant GI symptoms. Eligible studies (n = 29) were included in the narrative synthesis. Syndromic surveillance for GI infections has been implemented and validated for routine use in ten countries, with emergency department attendances being the most common source. Evidence suggests that syndromic surveillance can be effective in the early detection and routine monitoring of GI infections; however, 24% of the included studies did not provide conclusive findings. Further investigation is necessary to comprehensively understand the strengths and limitations associated with each type of syndromic surveillance system.


Gastrointestinal Diseases , Humans , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/microbiology , Population Surveillance/methods , Early Diagnosis
5.
Nutrients ; 16(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674918

As gluten may trigger gastrointestinal disorders (GIDs), its presence or absence in the diet can change the diversity and proportion of gut microbiota. The effects of gluten after six weeks of a double-blind, placebo-controlled intervention with a gluten-free diet (GFD) were studied in participants with GIDs suffering from migraines and atopic dermatitis (n = 46). Clinical biomarkers, digestive symptoms, stool, the Migraine Disability Assessment questionnaire, and zonulin levels were analyzed. Next-generation sequencing was used to amplify the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) regions of fungi. The GFD increased Chao1 fungal diversity after the intervention, while the fungal composition showed no changes. Bacterial diversity and composition remained stable, but a positive association between bacterial and fungal Chao1 diversity and a negative association between Dothideomycetes and Akkermansia were observed. GIDs decreased in both groups and migraines improved in the placebo group. Our findings may aid the development of GID treatment strategies.


Diet, Gluten-Free , Gastrointestinal Diseases , Gastrointestinal Microbiome , Glutens , Migraine Disorders , Humans , Migraine Disorders/microbiology , Female , Male , Gastrointestinal Diseases/microbiology , Adult , Double-Blind Method , Glutens/adverse effects , Middle Aged , Dermatitis, Atopic/microbiology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi , RNA, Ribosomal, 16S , Protein Precursors , Haptoglobins
6.
Eur J Pediatr ; 183(5): 2311-2324, 2024 May.
Article En | MEDLINE | ID: mdl-38427038

Infantile functional gastrointestinal disorders, such as colic, constipation, diarrhea, and gastroesophageal reflux (regurgitation), often occur in early infancy and, representing one of the causes of significant parental anxiety, lead to a significant strain on the healthcare resources. In this study, we aimed to evaluate the effects of Lactobacillus reuteri drops (L. reuteri NCIMB 30351) on the symptoms of infantile colic, constipation, diarrhea, and gastroesophageal reflux, as well as on the levels of intestinal microbiota in full-term newborns during the first months of life. A randomized, placebo-controlled, single-masked (blinded), post-marketing clinical study was conducted in two clinical units-Children's City Clinical Hospital of Moscow and Medical Center "St. Andrew's Hospitals-NEBOLIT" from March 2020 to May 2022 in 90 infants aged from 1 to 4 months (mean age (± SD) 12.3 ± 5.09 weeks; 53.3% females, 46.7% males). Patients with colic, regurgitation (single symptom or combination of several symptoms), and constipation or diarrhea were randomly allocated in two parallel arms to receive either 5 drops (2 × 108 colony forming unit) of L. reuteri NCIMB 30351 (n = 60) or masked placebo (n = 30) for 25 consecutive days. Two treatment arms had equal numbers of patients with constipation and diarrhea (n = 30 each). Daily crying times and their duration, evacuations, and regurgitations were recorded in a structured diary. The levels of gut microbiota were analyzed by deep sequencing of bacterial 16S rRNA gene. Infants with colic receiving supplementary L. reuteri NCIMB 30351 for 25 days had significant reduction in the numbers of colic (change from baseline - 6.3 (7.34) vs - 3.0 (7.29) in placebo, P < 0.05) and numbers of crying cases and mean duration of crying (decrease from baseline - 144 (70.7) minutes, lower in the diarrhea subgroup than in constipation infants, compared with - 80 (58.9) in placebo, P < 0.0001), as well as regurgitation numbers (decreased by - 4.8 (2.49) with L. reuteri vs - 3 (7.74) with placebo). We also observed increased numbers of evacuations in infants with constipation (L. reuteri 2.2 (2.4) vs 0.9 (1.06) in placebo, P < 0.05). There was a remarkable reduction of evacuations in infants with diarrhea, while not statistically significant. The analysis of bacterial 16S rRNA gene in the collected samples showed that L. reuteri positively influences the proportions of prevalent species, while it negatively affects both conditionally pathogenic and commensal microbes. Additional in vitro test for formation of Clostridium colonies in the presence of the probiotic demonstrated that L. reuteri effectively inhibits the growth of pathogenic Clostridium species. No adverse events were reported in this study.   Conclusion: The uptake of L. reuteri NCIMB 30351 leads to a significant reduction in the number of regurgitations, feeding-induced constipations, and diarrhea as well as mean daily numbers of crying and crying duration in infants during the first months of life. Our results suggest that L. reuteri NCIMB 30351 represents a safe and effective treatment for colic in newborns.  Trial registration: ClinicalTrials.gov : NCT04262648. What is Known: • Infantile functional gastrointestinal disorders, such as colic, constipation, diarrhea, and gastroesophageal reflux (regurgitation), often occur in early infancy and, represent one of the causes of significant parental anxiety. • A number of studies have shown that both the composition and diversity of the intestinal microbiota play important roles in the development and function of the gastrointestinal tract. What is New: • The uptake of L. reuteri NCIMB 30351 leads to a significant reduction in the number of regurgitations, feeding-induced constipations, and diarrhea as well as mean daily numbers of crying and crying duration in infants during the first months of life. • L. reuteri positively influences the proportions of prevalent species, while it negatively affects both conditionally pathogenic and commensal microbes in gut microbiota.


Gastrointestinal Diseases , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Probiotics , Female , Humans , Infant , Infant, Newborn , Male , Colic/therapy , Colic/microbiology , Constipation/therapy , Constipation/microbiology , Diarrhea/microbiology , Diarrhea/therapy , Gastroesophageal Reflux/microbiology , Gastroesophageal Reflux/therapy , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy , Probiotics/therapeutic use , Probiotics/administration & dosage , Single-Blind Method , Treatment Outcome , Prospective Studies
7.
Dig Dis Sci ; 69(4): 1293-1301, 2024 Apr.
Article En | MEDLINE | ID: mdl-38363519

BACKGROUND: The relationship between Helicobacter pylori (H. pylori) infection and small intestinal bacterial overgrowth (SIBO) has attracted attention recently. AIMS: To analyze the influence of H. pylori infection and eradication on SIBO, IMO, and abdominal symptoms. METHODS: Patients with gastrointestinal symptoms were tested for 13C urea breath test and if positive, treated with bismuth-based quadruple therapy. Lactulose hydrogen methane breath test (HMBT) was performed and symptoms were assessed using gastrointestinal symptom rating scale (GSRS) before and 6 weeks after eradication. RESULTS: Of the 102 subjects, 53 were H. pylori positive. The prevalence of SIBO and IMO were higher in patients with H. pylori infection than in those without infection (49.1% vs 24.5%, P = 0.019 for SIBO; 24.5% vs 8.2%, P = 0.027 for IMO). GSRS scores were similar between H. pylori-infected and uninfected patients (2 (IQR: 1;3) vs 2 (IQR: 1;2), P = 0.211). Patients with SIBO or IMO presented higher GSRS scores than patients with both SIBO and IMO negative (2 (IQR: 2;3), 2 (IQR: 2;3) vs 2 (IQR: 1;2), P = 0.011, 0.001, respectively). For the 50 patients who successfully eradicated H. pylori, the response rates for SIBO and IMO were 66.7% and 76.9%, respectively. GSRS scores also significantly decreased (2 (IQR: 1;3) to 0 (IQR: 0;1), P < 0.001) after eradication. CONCLUSION: Helicobacter pylori infection was associated with higher prevalence of SIBO and IMO, both of which led to more pronounced abdominal symptoms. H. pylori eradication also achieved therapeutic effects on SIBO and IMO, accompanied by relief of abdominal symptoms.


Gastrointestinal Diseases , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Gastrointestinal Diseases/microbiology , Bismuth/therapeutic use , Lactulose/therapeutic use , Breath Tests , Anti-Bacterial Agents/therapeutic use , Drug Therapy, Combination
8.
Eur J Clin Microbiol Infect Dis ; 43(3): 435-443, 2024 Mar.
Article En | MEDLINE | ID: mdl-38147237

PURPOSE: The aim of the study was to determine and evaluate the clinical usefulness of pathogen specific semi-quantitative cut-offs in stool samples with multiple pathogen detections. METHODS: The PCR (Seegene Allplex Gastrointestinal Virus Assay) data from 4527 positive samples received over 16 months were retrospectively analyzed to investigate the distribution of the Ct values of each individual viral pathogen. By using interquartile ranges for each viral pathogen, pathogen specific semi-quantitative cut-offs were determined. RESULTS: After a thorough analysis of the Ct values, a well-founded decision to exclude all results with a Ct value higher than 35 was made. This approach made it possible to generate a more nuanced report and to facilitate clinical interpretation in case of mixed infections by linking a lower Ct value of a pathogen to a greater likelihood of being a relevant causative pathogen. Moreover, not reporting viral pathogens with a Ct value higher than 35 led to a significant reduction (p < 0.0001) of reported mixed infections compared to oversimplified qualitative or qualitative reporting. CONCLUSION: By omitting very high Ct values and reporting semi-quantitatively, value was added to the syndromic reports, leading to an easier to read lab report, especially in mixed infections.


Coinfection , Communicable Diseases , Gastrointestinal Diseases , Viruses , Humans , Retrospective Studies , Sensitivity and Specificity , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/microbiology , Viruses/genetics , Multiplex Polymerase Chain Reaction/methods
10.
Rev. Hosp. Ital. B. Aires (2004) ; 43(3): 153-159, sept. 2023.
Article Es | LILACS, UNISALUD, BINACIS | ID: biblio-1519056

El consumo de probióticos, prebióticos y posbióticos, o su combinación, puede contribuir a mantener una microbiota intestinal saludable ya que permite la regulación de su disbiosis en el caso de algunas enfermedades o trastornos, principalmente en los trastornos gastrointestinales funcionales (TGIF). El microbioma intestinal es protagonista esencial en la fisiopatología de los TGIF a través de sus funciones metabólicas y nutricionales, el mantenimiento de la integridad de la mucosa intestinal y la regulación de la respuesta inmunitaria. Las investigaciones realizadas hasta la fecha indican que los probióticos, prebióticos y posbióticos pueden tener efectos inmunomoduladores directos y clínicamente relevantes. Existen pruebas del uso de esta familia de bióticos en individuos sanos para mejorar la salud general y aliviar los síntomas en una serie de enfermedades como los cólicos infantiles. La colonización y establecimiento de la microbiota comienza en el momento del nacimiento; los primeros 2-3 años de vida son fundamentales para el desarrollo de una comunidad microbiana abundante y diversa. Diversos estudios científicos realizados mediante técnicas tradicionales dependientes de cultivo y más recientemente por técnicas moleculares han observado diferencias en las poblaciones bacterianas de bebés sanos y aquellos que sufren TGIF, estos últimos caracterizados por un aumento de especies patógenas y una menor población de bifidobacterias y lactobacilos, en comparación con los primeros. En tal contexto, se considera que la microbiota intestinal como protagonista en el desarrollo de esos trastornos, entre ellos los cólicos infantiles, a través de sus funciones metabólicas, nutricionales, de mantenimiento de la integridad de la mucosa intestinal y regulación de la respuesta inmunitaria. Esto ha abierto la puerta al estudio de la utilización de prebióticos, probióticos y posbióticos en el tratamiento y/o prevención de los TGIF infantiles. El parto vaginal y de término así como la lactancia son fundamentales en la constitución de una microbiota saludable. Como herramientas de apoyo, existen estudios de eficacia que sustentan la administración de esta familia de bióticos, principalmente en los casos en que la lactancia no sea posible o esté limitada. (AU)


The consumption of probiotics, prebiotics, and postbiotics, or a combination of them, can contribute to maintaining a healthy intestinal microbiota as it allows the regulation of its dysbiosis in the case of some diseases or disorders, mainly in functional gastrointestinal disorders (FGIDs). The gut microbiome is an essential player in the pathophysiology of FGIDs through its metabolic and nutritional functions, the maintenance of intestinal mucosal integrity, and the regulation of the immune response. Research results thus far indicate that probiotics, prebiotics, and postbiotics may have direct and clinically relevant immunomodulatory effects. There is evidence regarding the prescription of this family of biotics in healthy individuals to improve overall health and alleviate symptoms in many conditions like infantile colic. The colonization and microbiota establishment begins at birth; the first 2-3 years of life are critical for developing an abundant and diverse microbial community. Several scientific studies performed by traditional culture-dependent techniques and more recently by molecular techniques have observed differences in the bacterial populations of healthy infants and those suffering from FGIDs, the latter characterized by an increase in pathogenic species and a lower population of bifidobacteria and lactobacilli, compared to the former. In this context, the intestinal microbiota plays a leading role in the onset of these disorders, including infantile colic, through its metabolic and nutritional functions, maintenance of the integrity of the intestinal mucosa, and regulation of the immune response. That has opened the door to the study of prebiotics, probiotics, and postbiotics usage in the treatment and or prevention of infantile FGIDs. Vaginal and term delivery and breastfeeding are fundamental in the constitution of a healthy microbiota. As supportive tools, there are efficacy studies that support the administration of this family of biotics, mainly in cases where lactation is not possible or is limited.


Humans , Colic/microbiology , Probiotics , Prebiotics , Synbiotics , Gastrointestinal Microbiome , Gastrointestinal Diseases/microbiology , Lactation , Colic/diet therapy , Colic/physiopathology , Colic/prevention & control , Functional Food , Gastrointestinal Diseases/diet therapy , Gastrointestinal Diseases/physiopathology , Gastrointestinal Diseases/prevention & control
11.
Sci Total Environ ; 902: 165818, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37517714

Recreational exposure to microbial pollution at urban beaches poses a health risk to beachgoers. The accurate quantification of such risks is crucial in managing beaches effectively and establishing warning guidelines. In this study, we employed a quantitative microbial risk assessment (QMRA) framework to assess marine water quality and estimate the risks associated with Vibrio parahaemolyticus, an autochthonous pathogen that causes gastrointestinal illnesses, and enterococci, a traditional fecal bacteria indicator. The microbial contamination levels of V. parahaemolyticus and enterococci were determined from 48 water samples collected at two beaches in Thailand during dry and wet seasons. The accidentally ingested water volumes were obtained through a survey involving 438 respondents. The probability of illness (Pill) was estimated using dose-response models and Monte Carlo simulation. The results revealed that enterococci posed a higher risk of illness than V. parahaemolyticus at all seven study sites. The median combined gastrointestinal (GI) risk from both bacteria at all sites met the US EPA risk benchmark of 0.036 and the 0.05 benchmark set by the WHO, but the 95th percentile risk data at all sites exceeded the benchmarks. This emphasizes the need for the continuous monitoring and management of microbial pollution at these sites. The site-specific exposure data showed higher estimated risks with increased variations compared to the WHO-referenced values, which highlights the significance of locally measured microbial concentrations and survey exposure data to avoid underestimation. Estimating the risks from recreational exposure to waterborne bacteria can inform beach management policies aimed at reducing public health risks to swimmers. The study findings improve the understanding of the risks associated with water recreation activities at Southeast Asian beaches and offer valuable insights for the development of water quality guidelines, which are crucial for the sustainable development of the blue economy.


Bathing Beaches , Environmental Monitoring , Gastrointestinal Diseases , Vibrio parahaemolyticus , Water Microbiology , Water Quality , Humans , Bacteria/isolation & purification , Enterococcus/isolation & purification , Environmental Monitoring/methods , Feces/microbiology , Risk Assessment , Southeast Asian People , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Urban Population , Swimming , Vibrio parahaemolyticus/isolation & purification , Thailand
12.
Neuroscience ; 523: 118-131, 2023 07 15.
Article En | MEDLINE | ID: mdl-37271221

Gastrointestinal (GI) disorders are widely recorded in autism spectrum disorder (ASD), and ASD with GI symptoms is a vital subtype of this disease. Growing evidence suggests altered gut microbiota biomarkers in ASD, but little is known about the gut microbiota of individuals with ASD with GI Symptoms, particularly in early childhood. In our study, the gut microbiota of 36 individuals with ASD along with GI symptoms and 40 typically developing (TD) children were compared using 16S rRNA gene sequencing. The microbial diversity and composition were found to differ between the two groups. Compared to TD, the gut microbiota of ASD patients with GI symptoms exhibited decreased alpha diversity and depletion of butyrate-producing bacteria (e.g., Faecalibacterium and Coprococcus). In addition, microbial functional analysis showed abnormality in several gut metabolic models and gut brain models of ASD with GI symptoms, including short-chain fatty acid (SCFA) synthesis/degradation and neurotoxin-related p-cresol degradation, which are closely associated with ASD-related behaviors in animal models. Furthermore, we constructed a Support Vector Machine classification model, which robustly discriminated individuals with ASD and GI symptoms from TD individuals in a validation set (AUC = 0.88). Our findings provide a deep insight into the roles of the disturbed gut ecosystem in individuals with ASD and GI symptoms aged 3-6 years. Our classification model supports gut microbiota as a potential biomarker for the early identification of ASD and interventions targeting particular gut-beneficial microbiota.


Autism Spectrum Disorder , Gastrointestinal Diseases , Gastrointestinal Microbiome , Animals , Child, Preschool , Humans , Autism Spectrum Disorder/metabolism , RNA, Ribosomal, 16S/genetics , Ecosystem , Gastrointestinal Diseases/microbiology , Biomarkers
13.
Article En | MEDLINE | ID: mdl-37094909

Plant-based diets (PBDs), rich in high-quality plant foods, offer multiple benefits for the overall and gastrointestinal health. Recently, it has been demostrated that the positive effects of PBDs on gastrointestinal health can be mediated by the gut microbiota, in particular, by inducing a greater diversity of bacteria. This review summarizes current knowledge on the relationship between nutrition, the gut microbiota, and host metabolic status. We discussed how dietary habits modify the composition and physiological activity of the gut microbiota and how gut dysbiosis affects the most prevalent gastrointestinal diseases, including inflammatory bowel diseases, functional bowel disorders, liver disorders, and gastrointestinal cancer. The beneficial role of PBDs is being increasingly recognized as potentially useful in the management of most diseases of the gastrointestinal tract.


Gastrointestinal Diseases , Inflammatory Bowel Diseases , Humans , Diet , Gastrointestinal Diseases/microbiology , Diet, Vegetarian , Dysbiosis
14.
Trends Biotechnol ; 41(7): 875-886, 2023 07.
Article En | MEDLINE | ID: mdl-36774206

Single-domain antibodies (sdAbs) are exceptionally stable fragments derived from the antigen-binding domains of immunoglobulins. They can withstand extreme pH, high temperature, and proteolysis, making them suitable for controlling gastrointestinal (GI) infections in humans and animals. sdAbs may function in their native soluble form, although different derived protein formats and the use of delivery vehicles can be useful for improved oral delivery. We discuss selected examples of the use of orally delivered sdAbs for protecting humans and animals against GI infections caused by pathogenic bacteria, viruses, and parasites. We finally provide perspectives on how sdAbs may be applied industrially and what challenges should be overcome for orally delivered sdAbs to reach the market.


Gastrointestinal Diseases , Single-Domain Antibodies , Animals , Humans , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy
15.
World J Gastroenterol ; 29(1): 19-42, 2023 Jan 07.
Article En | MEDLINE | ID: mdl-36683718

The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.


Gastrointestinal Diseases , Gastrointestinal Microbiome , Microbiota , Probiotics , Humans , Gastrointestinal Diseases/microbiology , Inflammation/microbiology , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology
17.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36430676

Research of the last decade has remarkably increased our understanding of innate lymphoid cells (ILCs). ILCs, in analogy to T helper (Th) cells and their cytokine and transcription factor profile, are categorized into three distinct populations: ILC1s express the transcription factor T-bet and secrete IFNγ, ILC2s depend on the expression of GATA-3 and release IL-5 and IL-13, and ILC3s express RORγt and secrete IL-17 and IL-22. Noteworthy, ILCs maintain a level of plasticity, depending on exposed cytokines and environmental stimuli. Furthermore, ILCs are tissue resident cells primarily localized at common entry points for pathogens such as the gut-associated lymphoid tissue (GALT). They have the unique capacity to initiate rapid responses against pathogens, provoked by changes of the cytokine profile of the respective tissue. Moreover, they regulate tissue inflammation and homeostasis. In case of intracellular pathogens entering the mucosal tissue, ILC1s respond by secreting cytokines (e.g., IFNγ) to limit the pathogen spread. Upon infection with helminths, intestinal epithelial cells produce alarmins (e.g., IL-25) and activate ILC2s to secrete IL-13, which induces differentiation of intestinal stem cells into tuft and goblet cells, important for parasite expulsion. Additionally, during bacterial infection ILC3-derived IL-22 is required for bacterial clearance by regulating antimicrobial gene expression in epithelial cells. Thus, ILCs can limit infectious diseases via secretion of inflammatory mediators and interaction with other cell types. In this review, we will address the role of ILCs during enteric infectious diseases.


Gastrointestinal Diseases , Immunity, Innate , Lymphocytes , Humans , Communicable Diseases/immunology , Communicable Diseases/metabolism , Cytokines/metabolism , Immunity, Innate/physiology , Interleukin-13/metabolism , Lymphocytes/metabolism , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/microbiology
18.
Front Cell Infect Microbiol ; 12: 905841, 2022.
Article En | MEDLINE | ID: mdl-35846755

Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.


Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Diseases , Gastrointestinal Microbiome , Animals , Disease Models, Animal , Dysbiosis/microbiology , Gastrointestinal Diseases/microbiology , Humans , Mice , Microfilament Proteins , Nerve Tissue Proteins , Quality of Life
19.
BMC Genomics ; 23(1): 166, 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35227192

BACKGROUND: Aeromonas veronii is a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains that cause human gastrointestinal diseases. Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. veronii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from Illumina and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated from different sources. RESULTS: We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains isolated from patients with gastrointestinal diseases. Type III Secretory System (T3SS) in A. veronii was in AVI-1 genomic island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T3SS was significantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains isolated from fish and domestic animals. CONCLUSIONS: This study provides novel information on source of infection and virulence of A. veronii in human gastrointestinal diseases.


Aeromonas veronii , Gastrointestinal Diseases , Genome, Bacterial , Gram-Negative Bacterial Infections , Aeromonas veronii/genetics , Aeromonas veronii/pathogenicity , Animals , Fish Diseases/microbiology , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/microbiology , Gram-Negative Bacterial Infections/genetics , Humans , Virulence/genetics
20.
Drugs ; 82(2): 169-197, 2022 Feb.
Article En | MEDLINE | ID: mdl-35076890

There has been exponential growth in the awareness and understanding of gastrointestinal (GI) dysfunction in Parkinson's disease (PD) over the past 3 decades. The clinical features of GI dysfunction in PD have been clearly identified and innovative research has demonstrated the presence of pathology within the enteric nervous system (ENS) in individuals with PD, leading to suggestions that the GI system may be ground zero for the genesis and the portal of entry of PD pathology, which then ascends via the vagus nerve to the central nervous system (CNS). This theory, as well as the more recent recognition of the association of PD with dysbiosis within the gut microbiota, has been the object of intense study and scrutiny. Since most PD medications are absorbed through the GI system, the need for better understanding of changes within the GI tract that may potentially affect the pattern of response to medications has become evident. In this review, current knowledge of the pathophysiology of changes within the GI tract and the gut microbiome of individuals with PD, including changes that occur with progression of the disease, will be addressed. We focus on common clinical GI problems in PD that can arise from different segments of the GI tract. Relevant diagnostic evaluations and treatment options for each of these problems will be reviewed.


Antiparkinson Agents/therapeutic use , Gastrointestinal Diseases/physiopathology , Gastrointestinal Diseases/therapy , Gastrointestinal Motility/physiology , Parkinson Disease/physiopathology , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/pharmacology , Deglutition Disorders/physiopathology , Diet , Enteric Nervous System/physiopathology , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Transit/physiology , Humans , Oral Health , Weight Loss/physiology
...