Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.508
1.
J Genet ; 1032024.
Article En | MEDLINE | ID: mdl-38562040

Intellectual developmental disorder, X-linked 104 (XLID104), caused by the FRMPD4 gene variant, is a rare X-linked genetic disease that primarily manifests as intellectual disability (ID) and language delay, and may be accompanied by behavioural abnormalities. Currently, only 11 patients from four families have been reported to carry FRMPD4 gene variants. Here, we report a rare case of a Chinese patient with XLID104 who was presented with severe ID and language impairment. Genetic testing results showed that the patient had a novel hemizygous variant on FRMPD4 inherited from the heterozygous variant NM_001368397: c.1772A>C (p.Glu591Ala) carried by his mother. To our knowledge, this variant has not been reported previously. Western blot results for the recombinant plasmid constructed in vitro indicated that the expression of the mutant protein may be reduced. Using molecular dynamics simulations, we predicted that the mutant protein may affect the interaction of the FRMPD4 protein with DLG4. In this study, we expand the spectrum of FRMPD4 variants and suggest that the clinical awareness of the genetic diagnosis of nonsyndromic ID should be strengthened.


Genetic Diseases, X-Linked , Intellectual Disability , Child , Humans , Intellectual Disability/genetics , FERM Domains , Genes, X-Linked , Genetic Diseases, X-Linked/genetics , Mutant Proteins/genetics
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38612920

X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.


Epilepsy , Spasms, Infantile , Female , Humans , Genes, X-Linked , Epigenesis, Genetic , Genes, cdc , Epilepsy/genetics , Prorenin Receptor , Protocadherins , Guanine Nucleotide Exchange Factors , Rho Guanine Nucleotide Exchange Factors , N-Acetylglucosaminyltransferases
3.
J Neurodev Disord ; 16(1): 5, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424476

X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.


Intellectual Disability , Female , Humans , Pregnancy , Chromosomes, Human, X , Genes, X-Linked/genetics , Intellectual Disability/genetics , Mosaicism , X Chromosome Inactivation/genetics
4.
Mol Genet Genomic Med ; 12(2): e2404, 2024 Feb.
Article En | MEDLINE | ID: mdl-38404254

BACKGROUND: The RPGR gene has been associated with X-linked cone-rod dystrophy. This report describes a variant in RPGR detected with exome sequencing (ES). Genes like RPGR have not always been included in panel-based testing and thus genome-wide tests such as ES may be required for accurate diagnosis. METHODS: The Texome Project is studying the impact of ES in medically underserved patients who are in need of genomic testing to guide diagnosis and medical management. The hypothesis is that ES could uncover diagnoses not made by standard medical care. RESULTS: A 58-year-old male presented with retinitis pigmentosa, sensorineural hearing loss, and a family history of retinal diseases. A previous targeted gene panel for retinal disorders had not identified a molecular cause. ES through the Texome Project identified a novel, hemizygous variant in RPGR (NM_000328.3: c.1302dup, p.L435Sfs*18) that explained the ocular phenotype. CONCLUSIONS: Continued genetics evaluation can help to end diagnostic odysseys of patients. Careful consideration of genes represented when utilizing gene panels is crucial to ensure an accurate diagnosis. Medically underserved populations are less likely to receive comprehensive genetic testing in their diagnostic workup. Our report is an example of the medical impact of genomic medicine implementation.


Hearing Loss, Sensorineural , Retinitis Pigmentosa , Male , Humans , Middle Aged , Eye Proteins/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Genetic Testing , Genes, X-Linked , Hearing Loss, Sensorineural/genetics
5.
Proc Natl Acad Sci U S A ; 121(9): e2312757121, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38386709

MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.


Brain , Epileptic Syndromes , Spasms, Infantile , Humans , Genes, X-Linked , Genetic Therapy , Protein Serine-Threonine Kinases/genetics , Fragile X Mental Retardation Protein/genetics
6.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Article En | MEDLINE | ID: mdl-38181737

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Genes, X-Linked , RNA, Long Noncoding , X Chromosome , Animals , Female , Humans , Male , Mice , Gene Silencing , RNA, Long Noncoding/genetics , X Chromosome/genetics , Pluripotent Stem Cells/metabolism
7.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191484

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Ciliopathies , Genes, X-Linked , WD40 Repeats , Animals , Humans , Male , Brain , Ciliopathies/genetics , Cognition , Zebrafish/genetics
8.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38258527

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.


Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Genes, X-Linked , HEK293 Cells , Infertility, Male/genetics , Oligospermia/genetics , Semen
9.
Epigenetics Chromatin ; 17(1): 1, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38247002

The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.


Epigenesis, Genetic , Genes, X-Linked , Female , Humans , Male , Sex Chromosomes , X Chromosome Inactivation , Immunity/genetics
10.
PLoS One ; 19(1): e0291411, 2024.
Article En | MEDLINE | ID: mdl-38252617

Ectodysplasin A related hypohidrotic ectodermal dysplasia (XLHED) is a well-studied fetal developmental disorder in mammals that mainly affects ectodermal structures. It has been identified in a variety of species, including mice, rats, dogs, cattle, and humans. Here, we report the clinical, histological, and molecular biological analyses of a case of XLHED in Limousin cattle. An affected Limousin calf showed pathognomonic signs of ectodermal dysplasia, i.e. sparse hair and characteristic dental aplasia. Histopathologic comparison of hairy and glabrous skin and computed tomography of the mandible confirmed the phenotypic diagnosis. In addition, a keratoconjunctivitis sicca was noted in one eye, which was also confirmed histopathologically. To identify the causative variant, we resequenced the bovine X-chromosomal ectodysplasin A gene (EDA) of the affected calf and compared the sequences to the bovine reference genome. A single missense variant (rs439722471) at position X:g.80411716T>C (ARS-UCD1.3) was identified. The variant resulted in an amino acid substitution from glutamic acid to glycine within the highly conserved TNF-like domain. To rule out the possibility that the variant was relatively common in the cattle population we genotyped 2,016 individuals including 40% Limousin cattle by fluorescence resonance energy transfer analysis. We also tested 5,116 multibreed samples from Run9 of the 1000 Bull Genomes Project for the said variant. The variant was not detected in any of the cattle tested, confirming the assumption that it was the causative variant. This is the first report of Ectodysplasin A related hypohidrotic ectodermal dysplasia in Limousin cattle and the description of a novel causal variant in cattle.


Cattle Diseases , Ectodermal Dysplasia 1, Anhidrotic , Animals , Cattle , Male , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodermal Dysplasia 1, Anhidrotic/veterinary , Ectodysplasins/genetics , Genes, X-Linked , Mammals , Mutation, Missense , Cattle Diseases/genetics
11.
Seizure ; 116: 30-36, 2024 Mar.
Article En | MEDLINE | ID: mdl-36894399

OBJECTIVES: The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS: Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION: MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.


Epilepsies, Partial , Epilepsy , Intellectual Disability , Male , Humans , Intellectual Disability/genetics , Genes, X-Linked/genetics , Phenotype , Mediator Complex/genetics , Mediator Complex/chemistry , Mediator Complex/metabolism , Epilepsies, Partial/genetics , Epilepsy/genetics , Transcription Factors/genetics
13.
Clin Genet ; 105(2): 173-184, 2024 02.
Article En | MEDLINE | ID: mdl-37899624

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Intellectual Disability , Humans , Female , Intellectual Disability/genetics , Genes, X-Linked/genetics , Gene Duplication , X Chromosome Inactivation/genetics , Mutation
14.
Rev Neurosci ; 35(3): 341-354, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38157427

Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.


Alzheimer Disease , Chromosomes, Human, X , Female , Humans , Male , Chromosomes, Human, X/genetics , Sex Characteristics , Alzheimer Disease/genetics , X Chromosome Inactivation/genetics , Genes, X-Linked
15.
STAR Protoc ; 4(4): 102680, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37897732

The X chromosome/autosome ratio has been widely used to profile XCU at the chromosomal level. However, this approach overlooks features of inside genes. Here, we present a computational protocol for the identification of X-linked genes contributing to X chromosome upregulation from RNA-sequencing datasets. We describe steps for selecting data, preparing software, processing data, and data analysis. This protocol quantifies the contribution value and contribution increment of each X-linked gene to XCU. For complete details on the use and execution of this protocol, please refer to Lyu et al. (2022).1.


Genes, X-Linked , X Chromosome , Up-Regulation/genetics , Base Sequence , RNA
16.
BMC Med Genomics ; 16(1): 239, 2023 10 11.
Article En | MEDLINE | ID: mdl-37821930

AIM AND OBJECTIVE: Intellectual disability (ID) is a heterogeneous condition affecting brain development, function, and/or structure. The X-linked mode of inheritance of ID (X-linked intellectual disability; XLID) has a prevalence of 1 out of 600 to 1000 males. In the last decades, exome sequencing technology has revolutionized the process of disease-causing gene discovery in XLIDs. Nevertheless, so many of them still remain with unknown etiology. This study investigated four families with severe XLID to identify deleterious variants for possible diagnostics and prevention aims. METHODS: Nine male patients belonging to four pedigrees were included in this study. The patients were studied genetically for Fragile X syndrome, followed by whole exome sequencing and analysis of intellectual disability-related genes variants. Sanger sequencing, co-segregation analysis, structural modeling, and in silico analysis were done to verify the causative variants. In addition, we collected data from previous studies to compare and situate our work with existing knowledge. RESULTS: In three of four families, novel deleterious variants have been identified in three different genes, including ZDHHC9 (p. Leu189Pro), ATP2B3 (p. Asp847Glu), and GLRA2 (p. Arg350Cys) and also with new clinical features and in another one family, a reported pathogenic variant in the L1CAM (p. Glu309Lys) gene has been identified related to new clinical findings. CONCLUSION: The current study's findings expand the existing knowledge of variants of the genes implicated in XLID and broaden the spectrum of phenotypes associated with the related conditions. The data have implications for genetic diagnosis and counseling.


Intellectual Disability , Humans , Male , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Exome Sequencing , Iran , Mutation , Genes, X-Linked , Pedigree
17.
Hum Mol Genet ; 32(24): 3374-3389, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37756622

Defective lysosomal acidification is responsible for a large range of multi-systemic disorders associated with impaired autophagy. Diseases caused by mutations in the VMA21 gene stand as exceptions, specifically affecting skeletal muscle (X-linked Myopathy with Excessive Autophagy, XMEA) or liver (Congenital Disorder of Glycosylation). VMA21 chaperones vacuolar (v-) ATPase assembly, which is ubiquitously required for proper lysosomal acidification. The reason VMA21 deficiencies affect specific, but divergent tissues remains unknown. Here, we show that VMA21 encodes a yet-unreported long protein isoform, in addition to the previously described short isoform, which we name VMA21-120 and VMA21-101, respectively. In contrast to the ubiquitous pattern of VMA21-101, VMA21-120 was predominantly expressed in skeletal muscle, and rapidly up-regulated upon differentiation of mouse and human muscle precursors. Accordingly, VMA21-120 accumulated during development, regeneration and denervation of mouse skeletal muscle. In contrast, neither induction nor blockade of autophagy, in vitro and in vivo, strongly affected VMA21 isoform expression. Interestingly, VMA21-101 and VMA21-120 both localized to the sarcoplasmic reticulum of muscle cells, and interacted with the v-ATPase. While VMA21 deficiency impairs autophagy, VMA21-101 or VMA21-120 overexpression had limited impact on autophagic flux in muscle cells. Importantly, XMEA-associated mutations lead to both VMA21-101 deficiency and loss of VMA21-120 expression. These results provide important insights into the clinical diversity of VMA21-related diseases and uncover a muscle-specific VMA21 isoform that potently contributes to XMEA pathogenesis.


Muscular Diseases , Vacuolar Proton-Translocating ATPases , Humans , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscle, Skeletal/metabolism , Genes, X-Linked , Autophagy/genetics
18.
BMC Med Genomics ; 16(1): 223, 2023 09 25.
Article En | MEDLINE | ID: mdl-37749571

PURPOSE: To report novel pathogenic variants of X-linked genes in five Chinese families with early-onset high myopia (eoHM) by using whole-exome sequencing and analyzing the phenotypic features. METHODS: 5 probands with X-linked recessive related eoHM were collected in Ningxia Eye Hospital from January 2021 to June 2022. The probands and their family members received comprehensive ophthalmic examinations,and DNA was abstracted from patients and family members. Whole-exome sequencing was performed on probands to screen the causative variants, and all suspected pathogenic variants were determined by Sanger sequencing and co-segregation analysis was performed on available family members. The pathogenicity of novel variants was predicted using silico analysis and evaluated according to ACMG guidelines. RT-qPCR was used to detect differences in the relative mRNAs expression of candidate gene in mRNAs available with the proband and family members in the pedigree 2. The relationship between genetic variants and clinical features was analyzed. RESULTS: All probands were male, and all pedigrees conformed to an X-linked recessive inheritance pattern. They were diagnosed with high myopia at their first visits between 4 and 7 years old. Spherical equivalent ranged between - 6.00D and - 11.00D.The five novel hemizygous variants were found in the probands, containing frameshift deletion variant c.797_801del (p.Val266Alafs*75) of OPN1LW gene in the pedigree 1, nonsense variant c.513G > A (p.Trp171Ter)of RP2 gene in the pedigree 2, missense variant c.98G > T (p.Cys33Phe) of GPR143 gene in the pedigree 3, frameshift deletion variant c.1876_1877del (p.Met626Valfs*22) of FRMD7 gene in the pedigree 4 and inframe deletion variant c.670_ 675del (p.Glu192_ Glu193del) of HMGB3 gene in the pedigree 5. All variants were classified as pathogenic or likely pathogenic by the interpretation principles of HGMD sequence variants and ACMG guidelines. In family 2, RT-qPCR showed that the mRNA expression of RP2 gene was lower in the proband than in other normal family members, indicating that such variant caused an effect on gene function at the mRNA expression level. Further clinical examination showed that pedigrees 1, 2, 3, and 4 were diagnosed as X-linked recessive hereditary eye disease with early-onset high myopia, including quiescent cone dysfunction, retinitis pigmentosa, ocular albinism, and idiopathic congenital nystagmus respectively. The pedigree 5 had eoHM in the right eye and ptosis in both eyes. CONCLUSION: In this paper,we are the first to report five novel hemizygous variants in OPN1LW, RP2, GPR143, FRMD7, HMGB3 genes are associated with eoHM. Our study extends the genotypic spectrums for eoHM and better assists ophthalmologists in assessing, diagnosing, and conducting genetic screening for eoHM.


East Asian People , Genes, X-Linked , Myopia , Child , Child, Preschool , Humans , Male , Cytoskeletal Proteins , East Asian People/genetics , Genes, X-Linked/genetics , Membrane Proteins , Mutation , Myopia/genetics , Age of Onset , Exome Sequencing , Pedigree
19.
Genes (Basel) ; 14(8)2023 07 31.
Article En | MEDLINE | ID: mdl-37628618

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Aicardi Syndrome , Male , Female , Animals , Mice , Aicardi Syndrome/genetics , Zebrafish/genetics , Chromosome Mapping , Genes, X-Linked/genetics , Biological Assay
20.
Sci Rep ; 13(1): 12856, 2023 08 08.
Article En | MEDLINE | ID: mdl-37553382

X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.


Nanopore Sequencing , Humans , DNA , Genes, X-Linked , X Chromosome Inactivation/genetics , Chromosomes, Human, X/genetics
...