Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
2.
Genome Biol Evol ; 16(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38478711

RESUMEN

It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T. osimensis genome sequence. Zfy1, Zfy2, Kdm5d, Eif2s3y, Usp9y, Uty, and Ddx3y are putatively functional and are now located on the X chromosome, whereas Rbmy, Uba1y, Ssty1, Ssty2, and Sry are missing or pseudogenized. Tissue expressions of the mouse orthologs of the retained genes are significantly broader/higher than those of the lost genes, suggesting that the destinies of the formerly Y-linked genes are related to their original expressions. Interestingly, patterns of gene retention/loss are significantly more similar than by chance across four rodent lineages where Y has been independently lost, indicating a level of certainty in the fate of Y-linked genes even when the chromosome is gone.


Asunto(s)
Genes Ligados a Y , Cromosoma Y , Humanos , Ratones , Ratas , Animales , Cromosoma Y/genética , Murinae/genética , Cromosoma X/genética , Genoma , Cromosomas Humanos Y , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
3.
Commun Biol ; 7(1): 90, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216628

RESUMEN

Unique patterns of inheritance and selection on Y chromosomes have led to the evolution of specialized gene functions. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as those of wild-type and that mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract. Therefore, although mature sperm are produced by WDY mutant males, and are transferred to females, those sperm fail to enter the female sperm storage organs. We report genotype-dependent and regional differences in sperm motility that appear to break the correlation between sperm tail beating and propulsion. Furthermore, we identify a significant change in hydrophobicity at a residue at a putative calcium-binding site in WDY orthologs at the split between the melanogaster and obscura species groups, when WDY first became Y-linked. This suggests that a major functional change in WDY coincided with its appearance on the Y chromosome. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.


Asunto(s)
Drosophila melanogaster , Genes Ligados a Y , Motilidad Espermática , Animales , Femenino , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Semen , Motilidad Espermática/genética , Espermatozoides/fisiología , Proteínas de Drosophila/genética
5.
Otolaryngol Head Neck Surg ; 169(6): 1533-1541, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37418217

RESUMEN

OBJECTIVE: To define novel gene biomarkers for prognosis of head and neck squamous cell carcinoma (HNSCC) patients' survival. STUDY DESIGN: Retrospective study. SETTING: The Cancer Genome Atlas (TCGA) HNSCC RNA-Seq dataset. METHODS: Coexpressed gene clusters were extracted from TCGA RNA-seq data using our previously published method (EPIG). Kaplan-Meier estimator was then used for overall survival-relevant analysis, with patients partitioned into 3 groups based on gene expression levels: female, male_low, and male_high. RESULTS: Male had better overall survival than female and male with higher expression level of Y-chromosome-linked (Y-linked) genes had significantly better survival than those with lower expression levels. In addition, male with a higher expression level of Y-linked genes showed even better survival when they have a higher level of coexpressed cluster of genes related to B or T cell immune response. Other clinical conditions related to immune responses also consistently showed favorable effects on the Y-linked genes for survival estimation. Male patients with higher expression level of Y-linked genes also have significantly higher tumor/normal tissue (T/N) ratio of those genes and higher level of several immune responses related clinical measurements (eg, lymphocyte and TCR related). Male patients with lower expression level of Y-linked genes benefited from radiation-only treatment. CONCLUSIONS: The favorable role of a cluster of coexpressed Y-linked genes in HNSCC patients' survival is potentially associated with elevated level of immune responses. These Y-linked genes could serve as useful prognostic biomarkers for HNSCC patients' survival estimation and treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Masculino , Femenino , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/genética , Genes Ligados a Y , Estudios Retrospectivos , Pronóstico , Cromosomas , Biomarcadores , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica
6.
Heredity (Edinb) ; 130(5): 312-319, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914794

RESUMEN

Although containing genes important for sex determination, genetic variation within the Y chromosome was traditionally predicted to contribute little to the expression of sexually dimorphic traits. This prediction was shaped by the assumption that the chromosome harbours few protein-coding genes, and that capacity for Y-linked variation to shape adaptation would be hindered by the chromosome's lack of recombination and holandric inheritance. Consequently, most studies exploring the genotypic contributions to sexually dimorphic traits have focused on the autosomes and X chromosome. Yet, several studies have now demonstrated that the Y chromosome harbours variation affecting male fitness, moderating the expression of hundreds of genes across the nuclear genome. Furthermore, emerging results have shown that expression of this Y-linked variation may be sensitive to environmental heterogeneity, leading to the prediction that Y-mediated gene-by-environment interactions will shape the expression of sexually dimorphic phenotypes. We tested this prediction, investigating whether genetic variation across six distinct Y chromosome haplotypes affects the expression of locomotor activity, at each of two temperatures (20 and 28 °C) in male fruit flies (Drosophila melanogaster). Locomotor activity is a sexually dimorphic trait in this species, previously demonstrated to be under intralocus sexual conflict. We demonstrate Y haplotype effects on male locomotor activity, but the rank order and magnitude of these effects were unaltered by differences in temperature. Our study contributes to a growing number of studies demonstrating Y-linked effects moderating expression of traits evolving under sexually antagonistic selection, suggesting a role for the Y chromosome in shaping outcomes of sexual conflict.


Asunto(s)
Drosophila melanogaster , Genes Ligados a Y , Animales , Masculino , Drosophila melanogaster/genética , Cromosoma Y/genética , Cromosoma X/genética , Locomoción
7.
Biomed J ; 46(2): 100524, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35358715

RESUMEN

BACKGROUND: The precise contribution of each chromosome gene or gene family in achieving male fertility is still the subject of debate. Most studies have examined male populations with heterogeneous causes of infertility, and have therefore reached controversial or uncertain conclusions. This study uses Y-chromosome array-based comparative genomic hybridization (aCGH) to examine a population of males with a uniform sertoli cell-only syndrome (SCOS) infertility phenotype. METHODS: Initial analysis of gene copy number variations in 8 SCOS patients, with determination of the log-ratio of probe signal intensity against a DNA reference, was performed using the Y-chromosome NimbleGen aCGH. To confirm the role of candidate genes, real-time quantitative RT-PCR was used to compare 19 patients who had SCOS non-obstructive azoospermia with 15 patients who had obstructive azoospermia but normal spermatogenesis. RESULTS: Our initial aCGH experiments identified CDY1a and CDY1b double deletions in all 8 patients who had total germ cell depletion. However, 5 patients had DAZ1/2 and DAZ3/4 deletions, 1 patient had a DAZ2 and DAZ3/4 deletion, and 2 patients had no DAZ1/2 or DAZ3/4 deletions. Examination of testicular mRNA expression in another 19 patients with SCOS indicated all patients had no detectable levels of CDY1. CONCLUSIONS: Our findings indicate that CDY1 deletion in SCOS patients, and analysis of the expression of DAZ and CDY1 genes using aCGH and quantitative RT-PCR, may be useful to predict the presence of mature spermatozoa.


Asunto(s)
Azoospermia , Síndrome de Sólo Células de Sertoli , Humanos , Masculino , Azoospermia/genética , Hibridación Genómica Comparativa , Síndrome de Sólo Células de Sertoli/genética , Eliminación de Gen , Genes Ligados a Y , Variaciones en el Número de Copia de ADN/genética
8.
Genome Res ; 32(11-12): 1993-2002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418059

RESUMEN

Human sex differences arise from gonadal hormones and sex chromosomes. Studying the direct effects of sex chromosomes in humans is still challenging. Here we studied how the sex chromosomes can modulate gene expression and the outcome of mutations across the genome by exploiting the tendency of cancer cell lines to lose or gain sex chromosomes. We inferred the dosage of the sex chromosomes in 355 female and 408 male cancer cell lines and used it to dissect the contributions of the Y and X Chromosomes to sex-biased gene expression. Furthermore, based on genome-wide CRISPR screens, we identified genes whose essentiality is different between male and female cells depending on the sex chromosomes. The most significant genes were X-linked genes compensated by Y-linked paralogs. Our sex-based analysis identifies genes that, when mutated, can affect male and female cells differently and reinforces the roles of the X and Y Chromosomes in sex-specific cell function.


Asunto(s)
Neoplasias , Cromosomas Sexuales , Femenino , Masculino , Humanos , Cromosomas Sexuales/genética , Cromosoma Y , Cromosoma X , Genes Ligados a X , Genes Ligados a Y , Caracteres Sexuales , Neoplasias/genética
9.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227030

RESUMEN

Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.


Asunto(s)
Trastornos del Desarrollo Sexual , Caballos , Infertilidad Masculina , Animales , Masculino , Trastornos del Desarrollo Sexual/genética , Variaciones en el Número de Copia de ADN/genética , Genes Ligados a Y/genética , Caballos/genética , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Mamíferos/genética , Desarrollo Sexual , Cromosoma Y/genética
10.
Stem Cell Rev Rep ; 18(8): 3008-3020, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35661078

RESUMEN

BACKGROUND: The human Y chromosome harbors genes that are mainly involved in the growth, development, sexual dimorphism, and spermatogenesis process. Despite many studies, the function of the male-specific region of the Y chromosome (MSY) awaits further clarification, and a cell-based approach can help in this regard. RESULTS: In this study, we have developed four stable transgenic male embryonic stem cell (ESCs) lines that can overexpress male-specific genes HSFY1, RBMY1A1, RPS4Y1, and SRY. As a proof of principle, we differentiated one of these cell lines (RPS4Y1 over-expressing ESCs) to the neural stem cell (rosette structure) and characterized them based on the expression level of lineage markers. RPS4Y1 expression in the Doxycycline-treated group was significantly higher than control groups at transcript and protein levels. Furthermore, we found Doxycycline-treated group had a higher differentiation efficiency than the untreated control groups. CONCLUSIONS: Our results suggest that the RPS4Y1 gene may play a critical role in neurogenesis. Also, the generated transgenic ESC lines can be widely employed in basic and preclinical studies, such as sexual dimorphism of neural and cardiac functions, the development of cancerous and non-cancerous disease models, and drug screening.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Masculino , Genes Ligados a Y , Doxiciclina/metabolismo , Células Madre Embrionarias , Neurogénesis/genética
11.
Sci Rep ; 12(1): 10570, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732703

RESUMEN

Vector control strategies are among the most effective measures to combat mosquito-borne diseases, such as malaria. These strategies work by altering the mosquito age structure through increased mortality of the older female mosquitoes that transmit pathogens. However, methods to monitor changes to mosquito age structure are currently inadequate for programmatic implementation. Female mosquitoes generally mate a single time soon after emergence and draw down spermatozoa reserves with each oviposition cycle. Here, we demonstrate that measuring spermatozoa quantity in female Anopheles mosquitoes is an effective approach to assess mosquito age. Using multiplexed qPCR targeted at male spermatozoa, we show that Y-linked genes in female mosquitoes are exclusively found in the spermatheca, the organ that houses spermatozoa, and the quantity of these gene sequences significantly declines with age. The method can accurately identify mosquitoes more than 10 days old and thus old enough to potentially transmit pathogens harbored in the salivary glands during blood feeding. Furthermore, mosquito populations that differ by 10% in daily survivorship have a high likelihood of being distinguished using modest sample sizes, making this approach scalable for assessing the efficacy of vector intervention control programs.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Femenino , Genes Ligados a Y , Masculino , Control de Mosquitos/métodos , Mosquitos Vectores , Espermatozoides
13.
Am J Respir Crit Care Med ; 206(2): 186-196, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35504005

RESUMEN

Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure, and death. PAH exhibits a striking sex bias and is up to four times more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies. Objectives: We previously discovered that the Y chromosome is protective against hypoxia-induced experimental pulmonary hypertension (PH), which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods: To test the effect of Y-chromosome genes on PH development, we knocked down each Y-chromosome gene expressed in the lung by means of intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia and monitored changes in right ventricular and pulmonary artery hemodynamics. We compared the lung transcriptome of Uty knockdown mouse lungs to those of male and female PAH patient lungs to identify common downstream pathogenic chemokines and tested the effects of these chemokines on human pulmonary artery endothelial cells. We further inhibited the activity of these chemokines in two preclinical pulmonary hypertension models to test the therapeutic efficacy. Measurements and Main Results: Knockdown of the Y-chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in females with PAH. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of Cxcl9 and Cxcl10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity. Conclusions:Uty is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines Cxcl9 and Cxcl10, which trigger endothelial cell death and PH. Inhibition of CLXC9 and CXLC10 rescues PH development in multiple experimental models.


Asunto(s)
Quimiocinas , Hipertensión Pulmonar , Antígenos de Histocompatibilidad Menor , Proteínas Nucleares , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/genética , Femenino , Genes Ligados a Y , Humanos , Hipertensión Pulmonar/genética , Hipoxia , Masculino , Ratones , Antígenos de Histocompatibilidad Menor/genética , Proteínas Nucleares/genética , Arteria Pulmonar , Ratas
14.
Biol Reprod ; 106(6): 1312-1326, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35293998

RESUMEN

Using mice with Y chromosome deficiencies and supplementing Zfy transgenes, we, and others, have previously shown that the loss of Y chromosome Zfy1 and Zfy2 genes is associated with infertility and spermiogenic defects and that the addition of Zfy transgenes rescues these defects. In these past studies, the absence of Zfy was linked to the loss of other Y chromosome genes, which might have contributed to spermiogenic phenotypes. Here, we used CRISPR/Cas9 to specifically remove open reading frame of Zfy1, Zfy2, or both Zfy1 and Zfy2, and generated Zfy knockout (KO) and double knockout (DKO) mice. Zfy1 KO and Zfy2 KO mice were both fertile, but the latter had decreased litters size and sperm number, and sperm headshape abnormalities. Zfy DKO males were infertile and displayed severe spermatogenesis defects. Postmeiotic arrest largely prevented production of sperm and the few sperm that were produced all displayed gross headshape abnormalities and structural defects within head and tail. Infertility of Zfy DKO mice could be overcome by injection of spermatids or sperm directly to oocytes, and the resulting male offspring had the same spermiogenic phenotype as their fathers. The study is the first describing detailed phenotypic characterization of mice with the complete Zfy gene loss. It provides evidence supporting that the presence of at least one Zfy homolog is essential for male fertility and development of normal sperm functional in unassisted fertilization. The data also show that while the loss of Zfy1 is benign, the loss of Zfy2 is mildly detrimental for spermatogenesis.


Asunto(s)
Proteínas de Unión al ADN , Genes Ligados a Y , Infertilidad , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Infertilidad/genética , Masculino , Ratones , Espermatogénesis/genética , Espermatozoides , Factores de Transcripción/genética , Cromosoma Y/genética
15.
Nat Commun ; 12(1): 7202, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893590

RESUMEN

CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be beneficial to drive the expression in a sex-specific manner to produce genetic sexing systems, sex ratio distorters, or even sex-specific gene drives, for example. To explore this possibility, here we develop a transgenic line of Drosophila melanogaster expressing Cas9 from the Y chromosome. We functionally characterize the utility of this strain for both sex selection and gene drive finding it to be quite effective. To explore its utility for population control, we built mathematical models illustrating its dynamics as compared to other state-of-the-art systems designed for both population modification and suppression. Taken together, our results contribute to the development of current CRISPR genetic control tools and demonstrate the utility of using sex-linked Cas9 strains for genetic control of animals.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida/métodos , Genes Ligados a Y , Preselección del Sexo/métodos , Cromosoma Y , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Endonucleasas/genética , Femenino , Edición Génica/métodos , Masculino , Razón de Masculinidad , Biología Sintética/métodos , Transgenes
16.
Nat Commun ; 12(1): 6854, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824217

RESUMEN

Transposable elements (TEs) must replicate in germline cells to pass novel insertions to offspring. In Drosophila melanogaster ovaries, TEs can exploit specific developmental windows of opportunity to evade host silencing and increase their copy numbers. However, TE activity and host silencing in the distinct cell types of Drosophila testis are not well understood. Here, we reanalyze publicly available single-cell RNA-seq datasets to quantify TE expression in the distinct cell types of the Drosophila testis. We develop a method for identification of TE and host gene expression modules and find that a distinct population of early spermatocytes expresses a large number of TEs at much higher levels than other germline and somatic components of the testes. This burst of TE expression coincides with the activation of Y chromosome fertility factors and spermatocyte-specific transcriptional regulators, as well as downregulation of many components of the piRNA pathway. The TEs expressed by this cell population are specifically enriched on the Y chromosome and depleted on the X chromosome, relative to other active TEs. These data suggest that some TEs may achieve high insertional activity in males by exploiting a window of opportunity for mobilization created by the activation of spermatocyte-specific and Y chromosome-specific transcriptional programs.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Espermatogénesis/genética , Cromosoma Y/genética , Animales , Drosophila melanogaster/citología , Evolución Molecular , Expresión Génica , Redes Reguladoras de Genes , Genes Ligados a Y/genética , Masculino , Mutagénesis Insercional , ARN Interferente Pequeño/genética , Espermatocitos/metabolismo , Testículo/citología , Testículo/metabolismo , Cromosoma Y/metabolismo
17.
Nat Ecol Evol ; 5(10): 1394-1402, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34413504

RESUMEN

Sexual dimorphism is ubiquitous in nature but its evolution is puzzling given that the mostly shared genome constrains independent evolution in the sexes. Sex differences should result from asymmetries between the sexes in selection or genetic variation but studies investigating both simultaneously are lacking. Here, we combine a quantitative genetic analysis of body size variation, partitioned into autosomal and sex chromosome contributions and ten generations of experimental evolution to dissect the evolution of sexual body size dimorphism in seed beetles (Callosobruchus maculatus) subjected to sexually antagonistic or sex-limited selection. Female additive genetic variance (VA) was primarily linked to autosomes, exhibiting a strong intersexual genetic correlation with males ([Formula: see text] = 0.926), while X- and Y-linked genes further contributed to the male VA and X-linked genes contributed to female dominance variance. Consistent with these estimates, sexual body size dimorphism did not evolve in response to female-limited selection but evolved by 30-50% under male-limited and sexually antagonistic selection. Remarkably, Y-linked variance alone could change dimorphism by 30%, despite the C. maculatus Y chromosome being small and heterochromatic. Our results demonstrate how the potential for sexual dimorphism to evolve depends on both its underlying genetic basis and the nature of sex-specific selection.


Asunto(s)
Escarabajos , Caracteres Sexuales , Animales , Tamaño Corporal , Escarabajos/genética , Femenino , Genes Ligados a Y , Masculino , Cromosomas Sexuales
18.
Hum Mol Genet ; 30(R2): R296-R300, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328177

RESUMEN

The Y chromosome is the most gene-deficient chromosome in the human genome (though not the smallest chromosome) and has largely been sequestered away from large-scale studies of the effects of genetics on human health. Here I review the literature, focusing on the last 2 years, for recent evidence of the role of the Y chromosome in protecting from or contributing to disease. Although many studies have focused on Y chromosome gene copy number and variants in fertility, the role of the Y chromosome in human health is now known to extend too many other conditions including the development of multiple cancers and Alzheimer's disease. I further include the discussion of current technology and methods for analyzing Y chromosome variation. The true role of the Y chromosome and associated genetic variants in human disease will only become clear when the Y chromosome is integrated into larger studies of human genetic variation, rather than being analyzed in isolation.


Asunto(s)
Cromosomas Humanos Y , Susceptibilidad a Enfermedades , Genoma Humano , Homeostasis , Evolución Molecular , Regulación de la Expresión Génica , Genes Ligados a Y , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Masculino
19.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33764439

RESUMEN

We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Humanos/genética , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Genes de Plantas , Genes Ligados a X , Genes Ligados a Y , Haplotipos , Humanos , Modelos Genéticos , Polimorfismo Genético , Recombinación Genética , Silene/genética
20.
Nat Commun ; 12(1): 892, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563972

RESUMEN

Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Asunto(s)
Drosophila/genética , Cromosomas Sexuales/genética , Espermatocitos/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Regulación de la Expresión Génica , Genes Ligados a X/genética , Genes Ligados a Y/genética , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Especificidad de Órganos , ARN Polimerasa II/metabolismo , Cromosomas Sexuales/metabolismo , Espermatogénesis/genética , Testículo/citología , Testículo/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...