Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.291
1.
Proc Natl Acad Sci U S A ; 121(24): e2321619121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833475

Angiotensin-convertingenzyme 2 (ACE2) has dual functions, regulating cardiovascular physiology and serving as the receptor for coronaviruses. Bats, the only true flying mammals and natural viral reservoirs, have evolved positive alterations in traits related to both functions of ACE2. This suggests significant evolutionary changes in ACE2 during bat evolution. To test this hypothesis, we examine the selection pressure in ACE2 along the ancestral branch of all bats (AncBat-ACE2), where powered flight and bat-coronavirus coevolution occurred, and detect a positive selection signature. To assess the functional effects of positive selection, we resurrect AncBat-ACE2 and its mutant (AncBat-ACE2-mut) created by replacing the positively selected sites. Compared to AncBat-ACE2-mut, AncBat-ACE2 exhibits stronger enzymatic activity, enhances mice's performance in exercise fatigue, and shows lower affinity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings indicate the functional pleiotropy of positive selection in the ancient ACE2 of bats, providing an alternative hypothesis for the evolutionary origin of bats' defense against coronaviruses.


Angiotensin-Converting Enzyme 2 , Chiroptera , Selection, Genetic , Chiroptera/virology , Chiroptera/genetics , Animals , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Mice , Genetic Pleiotropy , Evolution, Molecular , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/genetics , Coronavirus/genetics , Humans , Phylogeny
2.
BMJ Open Respir Res ; 11(1)2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834332

OBJECTIVE: This study aims to explore the common genetic basis between respiratory diseases and to identify shared molecular and biological mechanisms. METHODS: This genome-wide pleiotropic association study uses multiple statistical methods to systematically analyse the shared genetic basis between five respiratory diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung cancer and snoring) using the largest publicly available genome wide association studies summary statistics. The missions of this study are to evaluate global and local genetic correlations, to identify pleiotropic loci, to elucidate biological pathways at the multiomics level and to explore causal relationships between respiratory diseases. Data were collected from 27 November 2022 to 30 March 2023 and analysed from 14 April 2023 to 13 July 2023. MAIN OUTCOMES AND MEASURES: The primary outcomes are shared genetic loci, pleiotropic genes, biological pathways and estimates of genetic correlations and causal effects. RESULTS: Significant genetic correlations were found for 10 paired traits in 5 respiratory diseases. Cross-Phenotype Association identified 12 400 significant potential pleiotropic single-nucleotide polymorphism at 156 independent pleiotropic loci. In addition, multitrait colocalisation analysis identified 15 colocalised loci and a subset of colocalised traits. Gene-based analyses identified 432 potential pleiotropic genes and were further validated at the transcriptome and protein levels. Both pathway enrichment and single-cell enrichment analyses supported the role of the immune system in respiratory diseases. Additionally, five pairs of respiratory diseases have a causal relationship. CONCLUSIONS AND RELEVANCE: This study reveals the common genetic basis and pleiotropic genes among respiratory diseases. It provides strong evidence for further therapeutic strategies and risk prediction for the phenomenon of respiratory disease comorbidity.


Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Respiratory Tract Diseases/genetics , Genetic Pleiotropy , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/genetics
3.
Proc Biol Sci ; 291(2024): 20240446, 2024 Jun.
Article En | MEDLINE | ID: mdl-38835275

Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.


Genetic Pleiotropy , Signal Transduction , Animals , Biological Evolution , Host-Parasite Interactions , Genetic Fitness , Resource Allocation
4.
Medicine (Baltimore) ; 103(19): e38008, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728519

Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.


Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Genetic Predisposition to Disease , Linkage Disequilibrium , Genetic Pleiotropy , Quantitative Trait Loci
5.
PLoS One ; 19(5): e0300740, 2024.
Article En | MEDLINE | ID: mdl-38753827

BACKGROUND: Multimorbidity has become an important health challenge in the aging population. Accumulated evidence has shown that multimorbidity has complex association patterns, but the further mechanisms underlying the association patterns are largely unknown. METHODS: Summary statistics of 14 conditions/diseases were available from the genome-wide association study (GWAS). Linkage disequilibrium score regression analysis (LDSC) was applied to estimate the genetic correlations. Pleiotropic SNPs between two genetically correlated traits were detected using pleiotropic analysis under the composite null hypothesis (PLACO). PLACO-identified SNPs were mapped to genes by Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA), and gene set enrichment analysis and tissue differential expression were performed for the pleiotropic genes. Two-sample Mendelian randomization analyses assessed the bidirectional causality between conditions/diseases. RESULTS: LDSC analyses revealed the genetic correlations for 20 pairs based on different two-disease combinations of 14 conditions/diseases, and genetic correlations for 10 pairs were significant after Bonferroni adjustment (P<0.05/91 = 5.49E-04). Significant pleiotropic SNPs were detected for 11 pairs of correlated conditions/diseases. The corresponding pleiotropic genes were differentially expressed in the brain, nerves, heart, and blood vessels and enriched in gluconeogenesis and drug metabolism, biotransformation, and neurons. Comprehensive causal analyses showed strong causality between hypertension, stroke, and high cholesterol, which drive the development of multiple diseases. CONCLUSIONS: This study highlighted the complex mechanisms underlying the association patterns that include the shared genetic components and causal effects among the 14 conditions/diseases. These findings have important implications for guiding the early diagnosis, management, and treatment of comorbidities.


Genome-Wide Association Study , Linkage Disequilibrium , Mendelian Randomization Analysis , Multimorbidity , Polymorphism, Single Nucleotide , Humans , Genetic Predisposition to Disease , Genetic Pleiotropy
6.
PLoS Genet ; 20(5): e1011245, 2024 May.
Article En | MEDLINE | ID: mdl-38728360

Joint analysis of multiple correlated phenotypes for genome-wide association studies (GWAS) can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on associations between phenotypes and genotypes provides a new insight to analyze multiple phenotypes, which can explore whether phenotypes and genotypes might be related to each other at a higher level of cellular and organismal organization. In this paper, we first develop a bipartite signed network by linking phenotypes and genotypes into a Genotype and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative and qualitative phenotypes and is applicable to binary phenotypes with extremely unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful community detection method to partition phenotypes into disjoint network modules based on GPN. Finally, we jointly test the association between multiple phenotypes in a network module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72 complex traits in the UK Biobank show that multiple phenotype association tests based on network modules detected by GPN are much more powerful than those without considering network modules. The newly proposed GPN provides a new insight to investigate the genetic architecture among different types of phenotypes. Multiple phenotypes association studies based on GPN are improved by incorporating the genetic information into the phenotype clustering. Notably, it might broaden the understanding of genetic architecture that exists between diagnoses, genes, and pleiotropy.


Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide , Humans , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Models, Genetic , Genetic Pleiotropy , Genetic Association Studies/methods , Quantitative Trait Loci/genetics
7.
PLoS One ; 19(5): e0300500, 2024.
Article En | MEDLINE | ID: mdl-38820305

BACKGROUND: The cardiac-brain connection has been identified as the basis for multiple cardio-cerebral diseases. However, effective therapeutic targets for these diseases are still limited. Therefore, this study aimed to identify pleiotropic and specific therapeutic targets for cardio-cerebral diseases using Mendelian randomization (MR) and colocalization analyses. METHODS: This study included two large protein quantitative trait loci studies with over 4,000 plasma proteins were included in the discovery and replication cohorts, respectively. We initially used MR to estimate the associations between protein and 20 cardio-cerebral diseases. Subsequently, Colocalization analysis was employed to enhance the credibility of the results. Protein target prioritization was based solely on including highly robust significant results from both the discovery and replication phases. Lastly, the Drug-Gene Interaction Database was utilized to investigate protein-gene-drug interactions further. RESULTS: A total of 46 target proteins for cardio-cerebral diseases were identified as robust in the discovery and replication phases by MR, comprising 7 pleiotropic therapeutic proteins and 39 specific target proteins. Followed by colocalization analysis and prioritization of evidence grades for target protein, 6 of these protein-disease pairs have achieved the highly recommended level. For instance, the PILRA protein presents a pleiotropic effect on sick sinus syndrome and Alzheimer's disease, whereas GRN exerts specific effects on the latter. APOL3, LRP4, and F11, on the other hand, have specific effects on cardiomyopathy and ischemic stroke, respectively. CONCLUSIONS: This study successfully identified important therapeutic targets for cardio-cerebral diseases, which benefits the development of preventive or therapeutic drugs.


Mendelian Randomization Analysis , Proteome , Quantitative Trait Loci , Humans , Proteome/metabolism , Genetic Pleiotropy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Genome-Wide Association Study , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/drug therapy
8.
BMC Plant Biol ; 24(1): 454, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789943

Pleiotropy is frequently detected in agronomic traits of wheat (Triticum aestivum). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B, proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.


Alleles , Chromosomes, Plant , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Phenotype , Genetic Pleiotropy , Plant Breeding
9.
Genes (Basel) ; 15(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38674412

Comorbidities are prevalent in digestive cancers, intensifying patient discomfort and complicating prognosis. Identifying potential comorbidities and investigating their genetic connections in a systemic manner prove to be instrumental in averting additional health challenges during digestive cancer management. Here, we investigated 150 diseases across 18 categories by collecting and integrating various factors related to disease comorbidity, such as disease-associated SNPs or genes from sources like MalaCards, GWAS Catalog and UK Biobank. Through this extensive analysis, we have established an integrated pleiotropic gene set comprising 548 genes in total. Particularly, there enclosed the genes encoding major histocompatibility complex or related to antigen presentation. Additionally, we have unveiled patterns in protein-protein interactions and key hub genes/proteins including TP53, KRAS, CTNNB1 and PIK3CA, which may elucidate the co-occurrence of digestive cancers with certain diseases. These findings provide valuable insights into the molecular origins of comorbidity, offering potential avenues for patient stratification and the development of targeted therapies in clinical trials.


Comorbidity , Humans , Genome-Wide Association Study , Genetic Pleiotropy , Digestive System Neoplasms/genetics , Digestive System Neoplasms/epidemiology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Protein Interaction Maps/genetics
10.
Genome Med ; 16(1): 62, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664839

The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).


Genome-Wide Association Study , Obesity , Humans , Obesity/genetics , Epistasis, Genetic , Quantitative Trait, Heritable , Quantitative Trait Loci , Models, Genetic , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genetic Pleiotropy , Phenotype , Multifactorial Inheritance
11.
Cell Rep Methods ; 4(4): 100757, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38631345

Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge "W-H-W" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.


Genetic Pleiotropy , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
12.
Fungal Genet Biol ; 172: 103894, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657897

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.


Aspergillus niger , Cell Wall , Fungal Proteins , Gene Expression Regulation, Fungal , Phenotype , Spores, Fungal , Transcription Factors , Aspergillus niger/genetics , Aspergillus niger/metabolism , Aspergillus niger/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Cell Wall/metabolism , Cell Wall/genetics , Hydrogen Peroxide/pharmacology , Genetic Pleiotropy
13.
Plant Cell Physiol ; 65(5): 781-789, 2024 May 30.
Article En | MEDLINE | ID: mdl-38447119

MicroRNAs (miRNAs) are known to play critical roles in regulating rice agronomic traits through mRNA cleavage or translational repression. Our previous study indicated that miR5504 regulates plant height by affecting cell proliferation and expansion. Here, the two independent homozygous mir5504 mutants (CR1 and CR2) and overexpression lines (OE1 and OE2) were further used to investigate the functions of miR5504. The panicle length, 1000-grain weight and grain yield per plant of miR5504-OE lines were identical to those of Nipponbare (NIP), but the 1000-grain weight of mir5504 mutants was reduced by about 10% and 9%, respectively. Meanwhile, the grain width and thickness of mir5504 mutants decreased significantly by approximately 10% and 11%, respectively. Moreover, the cytological results revealed a significant decrease in cell number along grain width direction and cell width in spikelet in mir5504, compared with those in NIP. In addition, several major storage substances of the rice seeds were measured. Compared to NIP, the amylose content of the mir5504 seeds was noticeably decreased, leading to an increase of nearly 10 mm in gel consistency (GC) in mir5504 lines. Further investigation confirmed that LOC_Os08g16914 was the genuine target of miR5504: LOC_Os08g16914 over-expression plants phenocopied the mir5504 mutants. This study provides insights into the role of miR5504 in rice seed development.


Edible Grain , Gene Expression Regulation, Plant , MicroRNAs , Oryza , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Mutation , Genetic Pleiotropy , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Plant/metabolism , Amylose/metabolism
14.
Plant Cell Environ ; 47(7): 2362-2376, 2024 Jul.
Article En | MEDLINE | ID: mdl-38515393

Powdery mildew-resistant barley (Hordeum vulgare) and Arabidopsis thaliana mlo mutant plants exhibit pleiotropic phenotypes such as the spontaneous formation of callose-rich cell wall appositions and early leaf chlorosis and necrosis, indicative of premature leaf senescence. The exogenous factors governing the occurrence of these undesired side effects remain poorly understood. Here, we characterised the formation of these symptoms in detail. Ultrastructural analysis revealed that the callose-rich cell wall depositions spontaneously formed in A. thaliana mlo mutants are indistinguishable from those induced by the bacterial pattern epitope, flagellin 22 (flg22). We further found that increased plant densities during culturing enhance the extent of the leaf senescence syndrome in A. thaliana mlo mutants. Application of a liquid fertiliser rescued the occurrence of leaf chlorosis and necrosis in both A. thaliana and barley mlo mutant plants. Controlled fertilisation experiments uncovered nitrogen as the macronutrient whose deficiency promotes the extent of pleiotropic phenotypes in A. thaliana mlo mutants. Light intensity and temperature had a modulatory impact on the incidence of leaf necrosis in the case of barley mlo mutant plants. Collectively, our data indicate that the development of pleiotropic phenotypes associated with mlo mutants is governed by various exogenous factors.


Arabidopsis , Hordeum , Mutation , Nitrogen , Phenotype , Plant Diseases , Plant Leaves , Hordeum/microbiology , Hordeum/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Nitrogen/metabolism , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics , Ascomycota/physiology , Disease Resistance/genetics , Genetic Pleiotropy , Glucans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Light , Fertilizers
15.
Nat Commun ; 15(1): 2655, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38531894

Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one neuroimaging modality (e.g. structural, functional or diffusion magnetic resonance imaging [MRI]). A better understanding of pleiotropy across modalities could inform us on the integration of brain function, micro- and macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and gene level in the UK Biobank (N = 34,029) and ABCD Study (N = 8607). When jointly analysing phenotypes derived from structural, functional and diffusion MRI in a genome-wide association study (GWAS) with the Multivariate Omnibus Statistical Test (MOSTest), we boost the discovery of loci and genes beyond previously identified effects for each modality individually. Cross-modality genes are involved in fundamental biological processes and predominantly expressed during prenatal brain development. We additionally boost prediction of psychiatric disorders by conditioning independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue composition.


Genome-Wide Association Study , Neuroimaging , Humans , Genome-Wide Association Study/methods , Phenotype , Genetic Pleiotropy , Brain/anatomy & histology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
16.
Neuropsychopharmacology ; 49(6): 1033-1041, 2024 May.
Article En | MEDLINE | ID: mdl-38402365

Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.


Cellular Senescence , Depressive Disorder, Major , Genetic Pleiotropy , Humans , Cellular Senescence/genetics , Depressive Disorder, Major/genetics , Depressive Disorder, Major/drug therapy , Bipolar Disorder/genetics , Mental Disorders/genetics , Schizophrenia/genetics , DNA, Mitochondrial/genetics , Genetic Predisposition to Disease/genetics , DNA Copy Number Variations/genetics
17.
Genome Med ; 16(1): 21, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38308367

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Genome-Wide Association Study , Neoplasms , Humans , Female , Phenotype , Quantitative Trait Loci , Genetic Pleiotropy , Neoplasms/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
18.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38330300

Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.


Leg weakness, a highly prevalent health condition in pig breeding farms, adversely affects the lifespan of breeding pigs. The augmentation of cannon bone circumference (CBC) and bone mineral density (BMD), which are objective measures of limb strength in pigs, can effectively alleviate leg weakness. To identify candidate genes regulating CBC and BMD in pigs, this study performed single-trait genome-wide association studies and multi-trait meta-analysis on all individuals with phenotype data. Additionally, the confidence intervals of quantitative trait locus (QTL) were determined using Bayesian methods. Four CBC-associated QTLs and one BMD-associated QTL were identified. Additionally, one potential pleiotropic QTL associated with both CBC and rear limb metatarsal area BMD (raBMD) was identified. This study demonstrated that DDX42, MYSM1, FTSJ3, and MECOM were candidate genes regulating forelimb CBC, while SMURF2 and STC1 were candidate genes regulating rear limb CBC. Additionally, RGMA was demonstrated to regulate raBMD, while RAMP1 was identified as a potential pleiotropic gene regulating both CBC and raBMD. The findings of this study provide valuable insights into the genetic mechanisms underlying limb growth and bone mineral accumulation.


Bone Density , Genome-Wide Association Study , Swine/genetics , Male , Animals , Bone Density/genetics , Genome-Wide Association Study/veterinary , Bayes Theorem , Genetic Pleiotropy , Quantitative Trait Loci , Phenotype , Polymorphism, Single Nucleotide
19.
Arch Sex Behav ; 53(5): 1731-1745, 2024 May.
Article En | MEDLINE | ID: mdl-38177607

Same-sex attraction, a heritable trait with a reproductive cost, lacks a comprehensive evolutionary explanation. Here we build on a hypothesis invoking antagonistic pleiotropy, which suggests that genes linked to male same-sex attraction remain in the gene pool because they have conferred some fitness advantage to heterosexual men possessing them. We posit the "desirable dad hypothesis," which proposes that alleles linked to male non-heterosexual orientations increase traits conducive to childcare; heterosexual men possessing same-sex attracted alleles are more desirable mating partners as a function of possessing superior paternal qualities. We conducted three studies to test predictions from this hypothesis. Results were consistent with all three predictions. Study 1 (N = 1632) showed that heterosexual men with same-sex attracted relatives were more feminine than men without, as indicated by self-report measures of femininity (η2 = .007), warmth (η2 = .002), and nurturance (η2 = .004 - .006). In Study 2 (N = 152), women rated feminine male profiles as more romantically appealing than masculine ones (d = 0.83)-but less so than profiles possessing a combination of feminine and masculine traits. In Study 3 (N = 153), women perceived feminine male profiles as depicting the best fathers and masculine profiles the worst (d = 1.56): consistent with the idea that femininity is attractive for childcare reasons. Together, these findings are consistent with the idea that sexual selection for male parental care may be involved in the evolution of male same-sex attraction.


Homosexuality, Male , Humans , Male , Female , Adult , Homosexuality, Male/psychology , Homosexuality, Male/genetics , Heterosexuality/psychology , Femininity , Genetic Pleiotropy , Young Adult , Middle Aged , Sexual Partners/psychology , Adolescent
20.
Nucleic Acids Res ; 52(D1): D871-D881, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37941154

Large-scale genome-wide association studies (GWAS) have provided profound insights into complex traits and diseases. Yet, deciphering the fine-scale molecular mechanisms of how genetic variants manifest to cause the phenotypes remains a daunting task. Here, we present COLOCdb (https://ngdc.cncb.ac.cn/colocdb), a comprehensive genetic colocalization database by integrating more than 3000 GWAS summary statistics and 13 types of xQTL to date. By employing two representative approaches for the colocalization analysis, COLOCdb deposits results from three key components: (i) GWAS-xQTL, pair-wise colocalization between GWAS loci and different types of xQTL, (ii) GWAS-GWAS, pair-wise colocalization between the trait-associated genetic loci from GWASs and (iii) xQTL-xQTL, pair-wise colocalization between the genetic loci associated with molecular phenotypes in xQTLs. These results together represent the most comprehensive colocalization analysis, which also greatly expands the list of shared variants with genetic pleiotropy. We expect that COLOCdb can serve as a unique and useful resource in advancing the discovery of new biological mechanisms and benefit future functional studies.


Genome-Wide Association Study , Multifactorial Inheritance , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Quantitative Trait Loci , Phenotype , Genetic Pleiotropy , Polymorphism, Single Nucleotide
...