Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.881
1.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670948

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Male , Antibodies, Viral/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Administration, Intranasal , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Immunoglobulin A/immunology , CD4-Positive T-Lymphocytes/immunology , Humans
2.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Article En | MEDLINE | ID: mdl-38641498

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Antibodies, Viral , Chickens , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Virus Shedding , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Virus Shedding/immunology , Specific Pathogen-Free Organisms , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , Immunity, Cellular , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Vaccination/methods , Immunity, Humoral , Genetic Vectors/immunology , Immunogenicity, Vaccine , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics
3.
Curr Opin Virol ; 66: 101408, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574628

Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine against tuberculosis (TB), despite its variable efficacy in protecting against pulmonary TB. The development of effective TB vaccines faces significant challenges, marked by the absence of validated correlates of protection and predictive animal models. Strategic approaches to enhance TB vaccines and augment BCG efficacy include utilising prime-boost strategies with viral-vectored vaccines and exploring innovative delivery techniques, such as mucosal vaccine administration. Viral vectors offer numerous advantages, including the capacity to accommodate genes encoding extensive antigenic fragments and the induction of robust immune responses. Aerosol delivery aligns with the route of Mycobacterium tuberculosis infection and holds the potential to enhance protective mucosal immunity. Aerosolised viral-vectored vaccines overcome anti-vector immunity, facilitating repeated aerosol deliveries.


Aerosols , Genetic Vectors , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Humans , Animals , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/genetics , Genetic Vectors/immunology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Tuberculosis/prevention & control , Tuberculosis/immunology , Administration, Inhalation , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , BCG Vaccine/genetics , Vaccination/methods , Tuberculosis, Pulmonary/prevention & control , Tuberculosis, Pulmonary/immunology
4.
Gene Ther ; 31(5-6): 273-284, 2024 May.
Article En | MEDLINE | ID: mdl-38355967

Adeno-associated virus (AAV) based gene therapy has demonstrated effective disease control in hemophilia. However, pre-existing immunity from wild-type AAV exposure impacts gene therapy eligibility. The aim of this multicenter epidemiologic study was to determine the prevalence and persistence of preexisting immunity against AAV2, AAV5, and AAV8, in adult participants with hemophilia A or B. Blood samples were collected at baseline and annually for ≤3 years at trial sites in Austria, France, Germany, Italy, Spain, and the United States. At baseline, AAV8, AAV2, and AAV5 neutralizing antibodies (NAbs) were present in 46.9%, 53.1%, and 53.4% of participants, respectively; these values remained stable at Years 1 and 2. Co-prevalence of NAbs to at least two serotypes and all three serotypes was present at baseline for ~40% and 38.2% of participants, respectively. For each serotype, ~10% of participants who tested negative for NAbs at baseline were seropositive at Year 1. At baseline, 38.3% of participants had detectable cell mediated immunity by ELISpot, although no correlations were observed with the humoral response. In conclusion, participants with hemophilia may have significant preexisting immunity to AAV capsids. Insights from this study may assist in understanding capsid-based immunity trends in participants considering AAV vector-based gene therapy.


Antibodies, Neutralizing , Antibodies, Viral , Dependovirus , Genetic Therapy , Hemophilia A , Humans , Dependovirus/immunology , Dependovirus/genetics , Male , Hemophilia A/immunology , Hemophilia A/therapy , Adult , Longitudinal Studies , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Genetic Therapy/methods , Adaptive Immunity , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Middle Aged , Prevalence , Young Adult
5.
J Virol ; 97(4): e0194822, 2023 04 27.
Article En | MEDLINE | ID: mdl-36971544

Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.


Antiviral Restriction Factors , Dependovirus , Genetic Vectors , Genetic Vectors/genetics , Genetic Vectors/immunology , Dependovirus/genetics , Dependovirus/immunology , Antiviral Restriction Factors/genetics , Antiviral Restriction Factors/metabolism , Transgenes/genetics , Gene Expression Regulation, Viral/genetics , A549 Cells , K562 Cells , Gene Knockout Techniques , Cells, Cultured , Humans , Fanconi Anemia/genetics
6.
Front Immunol ; 13: 975803, 2022.
Article En | MEDLINE | ID: mdl-36032092

Gene transfer using adeno-associated viral (AAV) vectors has made tremendous progress in the last decade and has achieved cures of debilitating diseases such as hemophilia A and B. Nevertheless, progress is still being hampered by immune responses against the AAV capsid antigens or the transgene products. Immunosuppression designed to blunt T cell responses has shown success in some patients but failed in others especially if they received very high AAV vectors doses. Although it was initially thought that AAV vectors induce only marginal innate responses below the threshold of systemic symptoms recent trials have shown that complement activation can results in serious adverse events. Dorsal root ganglia toxicity has also been identified as a complication of high vector doses as has severe hepatotoxicity. Most of the critical complications occur in patients who are treated with very high vector doses indicating that the use of more efficient AAV vectors to allow for dose sparing or giving smaller doses repeatedly, the latter in conjunction with antibody or B cell depleting measures, should be explored.


Dependovirus , Genetic Therapy , Genetic Vectors , Capsid Proteins/immunology , Dependovirus/immunology , Genetic Therapy/adverse effects , Genetic Vectors/immunology , Humans , Transgenes
7.
Viruses ; 14(2)2022 02 06.
Article En | MEDLINE | ID: mdl-35215922

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Extracellular Vesicles/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , COVID-19/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Humans , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vaccination
8.
Viruses ; 14(2)2022 02 12.
Article En | MEDLINE | ID: mdl-35215973

The persistent expansion of the coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the rapid development of safe and effective countermeasures to reduce transmission, morbidity, and mortality. Several highly efficacious vaccines are actively being deployed around the globe to expedite mass vaccination and control of COVID-19. Notably, viral vectored vaccines (VVVs) are among the first to be approved for global distribution and use. In this review, we examine the humoral, cellular, and innate immune responses elicited by viral vectors, and the immune correlates of protection against COVID-19 in preclinical and clinical studies. We also discuss the durability and breadth of immune response induced by VVVs and boosters. Finally, we present challenges associated with VVVs and offer solutions for overcoming certain limitations of current vaccine regimens. Collectively, this review provides the rationale for expanding the portfolio of VVVs against SARS-CoV-2.


COVID-19/prevention & control , Genetic Vectors/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Immunization, Secondary , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Vaccines/classification
9.
Front Immunol ; 13: 823949, 2022.
Article En | MEDLINE | ID: mdl-35173733

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emergent coronavirus that has caused frequent zoonotic events through camel-to-human spillover. An effective camelid vaccination strategy is probably the best way to reduce human exposure risk. Here, we constructed and evaluated an inactivated rabies virus-vectored MERS-CoV vaccine in mice, camels, and alpacas. Potent antigen-specific antibody and CD8+ T-cell responses were generated in mice; moreover, the vaccination reduced viral replication and accelerated virus clearance in MERS-CoV-infected mice. Besides, protective antibody responses against both MERS-CoV and rabies virus were induced in camels and alpacas. Satisfyingly, the immune sera showed broad cross-neutralizing activity against the three main MERS-CoV clades. For further characterization of the antibody response induced in camelids, MERS-CoV-specific variable domains of heavy-chain-only antibody (VHHs) were isolated from immunized alpacas and showed potent prophylactic and therapeutic efficacies in the Ad5-hDPP4-transduced mouse model. These results highlight the inactivated rabies virus-vectored MERS-CoV vaccine as a promising camelid candidate vaccine.


Camelids, New World/virology , Camelus/virology , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Camelids, New World/immunology , Camelus/immunology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cricetinae , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Male , Mice , Mice, Inbred C57BL , Rabies virus/genetics , Rabies virus/immunology , Vaccination , Vaccines, Synthetic/immunology , Vero Cells , Viral Vaccines/genetics
10.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article En | MEDLINE | ID: mdl-35180381

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Emerg Microbes Infect ; 11(1): 438-441, 2022 Dec.
Article En | MEDLINE | ID: mdl-35094672

Mucosal immunity provides a potential for preventing initial infection and stopping subsequent transmission of SARS-CoV-2. Here, we examined the safety and immunogenicity of a replication-defective adenovirus type-5 vectored vaccine (Ad5-nCov) encoding SARS-CoV-2 spike protein delivered by nebulization inhalation in rhesus macaques. The vaccine-associated clinical pathology and toxicity were not observed in the NHP model. The extensive safety study indicated that Ad5-nCoV was mainly confined to the organs related to respiratory system and was rapidly cleared away from the system. Our results showed that Ad5-nCoV delivered by inhalation robustly elicited both systematic and mucosal immune responses against SARS-nCoV-2 and variants. Thus, Ad5-nCoV inhalation may provide an effective, safe and non-invasive vaccination strategy for the control of SARS-CoV-2.


Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Vectors/immunology , Immunity, Mucosal , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Administration, Inhalation , Animals , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Genetic Vectors/genetics , Humans , Immunogenicity, Vaccine , Macaca mulatta , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article En | MEDLINE | ID: mdl-35046024

Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.


Betaherpesvirinae/genetics , Genetic Vectors/genetics , Immunogenicity, Vaccine , Models, Theoretical , Nucleic Acid-Based Vaccines/immunology , Vaccines/immunology , Algorithms , Animal Diseases/prevention & control , Animal Diseases/transmission , Animal Diseases/virology , Animals , Bayes Theorem , Disease Reservoirs , Disease Vectors , Genetic Vectors/immunology , Herpesviridae Infections/veterinary , Mice , Muromegalovirus , Nucleic Acid-Based Vaccines/genetics , Prevalence , Vaccines/genetics
13.
Viruses ; 14(1)2022 01 13.
Article En | MEDLINE | ID: mdl-35062344

The baculovirus display system (BDS), an excellent eukaryotic surface display technology that offers the advantages of safety, efficiency, and economy, is widely used in biomedicine. A previous study using rBacmid-Δgp64-ires-gp64 expressed in low copy numbers of the gp64 gene achieved high-efficiency expression and co-display of three fluorescent proteins (GFP, YFP, and mCherry). However, low expression of GP64 in recombinant baculoviruses also reduces the efficiency of recombinant baculovirus transduction into mammalian cells. In addition, the baculovirus promoter has no expression activity in mammalian cells and thus cannot meet the application requirements of baculoviral vectors for the BDS. Based on previous research, this study first determined the expression activity of promoters in insect Spodoptera frugiperda 9 cells and mammalian cells and successfully screened the very early promoter pie1 to mediate the co-expression of multiple genes. Second, utilizing the envelope display effect of the INVASIN and VSVG proteins, the efficiency of transduction of recombinant baculovirus particles into non-host cells was significantly improved. Finally, based on the above improvement, a recombinant baculovirus vector displaying four antigen proteins with high efficiency was constructed. Compared with traditional BDSs, the rBacmid-Δgp64 system exhibited increased display efficiency of the target protein by approximately 3-fold and induced an approximately 4-fold increase in the titer of serum antibodies to target antigens in Bal B/c mice. This study systematically explored the application of a new multi-gene co-display technology applicable to multi-vaccine research, and the results provide a foundation for the development of novel BDS technologies.


Baculoviridae/genetics , Genetic Vectors/immunology , Vaccines/genetics , Vaccines/immunology , Animals , Antibodies, Viral/blood , Escherichia coli , Gene Expression Regulation, Viral , Genetic Vectors/genetics , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Promoter Regions, Genetic , Sf9 Cells
14.
J Virol ; 96(3): e0161421, 2022 02 09.
Article En | MEDLINE | ID: mdl-34787454

Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.


Bluetongue virus/immunology , Bluetongue/prevention & control , Genetic Vectors/genetics , Vaccinia virus/genetics , Viral Nonstructural Proteins/genetics , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bluetongue virus/classification , Genetic Vectors/immunology , Immunity, Cellular , Immunization , Immunogenicity, Vaccine , Serogroup , Sheep , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccinia virus/immunology , Viral Nonstructural Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
15.
mBio ; 12(6): e0322321, 2021 12 21.
Article En | MEDLINE | ID: mdl-34872353

Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF-) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF- mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response. IMPORTANCE Yersinia pestis, the causative agent of plague, is a Tier-1 select agent and a reemerging human pathogen. A 2017 outbreak in Madagascar with >75% of cases being pneumonic and 8.6% causalities emphasized the importance of the disease. The World Health Organization has indicated an urgent need to develop new-generation subunit and live-attenuated plague vaccines. We have developed a subunit vaccine, including three components (YscF, F1, and LcrV) using an adenovirus platform (Ad5-YFV). In addition, we have deleted virulence genes of Y. pestis (e.g., lpp, msbB, and ail) to develop a live-attenuated vaccine (LMA). Both of these vaccines generated robust humoral and cellular immunity and were highly efficacious in several animal models. We hypothesized the use of a heterologous prime-boost strategy or administrating both vaccines simultaneously could provide an adjuvant- and/or a needle-free vaccine(s) that has attributes of both vaccines for use in regions of endemicity and during an emergency situation.


Adenoviridae/immunology , Antigens, Bacterial/administration & dosage , Plague Vaccine/administration & dosage , Plague/prevention & control , Pneumonia/prevention & control , Vaccines, Attenuated/administration & dosage , Yersinia pestis/immunology , Adenoviridae/genetics , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Mice , Plague/immunology , Plague/microbiology , Plague Vaccine/genetics , Plague Vaccine/immunology , Pneumonia/immunology , Pneumonia/microbiology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yersinia pestis/genetics
16.
Front Immunol ; 12: 753467, 2021.
Article En | MEDLINE | ID: mdl-34777364

Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the "hedgehog") and its human host (the "hare"), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.


Antibodies, Viral/immunology , Dependovirus/immunology , Genetic Therapy , Genetic Vectors/immunology , Adaptive Immunity , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Capsid/drug effects , Capsid/immunology , Clinical Trials as Topic , Dependovirus/classification , Dependovirus/genetics , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Humans , Immune Tolerance , Immunity, Cellular , Immunity, Innate , Immunologic Memory , Lymphocyte Subsets/immunology , Organ Specificity , Serotyping , Transgenes
17.
Nat Commun ; 12(1): 6769, 2021 11 24.
Article En | MEDLINE | ID: mdl-34819506

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


CRISPR-Cas Systems/immunology , Genetic Therapy/adverse effects , Genetic Vectors/immunology , Muscle, Skeletal/immunology , Muscular Dystrophy, Duchenne/therapy , Animals , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Disease Models, Animal , Dogs , Dystrophin/genetics , Dystrophin/immunology , Gene Editing/methods , Genes, Reporter/genetics , Genes, Reporter/immunology , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/immunology
18.
Front Immunol ; 12: 747574, 2021.
Article En | MEDLINE | ID: mdl-34804030

Swine influenza is a highly contagious respiratory disease of pigs caused by influenza A viruses (IAV-S). IAV-S causes significant economic losses to the swine industry and poses challenges to public health given its zoonotic potential. Thus effective IAV-S vaccines are needed and highly desirable and would benefit both animal and human health. Here, we developed two recombinant orf viruses, expressing the hemagglutinin (HA) gene (OV-HA) or the HA and the nucleoprotein (NP) genes of IAV-S (OV-HA-NP). The immunogenicity and protective efficacy of these two recombinant viruses were evaluated in pigs. Both OV-HA and OV-HA-NP recombinants elicited robust virus neutralizing antibody response in pigs, with higher levels of neutralizing antibodies (NA) being detected in OV-HA-NP-immunized animals pre-challenge infection. Although both recombinant viruses elicited IAV-S-specific T-cell responses, the frequency of IAV-S-specific proliferating CD8+ T cells upon re-stimulation was higher in OV-HA-NP-immunized animals than in the OV-HA group. Importantly, IgG1/IgG2 isotype ELISAs revealed that immunization with OV-HA induced Th2-biased immune responses, whereas immunization with OV-HA-NP virus resulted in a Th1-biased immune response. While pigs immunized with either OV-HA or OV-HA-NP were protected when compared to non-immunized controls, immunization with OV-HA-NP resulted in incremental protection against challenge infection as evidenced by a reduced secondary antibody response (NA and HI antibodies) following IAV-S challenge and reduced virus shedding in nasal secretions (lower viral RNA loads and frequency of animals shedding viral RNA and infectious virus), when compared to animals in the OV-HA group. Interestingly, broader cross neutralization activity was also observed in serum of OV-HA-NP-immunized animals against a panel of contemporary IAV-S isolates representing the major genetic clades circulating in swine. This study demonstrates the potential of ORFV-based vector for control of swine influenza virus in swine.


Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Orf virus , Orthomyxoviridae Infections/prevention & control , Vaccines, Synthetic/immunology , Animals , Antibodies, Viral/immunology , Genetic Vectors/immunology , Influenza A virus , Swine
19.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34638863

Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.


Adenoviridae/genetics , Genetic Vectors/genetics , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Adenoviridae/immunology , Animals , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Genetic Vectors/immunology , Humans , Neoplasms/genetics , Neoplasms/immunology , Oncolytic Viruses/immunology , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Virus Replication/genetics , Virus Replication/immunology
20.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article En | MEDLINE | ID: mdl-34639132

Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.


COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/etiology , Thrombosis/etiology , Adenoviridae/immunology , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19 , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Humans , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Spike Glycoprotein, Coronavirus/adverse effects , Thrombocytopenia/immunology , Thrombosis/immunology , Vaccination/adverse effects
...