Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 681
1.
Animal ; 18(4): 101129, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574453

The growth and development of chicken bones have an enormous impact on the health and production performance of chickens. However, the development pattern and genetic regulation of the chicken skeleton are poorly understood. This study aimed to evaluate metatarsal bone growth and development patterns in chickens via non-linear models, and to identify the genetic determinants of metatarsal bone traits using a genome-wide association study (GWAS) based on growth curve parameters. Data on metatarsal length (MeL) and metatarsal circumference (MeC) were obtained from 471 F2 chickens (generated by crossing broiler sires, derived from a line selected for high abdominal fat, with Baier layer dams) at 4, 6, 8, 10, and 12 weeks of age. Four non-linear models (Gompertz, Logistic, von Bertalanffy, and Brody) were used to fit the MeL and MeC growth curves. Subsequently, the estimated growth curve parameters of the mature MeL or MeC (A), time-scale parameter (b), and maturity rate (K) from the non-linear models were utilized as substitutes for the original bone data in GWAS. The Logistic and Brody models displayed the best goodness-of-fit for MeL and MeC, respectively. Single-trait and multi-trait GWASs based on the growth curve parameters of the Logistic and Brody models revealed 4 618 significant single nucleotide polymorphisms (SNPs), annotated to 332 genes, associated with metatarsal bone traits. The majority of these significant SNPs were located on Gallus gallus chromosome (GGA) 1 (167.433-176.318 Mb), GGA2 (96.791-103.543 Mb), GGA4 (65.003-83.104 Mb) and GGA6 (64.685-95.285 Mb). Notably, we identified 12 novel GWAS loci associated with chicken metatarsal bone traits, encompassing 35 candidate genes. In summary, the combination of single-trait and multi-trait GWASs based on growth curve parameters uncovered numerous genomic regions and candidate genes associated with chicken bone traits. The findings benefit an in-depth understanding of the genetic architecture underlying metatarsal growth and development in chickens.


Genome-Wide Association Study , Metatarsal Bones , Animals , Genome-Wide Association Study/veterinary , Chickens/genetics , Quantitative Trait Loci , Phenotype , Genomics , Polymorphism, Single Nucleotide
2.
Genes (Basel) ; 15(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38674346

Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of ß-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.


3-Hydroxybutyric Acid , Genome-Wide Association Study , Lactation , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , 3-Hydroxybutyric Acid/blood , Genome-Wide Association Study/methods , Genome-Wide Association Study/veterinary , Female , Lactation/genetics , Ketosis/veterinary , Ketosis/genetics , Ketosis/blood , Genetic Background , Cattle Diseases/genetics , Cattle Diseases/blood , Genotype
3.
Anim Genet ; 55(3): 465-470, 2024 Jun.
Article En | MEDLINE | ID: mdl-38584305

One of the most important processes that occur during the transformation of muscle to meat is the pH decline as a consequence of the post-mortem metabolism of muscle tissue. Abnormal pH declines lead to pork defects such as pale, soft, and exudative meat. There is genetic variance for ultimate pH and the role of some genes on this phenotype is well established. After conducting a genome-wide association study on ultimate pH using 526 purebred Duroc pigs, we identified associated regions on Sus scrofa chromosomes (SSC) 3, 8, and 15. Functional candidate genes in these regions included PRKAG3 and PHKG1. The SSC8 region, at 71.6 Mb, was novel and, although no candidate causative gene could be identified, it may have regulatory effects. Subsequent analysis on 828 pigs from the same population confirmed the impact of the three associated regions on pH and meat color. We detected no interaction between the three regions. Further investigations are necessary to unravel the functional significance of the novel genomic region at SSC8. These variants could be used as markers in marker-assisted selection for improving meat quality.


Quantitative Trait Loci , Sus scrofa , Animals , Hydrogen-Ion Concentration , Sus scrofa/genetics , Phenotype , Genome-Wide Association Study/veterinary , Color , Polymorphism, Single Nucleotide , Red Meat/analysis , Pork Meat/analysis , Meat/analysis
4.
Anim Genet ; 55(3): 430-439, 2024 Jun.
Article En | MEDLINE | ID: mdl-38594914

Genetic research for the assessment of mastitis and milk production traits simultaneously has a long history. The main issue that arises in this context is the known existence of a positive correlation between the risk of mastitis and lactation performance due to selection. The transcriptome-wide association study (TWAS) approach endeavors to combine the expression quantitative trait loci and genome-wide association study summary statistics to decode complex traits or diseases. Accordingly, we used the farmgtex project results as a complete bovine database for mastitis and milk production. The results of colocalization and TWAS approaches were used for the detection of functional associated candidate genes with milk production and mastitis traits on multiple tissue-based transcriptome records. Also, we used the david database for gene ontology to identify significant terms and associated genes. For the identification of interaction networks, the genemania and string databases were used. Also, the available z-scores in TWAS results were used for the calculation of the correlation between tissues. Therefore, the present results confirm that LYNX1, DGAT1, C14H8orf33, and LY6E were identified as significant genes associated with milk production in eight, six, five, and five tissues, respectively. Also, FBXL6 was detected as a significant gene associated with mastitis trait. CLN3 and ZNF34 genes emerged via both the colocalization and TWAS approaches as significant genes for milk production trait. It is expected that TWAS and colocalization can improve our perception of the potential health status control mechanism in high-yielding dairy cows.


Lactation , Mastitis, Bovine , Milk , Quantitative Trait Loci , Transcriptome , Animals , Mastitis, Bovine/genetics , Cattle/genetics , Female , Lactation/genetics , Milk/metabolism , Genome-Wide Association Study/veterinary
5.
Anim Genet ; 55(3): 480-483, 2024 Jun.
Article En | MEDLINE | ID: mdl-38605544

Qingyuan partridge chicken is a renowned indigenous yellow broiler breed in China. Egg production traits are important economic traits for chickens. With the decreasing cost of whole genome resequencing, identifying candidate genes with more precision has become possible. In order to identify molecular markers and candidate genes associated with egg production traits, we conducted genome-wide association studies based on the resequencing data of 287 female Qingyuan partridge chickens. For each hen, age at first egg and egg laying rate were recorded and calculated, respectively. With a univariate linear mixed model, we detected one genome-wide significant single nucleotide polymorphism (SNP) and three chromosome-wide significant SNPs associated with egg laying rate. MTA2 is highly likely to be a functional gene for egg laying rate. Our study identifies MTA2 as the first time to be associated with egg laying rate. Findings in our study will advance our understanding of the genetic basis of egg production and have the potential to improve the efficiency of genomic selection in chickens.


Chickens , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Chickens/physiology , Female , Genome-Wide Association Study/veterinary , China
6.
Anim Genet ; 55(3): 471-474, 2024 Jun.
Article En | MEDLINE | ID: mdl-38618678

This work aimed to identify markers and candidate genes underlying porcine digestive traits. In total, 331 pigs were genotyped by 80 K Chip data or 50 K Chip data. For apparent neutral detergent fiber digestibility, a total of 19 and 21 candidate single nucleotide polymorphisms (SNP) were respectively identified using a genome-wide efficient mixed-model association algorithm and linkage-disequilibrium adjusted kinship. Among them, three quantitative trait locus (QTL) regions were identified. For apparent acid detergent fiber digestibility, a total of 16 and 17 SNPs were identified by these two methods, respectively. Of these, three QTL regions were also identified. Moreover, two candidate genes (MST1 and LATS1), which are functionally related to intestinal homeostasis and health, were detected near these significant SNPs. Taken together, our results could provide a basis for deeper research on digestive traits in pigs.


Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sus scrofa , Animals , Sus scrofa/genetics , Genome-Wide Association Study/veterinary , Digestion/genetics , Linkage Disequilibrium , Genotype
7.
Vet Med Sci ; 10(3): e1444, 2024 05.
Article En | MEDLINE | ID: mdl-38581306

BACKGROUND: Genome-wide association studies (GWAS) is a useful tool for the detection of disease or quantitative trait-related genetic variations in the veterinary field. For a binary trait, a case/control experiment is designed in GWAS. However, there is limited information on the optimal case/control and sample size in GWAS. OBJECTIVES: In this study, it was aimed to detect the effects of case/control ratio and sample size for GWAS using computer simulation under certain assumptions. METHOD: Using the PLINK software, we simulated three different disease scenarios. In scenario 1, we simulated 10 different case/control ratios with increasing ratio of cases to controls. In scenario 2, we did versa of scenario 1 with the increasing ratio of controls to cases. In scenarios 1 and 2, sample size gradually was increased with the change case/control ratios. In scenario 3, the total sample size was fixed to 2000 to see real effects of case/control ratio on the number of disease-related single nucleotide polymorphisms (SNPs). RESULTS: The results showed that the number of disease-related SNPs were the highest when the case/control ratio is close to 1:1 in scenarios 1 and 2 and did not change with an increase in sample size. Similarly, the number of disease-related SNPs was the highest in case/control ratios 1:1 in scenario 3. However, unbalanced case/control ratio caused the detection of lower number of disease-related SNPs in scenario 3. The estimated average power of SNPs was highest when case/control ratio is 1:1 in all scenarios. CONCLUSIONS: All findings led to the conclusion that an increase in sample size may enhance the statistical power of GWAS when the number of cases is small. In addition, case/control ratio 1:1 may be the optimal ratio for GWAS. These findings may be valuable not only for veterinary field but also for human clinical experiments.


Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Animals , Genome-Wide Association Study/veterinary , Genome-Wide Association Study/methods , Computer Simulation , Sample Size , Phenotype
8.
Zool Res ; 45(2): 329-340, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38485503

The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.


Anthozoa , Bass , Humans , Animals , Phylogeny , Genome-Wide Association Study/veterinary , Genome
9.
Poult Sci ; 103(5): 103613, 2024 May.
Article En | MEDLINE | ID: mdl-38492250

Egg weight (EW) and age at first egg (AFE) are economically important traits in breeder chicken production. The genetic basis of these traits, however, is far from understood, especially for broiler breeders. In this study, genetic parameter estimation, genome-wide association analysis, meta-analysis, and selective sweep analysis were carried out to identify genetic loci associated with EW and AFE in 6,842 broiler breeders. The study found that the heritability of EW ranged from 0.42 to 0.44, while the heritability of AFE was estimated at 0.33 in the maternal line. Meta-analysis and selective sweep analysis identified two colocalized regions on GGA4 that significantly influenced EW at 32 wk (EW32W) and at 43 wk (EW43W) with both paternal and maternal lines. The genes AR, YIPF6, and STARD8 were located within the significant region (GGA4: 366.86-575.50 kb), potentially affecting EW through the regulation of follicle development, cell proliferation, and lipid transfer etc. The promising genes LCORL and NCAPG were positioned within the significant region (GGA4:75.35-75.42 Mb), potentially influencing EW through pleiotropic effects on growth and development. Additionally, 3 significant regions were associated with AFE on chromosomes GGA7, GGA19, and GGA27. All of these factors affected the AFE by influencing ovarian development. In our study, the genomic information from both paternal and maternal lines was used to identify genetic regions associated with EW and AFE. Two genomic regions and eight genes were identified as the most likely candidates affecting EW and AFE. These findings contribute to a better understanding of the genetic basis of egg production traits in broiler breeders and provide new insights into future technology development.


Chickens , Genome-Wide Association Study , Ovum , Animals , Chickens/genetics , Chickens/physiology , Chickens/growth & development , Female , Genome-Wide Association Study/veterinary , Ovum/physiology , Genetic Loci , Quantitative Trait Loci , Male
10.
Poult Sci ; 103(5): 103575, 2024 May.
Article En | MEDLINE | ID: mdl-38447311

The cage-rearing model of the modern poultry industry makes the bones of birds, especially egg-laying birds, more vulnerable to fracture, which poses serious damage to the health of birds. Research confirms that genetic material plays an important role in regulating bone growth, development, and remodeling. However, the genetic architecture underlying bone traits is not well understood. The objectives of this study are to identify valuable genes and genetic markers through a genome-wide association study (GWAS) for breeding to improve the duck bone quality. First, we quantified the tibia and femur quality traits of 260 laying ducks. Based on GWAS, a total of 75 SNP loci significantly associated with bone quality traits were identified, and 67 potential candidate genes were annotated. According to gene function analysis, genes P4HA2, WNT3A, and BST1 et al may influence bone quality by regulating bone cell activity, calcium and phosphate metabolism, or bone collagen maturation and cross-linking. Meanwhile, combined with the transcriptome results, we found that HOXB cluster genes are also important in bone growth and development. Therefore, our findings were helpful in further understanding the genetic architecture of the duck bone quality and provided a worthy theoretical basis and technological support to improve duck bone quality by breeding.


Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Ducks/physiology , Ducks/growth & development , Genome-Wide Association Study/veterinary , Female , Femur/physiology , Tibia/physiology , Polymorphism, Single Nucleotide
11.
Poult Sci ; 103(5): 103590, 2024 May.
Article En | MEDLINE | ID: mdl-38457991

Histidine-containing dipeptides (HCDs), such as anserine and carnosine, are enormously beneficial to human health and contribute to the meat flavor in chickens. Meat quality traits, including flavor, are polygenic traits with medium to high heritability. Polygenic traits can be improved through a better understanding of their genetic mechanisms. Genome-wide association studies (GWAS) constitute an effective genomic tool to identify the significant single-nucleotide polymorphisms (SNPs) and potential candidate genes related to various traits of interest in chickens. This study identified potential candidate genes influencing the anserine and carnosine contents in chicken meat through GWAS. We performed GWAS of anserine and carnosine using the Illumina chicken 60K SNP chip (Illumina Inc., San Diego, CA) in 637 Korean native chicken-red-brown line (KNC-R) birds consisting of 228 males and 409 females. The contents of anserine and carnosine in breast meat of KNC-R chickens were investigated. The mean value of the anserine and carnosine are 29.12 mM/g and 10.69 mM/g respectively. The genomic heritabilities were moderate (0.24) for anserine and high (0.43) for carnosine contents. Four and nine SNPs were significantly (P < 0.05) associated with anserine and carnosine, respectively. Based on the GWAS result, the 30.6 to 31.9 Mb region on chicken chromosome 7 was commonly associated with both anserine and carnosine. Through the functional annotation analysis, we identified HNMT and HNMT-like genes as potential candidate genes associated with both anserine and carnosine. The results presented here will contribute to the ongoing improvement of meat quality to satisfy current consumer demands, which are based on healthier, better-flavored, and higher-quality chicken meat.


Anserine , Carnosine , Chickens , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Carnosine/metabolism , Carnosine/analysis , Carnosine/genetics , Chickens/genetics , Republic of Korea , Genome-Wide Association Study/veterinary , Anserine/analysis , Anserine/metabolism , Male , Female , Pectoralis Muscles/chemistry , Pectoralis Muscles/metabolism , Meat/analysis , Avian Proteins/genetics , Avian Proteins/metabolism
12.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38330300

Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.


Leg weakness, a highly prevalent health condition in pig breeding farms, adversely affects the lifespan of breeding pigs. The augmentation of cannon bone circumference (CBC) and bone mineral density (BMD), which are objective measures of limb strength in pigs, can effectively alleviate leg weakness. To identify candidate genes regulating CBC and BMD in pigs, this study performed single-trait genome-wide association studies and multi-trait meta-analysis on all individuals with phenotype data. Additionally, the confidence intervals of quantitative trait locus (QTL) were determined using Bayesian methods. Four CBC-associated QTLs and one BMD-associated QTL were identified. Additionally, one potential pleiotropic QTL associated with both CBC and rear limb metatarsal area BMD (raBMD) was identified. This study demonstrated that DDX42, MYSM1, FTSJ3, and MECOM were candidate genes regulating forelimb CBC, while SMURF2 and STC1 were candidate genes regulating rear limb CBC. Additionally, RGMA was demonstrated to regulate raBMD, while RAMP1 was identified as a potential pleiotropic gene regulating both CBC and raBMD. The findings of this study provide valuable insights into the genetic mechanisms underlying limb growth and bone mineral accumulation.


Bone Density , Genome-Wide Association Study , Swine/genetics , Male , Animals , Bone Density/genetics , Genome-Wide Association Study/veterinary , Bayes Theorem , Genetic Pleiotropy , Quantitative Trait Loci , Phenotype , Polymorphism, Single Nucleotide
13.
Vet Microbiol ; 290: 109995, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301451

Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.


Pasteurellaceae , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study/veterinary , Chickens/microbiology , Tetracycline , Poultry/genetics , Tetracycline Resistance/genetics , Genomics , Poultry Diseases/microbiology
14.
Poult Sci ; 103(4): 103458, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350384

The industry of egg-type chicken has shown a trend of extending the rearing period, with the goal of breeding chicken breeds capable of producing 500 qualified eggs by 700 d of age. However, the rapid decline in eggshell quality during the late laying period is one of the major challenges. In this study, a total of 3,261 Rhode Island Red chickens were used to measure eggshell quality traits including eggshell strength (ESS), eggshell thickness (EST), eggshell color (ESC) and eggshell gloss (ESG) at seven age points ranging from 36 to 90 wk of age. Phenotypic variations increased with the aging process, especially during the late laying period (> 55 wk), and the heritability during this period decreased by 22.7 to 81.4% compared to the initial and peak laying periods. Then we performed genome-wide association study (GWAS) to identify the genomic variants that associated with eggshell quality, with a custom Illumina 50K BeadChip, named PhenoixChip-I. The results indicated that 2 genomic regions on GGA1(23.24-25.15Mb; 175.95-176.05 Mb) were significantly (P < 4.48E-06) or suggestively (P < 8.97E-05) associated with ESS, which can explain 9.59% and 0.48% of the phenotypic variations of ESS46 and ESS36, respectively. Three genes, FRY, PCNX2, and ENSGALG00000052468, were considered to be the candidate genes for ESS. For other traits, the genome-wide suggestive SNPs were identified at each age point, exhibiting a certain trend with aging process. Additionally, SNP enrichment analysis and functional annotation of cross-tissue regulatory elements to ESS36 revealed a high concentration of enhancer elements specific to shell gland and kidney tissues. This study, deepened our knowledge of eggshells and laying a valued scientific foundation for chicken molecular breeding.


Chickens , Genome-Wide Association Study , Animals , Genome-Wide Association Study/veterinary , Chickens/genetics , Egg Shell , Ovum , Phenotype
15.
Poult Sci ; 103(4): 103515, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350390

The skeleton is a vital organ providing structural support in poultry. Weakness in bone structure can lead to deformities, osteoporosis, cage fatigue, and fractures, resulting in economic losses. Research has substantiated that genetic factors play a significant role in influencing bone quality. The discovery of genetic markers associated with bone quality holds paramount importance for enhancing genetic traits related to the skeletal system in poultry. This study analyzed nine phenotypic indicators of tibia quality in 120-day-old ducks. The phenotypic correlation revealed a high correlation among diameter, Perimeter, and weight (0.69-0.78), and a strong correlation was observed between toughness and breaking strength (0.62). Then, we conducted a genome-wide association analysis of the phenotypic indicators to elucidate the genetic basis of tibial quality in Nonghua ducks. Among the 11 candidate genes that were annotated, TAPT1, BST1, and STIM2 were related to the diameter indicator, ZNF652, IGF2BP1, CASK, and GREB1L were associated with the weight and toughness indicators. RFX8, GLP1R, and DNAAF5 were identified for ash, calcium, and phosphorus content, respectively. Finally, KEGG and GO analysis for annotated genes were performed. STIM2 and BST1 were enriched into the Calcium signalling pathway and Niacin and nicotinamide metabolic pathway, which may be key candidate genes affecting bone quality phenotypes. Gene expression analysis of the candidate genes, such as STIM2, BST1, TAPT1, and CASK showed higher expression levels in bones compared to other tissues. The obtained results can contribute to new insights into tibial quality and provide new genetic biomarkers that can be employed in duck breeding.


Calcium , Ducks , Animals , Ducks/genetics , Ducks/metabolism , Calcium/metabolism , Genome-Wide Association Study/veterinary , Tibia/metabolism , Chickens/genetics
16.
Theriogenology ; 218: 119-125, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38325148

Over the last few decades, there has been a constant increase in sow litter size, the consequences of which include parturition duration extension, an increase in the percentage of stillborn and hypoxic piglets, and increased variation in piglet birth weight, which reduces their vitality. As such, it seems clear that further increasing sow fertility will generate difficulties and costs in rearing numerous litters with low birth weights. Therefore, the current study aimed to analyze the genetic background of sow hyperprolifcacy using a genome-wide association study (GWAS). The research included 144 sows in the maternal component, divided into two equal groups. The first group (control) consisted of females giving birth to the optimal number of piglets in their third and fourth litters (14-16), while the second group (cases) included those with excessive litter size (>16). The analyzed sows were genotyped using Illumina's PorcineSNP60v2 BeadChip microarray, comprising 64,232 single nucleotide polymorphisms (SNPs). Statistical analysis using R included quality control of genotyping data and GWAS analysis based on five logistic regression models (dominant, codominant, overdominant, recessive, and log-additive) with a single SNP marker as the explanatory variable. On this basis, one SNP (SIRI0000069) was identified on chromosome seven within the EFCAB11 (EF-hand calcium binding domain 11) gene that had a statistically significant effect on sow hyperprolificacy. Additionally, ten SNPs (INRA0007631, ALGA0011600, ALGA0043433, ALGA0043428, M1GA0010535 ALGA00443338, ALGA0087116, MARC0056787, ALGA0112928, and ALGA0089047) had a relationship with the analyzed feature at a level close to significance, set at 1-5. These SNPs appear important since they are located on chromosomes on which a large number of quantitative trait loci (QTLs) and SNPs associated with reproductive characteristics, including litter size, have been identified.


Genome-Wide Association Study , Swine Diseases , Animals , Swine/genetics , Pregnancy , Female , Litter Size/genetics , Genome-Wide Association Study/veterinary , Reproduction/genetics , Birth Weight , Stillbirth/veterinary , Lactation
17.
Theriogenology ; 218: 214-222, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38350227

Calving interval (CI) measures the number of days between two consecutive calves of the same cow, and previous studies based on phenotype and pedigree data reported low heritability for this trait. However, the genetic architecture of CI in the Nellore breed was not evaluated based on genomic data. Thus, this study aimed to estimate the heritability based on genomic data and carry out a genome-wide association study (GWAS) for CI in the Nellore breed, using 12,599 pedigree records, 5078 CI records, and 3818 animals genotyped with 50k SNPchip panel. Both quality control and GWAS were performed in BLUPF90 family packages, which use the single-step genomic best linear unbiased predictor (ssGBLUP) method. The average CI was 427.6 days, with a standard deviation of 106.9 and a total range of 270-730 days. The heritability estimate was 0.04 ± 0.04. The p-values of GWAS analysis resulted in a genomic inflation factor (lambda) of 1.08. The only significant SNP (rs136725686) at the genome-wide level (p-value = 1.53E-06) was located on BTA13. Other 19 SNPs were significant at the chromosome-wide level, distributed on BTA1, 2, 3, 6, 10, 13, 14, 17, 18, 22, and 26. Functional annotation analysis found thirty-six protein-coding genes, including genes related to cell cycle (RAD21, BCAR3), oocyte function (LHX8, CLPX, UTP23), immune system (TXK, TEC, NFATC2), endocrine function (LRRFIP2, GPR158), estrous cycle (SLC38A7), and female fertility (CCK, LYZL4, TRAK1, FOXP1, STAC). Therefore, CI is a complex trait with small heritability in Nellore cattle, and various biological processes may be involved with the genetic architecture of CI in Nellore cattle.


Genome-Wide Association Study , Genome , Cattle/genetics , Animals , Female , Genome-Wide Association Study/veterinary , Genotype , Phenotype , Genomics , Polymorphism, Single Nucleotide
18.
Anim Genet ; 55(3): 387-395, 2024 Jun.
Article En | MEDLINE | ID: mdl-38343028

Post-weaning diarrhea in pigs is a considerable challenge in the pig farming industry due to its effect on animal welfare and production costs, as well as the large volume of antibiotics, which are used to treat diarrhea in pigs after weaning. Previous studies have revealed loci on SSC6 and SSC13 associated with susceptibility to specific diarrhea causing pathogens. This study aimed to identify new genetic loci for resistance to diarrhea based on phenotypic data. In depth clinical characterization of diarrhea was performed in 257 pigs belonging to two herds during the first 14 days post weaning. The daily diarrhea assessments were used for the classification of pigs into case and control groups. Pigs were assigned to case and control groups based only on the incidence of diarrhea in the second week of the study in order to differentiate between differences in etiology. Genome-wide association studies and metabolomics association analysis were performed in order to identify new biological determinants for diarrhea susceptibility. With the present work, we revealed a new locus for diarrhea resistance on SSC16. Furthermore, studies of metabolomics in the same pigs revealed one metabolite associated with diarrhea.


Diarrhea , Swine Diseases , Weaning , Animals , Diarrhea/veterinary , Diarrhea/genetics , Swine Diseases/genetics , Genome-Wide Association Study/veterinary , Swine/genetics , Sus scrofa/genetics , Disease Resistance/genetics , Metabolomics
19.
Anim Genet ; 55(3): 396-403, 2024 Jun.
Article En | MEDLINE | ID: mdl-38380686

Pig carpal glands play crucial roles in territorial recognition, reproductive behavior, and information exchange; however, their effects on production traits and underlying genetic mechanisms remain unclear. In this study, 1028 pigs from six populations were counted for the carpal gland diverticular numbers (CGDNs) on the left (CGDNL) and right (CGDNR) legs, and their carcass and meat quality traits were assessed. The CGDNs were significantly different among the populations, and Licha Black pigs had a lower CGDN than the Bama Xiang breed. It was also significantly different between sexes, with males having more diverticula than females (p ≤ 0.0391). Moreover, the number was asymmetric, with CGDNR being significantly higher than CGDNL. Notably, CGDNs was significantly correlated with each other in phenotype and genetics and with 24-h pH, 24-h meat color score, 24-h marbling score, fat content, moisture content, sodium salt content, and saturated fatty acid content in phenotype. Furthermore, genome-wide association analyses identified seven SNPs in association with CGDNs at a 5% genome-wide significance level, all of which were located in a 1.78-Mb (35.347-37.129 Mb) region on chromosome 1. CNC10010837 and CNC10010840 were the top SNPs: both had an additive effect of 0.789 ± 0.120 on CGDNR with p = 8.31E-10. These findings provide important insights into the functions and underlying genetic mechanisms of swine carpal glands.


Phenotype , Polymorphism, Single Nucleotide , Sus scrofa , Animals , Sus scrofa/genetics , Female , Male , Genome-Wide Association Study/veterinary
20.
Br Poult Sci ; 65(1): 8-18, 2024 Feb.
Article En | MEDLINE | ID: mdl-38284741

1. Laying performance is an important economic trait in poultry. The blood is essential in transporting nutrients to the yolk and albumen and is necessary for egg formation.2. This study calculated the phenotypic relationships of duck egg quality, egg production efficiency and 22 serum parameters in the egg-laying stage. Using a variety of methodologies, a genome-wide association study (GWAS) was carried out to uncover the genetic foundations of the 22 serum biochemical markers of laying ducks.3. Spearman correlation coefficients between the egg production (226-329 per day) and the serum parameters were all weak, being less than 0.3. This analysis was done on 22 serum parameters, with total protein (TP), total triglycerides (TG), calcium (Ca) and phosphorous (P) having the highest correlation coefficients (r = 0.56-0.88). The coefficients for blood markers, such as total cholesterol (CHOL), total bilirubin (TBIL), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) varied from 0.70-0.94.4. Based on single-marker single-trait genome-wide analyses by a mixed linear model program of EMMAX, nine candidate genes were associated with enzyme traits (AST/ALT aspartate transaminase/glutamic-pyruvic transaminase, creatine kinase) and 19 candidate genes were associated with metabolism and protein-related serum parameters (glucose, total bile acid, uric acid (UA), albumin (ALB).5. The mvLMM (multivariate linear mixed model) of GEMMA software was used to carry out multiple trait integrated GWAS. Two candidate genes were found in the TP-TG-CA-P analysis and seven candidate genes in the CHOL_LDL-C_HDL-C_TBIL study. There was a high genetic correlation between the two groups.


Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Genome-Wide Association Study/veterinary , Cholesterol, LDL , Chickens , Albumins , Aspartate Aminotransferases , Cholesterol, HDL
...