Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
PLoS One ; 19(7): e0304684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985698

RESUMEN

To effectively remove Diazinon (DZ), Amoxicillin (AMX), and Crystal Violet (CV) from aquatic environments, a novel granular activated carbon (GAC) modified with Polyethylene glycol 600 (PEG) was created and manufactured. The chemical properties were investigated using a variety of characteristic analyses, including FT-IR, XRD, FESEM, and N2 adsorption/desorption. The effectiveness of GAC-PEG's adsorption for the removal of DZ, AMX, and CV was assessed under a variety of conditions, including a pH of 4-9 for the solution, 0.003-0.05 g doses of adsorbent, 50-400 ppm starting concentration, and a reaction time of 5-25 min. For DZ, AMX, and CV adsorption, the maximum adsorption capacity (Qmax) was 1163.933, 1163.100, and 1150.300 mg g-1, respectively. The Langmuir isotherm described all of the data from these adsorption experiments, and the pseudo-second-order well explains all-adsorption kinetics. Most contacts between molecules, electrostatic interactions, π-π interactions, hydrogen bonding, and entrapment in the modified CAG network were used to carry out the DZ, AMX, and CV adsorption on the GAC-PEG. The retrievability of the prepared adsorbent was successfully investigated in studies up to two cycles without loss of adsorption efficiency, and it was shown that it can be efficiently separated.


Asunto(s)
Carbón Orgánico , Polietilenglicoles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Polietilenglicoles/química , Aguas Residuales/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Carbón Orgánico/química , Purificación del Agua/métodos , Amoxicilina/química , Concentración de Iones de Hidrógeno , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
2.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065013

RESUMEN

Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid-liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal.


Asunto(s)
Carbón Orgánico , Frutas , Violeta de Genciana , Carbón Orgánico/química , Adsorción , Frutas/química , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Cinética , Colorantes/química , Colorantes/aislamiento & purificación , Temperatura , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
3.
Environ Monit Assess ; 196(8): 728, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997474

RESUMEN

This study investigates the potential of using Ficus religiosa inflorescence (peepal tree) as an efficient solution for removing crystal violet from simulated and industrial wastewater. Various analyses were conducted to understand the adsorbent's structure, including particle morphology, BET surface area, FTIR, and pHZPC. The adsorption process was studied under different physicochemical factors such as temperature, concentration, contact time, and pH. Results revealed rapid adsorption, with 94.15% removal efficiency within the first 15 min at neutral pH. The highest observed adsorption capacity was 198.03 mg g-1, following pseudo-second-order kinetics (R2 = 0.99), indicating chemisorption. The Langmuir model accurately described the adsorption pathway (R2 = 0.99), showing monolayer adsorption. Thermodynamic analysis indicated an exothermic, feasible, and spontaneous process with increased entropy. The adsorbent could be easily regenerated using a 1:1 MeOH/H2O mixture for up to three cycles, yielding up to 73.86%. Real-time application with industrial effluent containing crystal violet showed up to 44.70% adsorption. The experiments demonstrated reliability with evaluated standard deviations (0.017935-0.000577) and relative standard deviations (0.439-0.673%), confirming statistical reliability. In conclusion, it presents a sustainable and eco-friendly approach for removing crystal violet dye from diverse wastewater sources.


Asunto(s)
Ficus , Violeta de Genciana , Contaminantes Químicos del Agua , Ficus/química , Violeta de Genciana/química , Contaminantes Químicos del Agua/análisis , Adsorción , Aguas Residuales/química , Inflorescencia/química , Eliminación de Residuos Líquidos/métodos , Cinética , Polvos , Termodinámica
4.
J Microbiol Methods ; 223: 106976, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925440

RESUMEN

Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Colorantes , Oryza , Oryza/microbiología , Colorantes/metabolismo , Colorantes/química , Reactores Biológicos/microbiología , Lacasa/metabolismo , Biomasa , Violeta de Genciana/metabolismo , Violeta de Genciana/química , Trametes/metabolismo , Trametes/enzimología , Micelio/metabolismo , Polyporaceae/metabolismo
5.
Biomolecules ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927020

RESUMEN

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Violeta de Genciana , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Humanos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Violeta de Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografía de Emisión de Positrones , Femenino
6.
Int J Biol Macromol ; 275(Pt 1): 133208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889837

RESUMEN

Jatobá-do-cerrado fruit shells, archetypical of lignocellulosic-based biomass, were used as an adsorbent to remove crystal violet (CV) and methylene blue (MB) from water. The adsorbent was characterized using various techniques, and kinetic studies showed dye adsorption followed second-order kinetics. An experimental design investigated the effects of pH and temperature on removal efficiency, with a quadratic model fitting the data best. The results suggest pH influences MB's adsorption capacity more than temperature and at 25 °C and pH 8, MB had a desirability value of 0.89, with 95 % removal efficiency. For CV, temperature had a greater influence, with a desirability value of 0.874 at 25 °C and pH 10, and 95 % removal efficiency. Adsorption isotherm studies revealed maximum adsorption capacities of 123.0 mg·g-1 and 113.0 mg·g-1 for CV and MB, respectively. Experimental thermodynamic parameters indicated an endothermic and spontaneous process which it was supported by quantum chemistry calculations. The protocols developed confirmed the potential for adsorbing CV and MB dyes in water, achieving over 73.1 and 74.4 mg g-1 dyes removal.


Asunto(s)
Biomasa , Colorantes , Lignina , Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Lignina/química , Colorantes/química , Colorantes/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Azul de Metileno/aislamiento & purificación , Temperatura , Purificación del Agua/métodos , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Termodinámica , Teoría Funcional de la Densidad
7.
Environ Res ; 258: 119428, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897437

RESUMEN

Cationic synthetic dyes are one of the hazards in aqueous solutions that can affect the health of humans and living organisms. In the current work, polyacrylamide (PAM)-g-gelatin hydrogel and modified PAM-g-gelatin hydrogel using activated carbon of Luffa cylindrica (ACL) and ACL/Mg-Fe LDH were applied to eliminate crystal violet (CV), a cationic dye, from water media. The hydrogels were synthesized using free radical polymerization approach, and the hydrogels were characterized using FTIR, XRD, TGA-DTG, BET, SEM, and EDX-Map. The surface area of ACL, ACL/Mg-Fe LDH, PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH were 99.71, 141.99, 0.74, 1.47, and 1.65 m2/g, respectively, which shows that the presence of ACL and ACL/Mg-Fe LDH improved the area of the hydrogels. The maximum abatement of CV using PAM-g-gelatin (92.81%), PAM-g-gelatin/ACL (95.71%), and PAM-g-gelatin/ACL/Mg-Fe LDH (98.25%) was obtained at pH = 9, temperature 25 °C, 10 mg/L CV, 60 min time, and adsorber dose of 2 g/L (for PAM-g-gelatin) and 1.5 g/L (other samples). The value of thermodynamic factors confirmed that the abatement process is exothermic and spontaneous. The kinetics data followed the pseudo-second kinetic (PSO) model. The Langmuir isotherm model had a more remarkable ability to describe the equilibrium data. The maximum adsorption capacity for PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH was determined 35.45, 39.865, and 44.952 mg/g, respectively. Generally, the studied hydrogels can eliminate dyes from wastewater and be used as effective adsorbers.


Asunto(s)
Resinas Acrílicas , Gelatina , Violeta de Genciana , Hidrogeles , Resinas Acrílicas/química , Gelatina/química , Violeta de Genciana/química , Hidrogeles/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Colorantes/química , Adsorción
8.
Environ Monit Assess ; 196(6): 569, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777943

RESUMEN

Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.


Asunto(s)
Compuestos de Anilina , Compuestos Férricos , Violeta de Genciana , Nanocompuestos , Contaminantes Químicos del Agua , Zinc , Compuestos de Anilina/química , Violeta de Genciana/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Zinc/química , Adsorción , Eliminación de Residuos Líquidos/métodos , Cinética , Purificación del Agua/métodos
9.
Int J Biol Macromol ; 271(Pt 2): 132638, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797296

RESUMEN

In the study, a novel chitosan biopolymer and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (IL)-incorporated sulfonated poly (ether ether ketone) (SPEEK) composite (Ch-IL@SPEEK) was prepared for adsorption of cationic crystal violet (CV) dye. The proposed composite was well characterized by several techniques. CV adsorption performance was examined via batch studies by varying various variables involving adsorbent dosage, contact time pH and temperature. The isotherm results were demonstrated the adsorption characters of the processes were Langmuirian. The maximum adsorption capacity was determined as 77.66 mg g-1 for the composite which was significantly higher than SPEEK (qmax = 45.36 mg g-1). The determined equilibrium time of the operated system was 360 min and the kinetic model was assessed as Elovich. At low pHs the protonated surface groups repelled the positively charged CV and the adsorption rate increased with increasing pH. The process is spontaneous and favorable as it proceeds via endothermic interactions. Furthermore, even at the end of 5 successful adsorption cycles, 77.86 % CV removal was obtained. Remarkable efficiencies were also achieved in the removal performance of different organic pollutants. Based on the reported results, Ch-IL@SPEEK composite were exhibited as an impressive adsorbent material for adsorption processes.


Asunto(s)
Quitosano , Violeta de Genciana , Líquidos Iónicos , Contaminantes Químicos del Agua , Quitosano/química , Líquidos Iónicos/química , Violeta de Genciana/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Colorantes/química , Colorantes/aislamiento & purificación , Purificación del Agua/métodos , Polímeros/química , Polietilenglicoles/química
10.
Luminescence ; 39(5): e4778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772865

RESUMEN

To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 µmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.


Asunto(s)
Biomasa , Carbono , Colorantes Fluorescentes , Violeta de Genciana , Microondas , Puntos Cuánticos , Violeta de Genciana/química , Carbono/química , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia , Fluorescencia , Polietilenglicoles/química
11.
Environ Pollut ; 350: 124037, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677457

RESUMEN

Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.


Asunto(s)
Violeta de Genciana , Aguas Residuales , Contaminantes Químicos del Agua , Violeta de Genciana/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Colorantes/química , Peróxidos/química , Eliminación de Residuos Líquidos/métodos , Descoloración del Agua/métodos , Electrones , Cinética
12.
Int J Biol Macromol ; 266(Pt 1): 131158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552682

RESUMEN

Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.


Asunto(s)
Quitosano , Doxorrubicina , Violeta de Genciana , Niobio , Quitosano/química , Doxorrubicina/química , Adsorción , Niobio/química , Violeta de Genciana/química , Concentración de Iones de Hidrógeno , Carbón Orgánico/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Teoría Funcional de la Densidad , Óxidos/química , Agua/química , Soluciones , Purificación del Agua/métodos
13.
J Chromatogr A ; 1720: 464781, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471297

RESUMEN

Taking the thiazide cationic dye methylene blue (MB), triphenylmethane cationic dye crystal violet (CV), monoazo cationic dye cationic red 46 (R-46), and polycarboxycyanine cationic dye cationic rosé FG (P-FG) as the research objects, the adsorption behaviors of a self-made corn straw modified adsorbent HQ-DTPA-I for the dyes were investigated in depth. Under optimized conditions, HQ-DTPA-I can quickly adsorb most dyes within 3 min and reach equilibrium adsorption in 15-20 min. The removal rates of HQ-DTPA-I to MB, CV, R-46 and AP-FG can reach 95.28 %, 99.78 %, 99.28 % and 98.53 %, respectively. It also has good anti-interference ability for common ions present in most actual dye wastewater. For six consecutive adsorption-desorption cycles, the adsorption performance of HQ-DTPA-I can still reach 80.17 %, 81.61 %, 90.77 % and 83.48 % of the initial adsorption capacity, indicating good recovery performance. Based on Gaussian density functional theory to calculate its surface potential energy, it is found that the adsorption mechanism of HQ-DTPA-I for the cationic dyes is mainly due to the electrostatic interaction between the carboxyl groups in ligand DTPA and amino groups in dye molecules.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Colorantes/química , Zea mays , Adsorción , Ligandos , Cationes , Azul de Metileno/química , Violeta de Genciana/química , Ácido Pentético , Contaminantes Químicos del Agua/química , Cinética
14.
Environ Res ; 247: 118193, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220086

RESUMEN

In the presented study, a novel polypyrrole-decorated bentonite magnetic nanocomposite (MBnPPy) was synthesized for efficient removal of both anionic methyl orange (MO) and cationic crystal violet (CV) dyes from contaminated water. The synthesis of this novel adsorbent involved a two-step process: the magnetization of bentonite followed by its modification through in-situ chemical polymerization. The adsorbent was characterized by SEM/EDX, TEM/SAED, BET, TGA/DTA-DTG, FTIR, VSM, and XRD studies. The investigation of the adsorption properties of MBnPPy was focused on optimizing various parameters, such as dye concentration, medium pH, dosage, contact time, and temperature. The optimal conditions were established as follows: dye concentration of Co (CV/MO) at 100 mg/L, MBnPPy dosage at 2.0 g/L, equilibrium time set at 105 min for MO and 120 min for CV, medium pH adjusted to 5.0 for MO dye and 8.0 for CV dye, and a constant temperature of 303.15 K. The different kinetic and isotherm models were applied to fit the experimental results, and it was observed that the Pseudo-2nd-order kinetics and Langmuir adsorption isotherm were the best-fitted models. The maximal monolayer adsorption capacities of the adsorbent were found to be 78.74 mg/g and 98.04 mg/g (at 303.15 K) for CV and MO, respectively. The adsorption process for both dyes was exothermic and spontaneous. Furthermore, a reasonably good regeneration ability of MBnPPy (>83.45%/82.65% for CV/MO) was noted for up to 5 adsorption-desorption cycles with little degradation. The advantages of facile synthesis, cost-effectiveness, non-toxicity, strong adsorption capabilities for both anionic and cationic dyes, and easy separability with an external magnetic field make MBnPPy novel.


Asunto(s)
Compuestos Azo , Nanocompuestos , Contaminantes Químicos del Agua , Colorantes/química , Adsorción , Polímeros , Violeta de Genciana/química , Bentonita/química , Pirroles , Agua/química , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
15.
Int J Phytoremediation ; 26(4): 579-593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37740456

RESUMEN

In this study, bamboo waste (BW) was subjected to pyrolysis-assisted ZnCl2 activation to produce mesoporous activated carbon (BW-AC), which was then evaluated for its ability to remove cationic dyes, specifically methylene blue (MB) and crystal violet (CV), from aqueous environments. The properties of BW-AC were characterized using various techniques, including potentiometric-based point of zero charge (pHpzc), scanning electron microscopy with energy dispersive X-rays (SEM-EDX), X-ray diffraction (XRD), gas adsorption with Brunauer-Emmett-Teller (BET) analysis, infrared (IR) spectroscopy. To optimize the adsorption characteristics (BW-AC dosage, pH, and contact time) of PBW, a Box-Behnken design (BBD) was employed. The BW-AC dose of 0.05 g, solution pH of 10, and time of 8 min are identified as optimal operational conditions for achieving maximum CV (89.8%) and MB (96.3%) adsorption according to the BBD model. The dye removal kinetics for CV and MB are described by the pseudo-second-order model. The dye adsorption isotherms revealed that adsorption of CV and MB onto BW-AC follow the Freundlich model. The maximum dye adsorption capacities (qmax) of BW-AC for CV (530 mg/g) and MB (520 mg/g) are favorable, along with the thermodynamics of the adsorption process, which is characterized as endothermic and spontaneous. The adsorption mechanism of CV and MB dyes by BW-AC was attributed to multiple contributions: hydrogen bonding, electrostatic forces, π-π attraction, and pore filling. The findings of this study highlight the potential of BW-AC as an effective adsorbent in wastewater treatment applications, contributing to the overall goal of mitigating the environmental impact of cationic dyes and ensuring the quality of water resources.


The novelty of this research work comes from the conversion of the bamboo waste (BW) into mesoporous activated carbon (BW-AC) via pyrolysis-assisted ZnCl2 activation for the removal of cationic dyes such as methylene blue (MB) and crystal violet (CV) from aqueous media. The effectiveness of the obtained activated carbon was tested toward removal of two structurally different cationic dyes (CV and MB), where a statistical optimization employing a response surface methodology with Box-Behnken design was applied to optimize dye removal. In addition to determination of the working parameters for dye removal, the adsorption kinetics and thermodynamic parameters for the adsorption process were determined to provide molecular-level insight.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Azul de Metileno/análisis , Carbón Orgánico/química , Violeta de Genciana/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Adsorción , Termodinámica , Cinética , Concentración de Iones de Hidrógeno
16.
Int J Phytoremediation ; 26(5): 699-709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37740478

RESUMEN

A major worldwide challenge that presents significant economic, environmental, and social concerns is the rising generation of food waste. The current work used chicken bones (CB) and rice (R) food waste as alternate precursors for the production of activated carbon (CBRAC) by microwave radiation-assisted ZnCl2 activation. The adsorption characteristics of CBRAC were investigated in depth by removing an organic dye (crystal violet, CV) from an aquatic environment. To establish ideal conditions from the significant adsorption factors (A: CBRAC dosage (0.02-0.12 g/100 mL); B: pH (4-10); and C: duration (30-420), a numerical desirability function of Box-Behnken design (BBD) was utilized. The highest CV decolorization by CBRAC was reported to be 90.06% when the following conditions were met: dose = 0.118 g/100 mL, pH = 9.0, and time = 408 min. Adsorption kinetics revealed that the pseudo-first order (PFO) model best matches the data, whereas the Langmuir model was characterized by equilibrium adsorption, where the adsorption capacity of CBRAC for CV dye was calculated to be 57.9 mg/g. CV adsorption is accomplished by several processes, including electrostatic forces, pore diffusion, π-π stacking, and H-bonding. This study demonstrates the use of CB and R as biomass precursors for the efficient creation of CBRAC and their use in wastewater treatment, resulting in a greener environment.


The novelty of this research work relates to converting food wastes (mixture of chicken bones and rice waste) into activated carbon via microwave assisted ZnCl2 activation. Moreover, the produced activated carbon was successfully applied as a potential adsorbent for removal of a toxic cationic dye; namely, crystal violet (CV) from aqueous environment.


Asunto(s)
Oryza , Eliminación de Residuos , Contaminantes Químicos del Agua , Animales , Alimento Perdido y Desperdiciado , Violeta de Genciana/química , Carbón Orgánico/química , Microondas , Pollos , Alimentos , Biodegradación Ambiental , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
17.
Int J Phytoremediation ; 26(4): 459-471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37583281

RESUMEN

This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.


The first novel aspect of this research work comes from the utilization of food-grade algae which contains various types of negative functional groups hydroxyl, carboxyl, and phosphate to modify a cationic biopolymer (Chitosan) to improve its adsorptive property toward removal of a cationic dye such as methyl violet 2B. The second novel aspect of this research work is to use the hydrothermal process to assist the grafting of an aromatic ring of benzaldehyde into the polymer matrix of the chitosan-food grade algae composite via a Schiff base linkage to improve its chemical stability and functionality.


Asunto(s)
Quitosano , Colorantes de Rosanilina , Contaminantes Químicos del Agua , Colorantes/química , Quitosano/química , Violeta de Genciana/química , Bases de Schiff/química , Benzaldehídos , Concentración de Iones de Hidrógeno , Biodegradación Ambiental , Termodinámica , Adsorción , Cinética , Contaminantes Químicos del Agua/química
18.
Int J Biol Macromol ; 257(Pt 2): 128747, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101668

RESUMEN

In present study, eco-friendly sulfated cellulose-magnetic biocomposite was successfully synthesized with a simple method from hemp biomass. ATR-FTIR was used to determine chemical changes, while FE-SEM-EDS, STEM, XRD, TG/DTA, and BET techniques were employed to identify changes in morphology, elemental composition, crystal structure, and thermal degradation. Moreover, the saturation magnetization and pHpzc values of the MSHB were also determined. The effectiveness of magnetic sulfated hemp biomass (MSHB) was tested in the removal of cationic dyes from wastewater, including methylene blue (MB), crystal violet (CV), and malachite green oxalate (MGO). The adsorption all three dyes to MSHB, the pseudo-second-order kinetic model and the Langmuir model were determined to be more appropriate, and was endothermic and spontaneous from thermodynamic parameters, too. The maximum MSHB adsorption capacities were found to be 457.6, 509.3, and 1300 mg/g for MB, CV, and MGO at 298 K. With increasing temperature, it also drastically increased in capacity. The outstanding property of the MSHB is that it shows high removal performance wide pH range, even after ten cycles its high removal efficiency is still over 96 % for all three dyes and almost unaffected from dense matrix medium. These results demonstrate that MSHB is remarkable adsorbent for removing cationic dyes.


Asunto(s)
Cannabis , Colorantes de Rosanilina , Contaminantes Químicos del Agua , Colorantes/química , Celulosa/química , Sulfatos , Biomasa , Óxido de Magnesio , Adsorción , Cationes/química , Cinética , Violeta de Genciana/química , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
19.
Environ Sci Pollut Res Int ; 31(4): 5568-5581, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38127237

RESUMEN

Water pollution caused by dyes is a pressing environmental challenge due to their persistence and difficulty in degradation. Herein, an anionic adsorbent (HS-PAANa) was synthesized by grafting polyacrylic acid (PAA) onto the agricultural waste-hemp stem (HS). The obtained HS-PAANa adsorbent exhibited rapid adsorption kinetics, high adsorption capacity, and a favorable preference for cationic dyes, such as methylene blue (MB) and crystal violet (CV). The experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm, demonstrating the efficiency of HS-PAANa in dye removal. Notably, the optimal adsorption capacities of HS-PAANa for MB and CV were found to be 1296.65 mg/g and 1451.43 mg/g, respectively. In the cationic/anionic dyes (MB/MO) binary systems, HS-PAANa exhibited enhanced selective adsorption of cationic dyes (MB), indicating its potential for targeted removal of specific dyes from mixed solutions. Moreover, HS-PAANa adsorption shows an excellent recyclability, after five cycles, HS-PAANa still maintained MB and CV removal rates of 93.85% and 95.08%, respectively. Therefore, the bioadsorbent HS-PAANa exhibits high potential as a highly efficient adsorbent for the effective treatment of cationic pollutants in wastewater.


Asunto(s)
Resinas Acrílicas , Cannabis , Contaminantes Químicos del Agua , Colorantes/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Agua/química , Adsorción , Cationes , Azul de Metileno/química , Violeta de Genciana/química , Cinética
20.
Int J Biol Macromol ; 253(Pt 8): 127532, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37875183

RESUMEN

Recently, several researchers have been trying to reduce the ecological effects of water pollution by considering the use of biodegradable materials that prevent the generation of secondary pollution in our environment and enable water reuse. Here, new biodegradable hydrogels based on alginate (Alg), gelatin (Gel) and polypyrrole (PPy) were successfully implemented to remove two known highly toxic cationic dyes from wastewater. The design process was performed in two steps: in-situ polymerization of polypyrrole within the Alg/Gel mixture, followed by hydrogel formation. Biocomposites showed promising efficacy for the removal of both basic red 46 (BR46) and crystal violet (CV) dyes from real and demineralized water samples. However, Alg-Gel-PPy hydrogel showed better selectivity for BR46 than for CV as compared to the pristine Alg-Gel hydrogel. Adsorption of both pollutants on biocomposite hydrogel beads followed the Langmuir isotherm and pseudo-second order kinetic models. Besides, the highest adsorption capacities (125 mg g-1 for BR46 and 88.5 mg g-1 for CV) were obtained for the Alg-Gel-PPy hydrogel, compared with those determined for PPy-free hydrogel (103.09 mg g-1 for BR46 and 86.96 mg g-1 for CV) and remained at a satisfactory level for five adsorption-desorption cycles. Finally, the obtained hydrogels showed excellent biodegradability by natural soil microorganisms, with 91 % decomposition.


Asunto(s)
Polímeros , Contaminantes Químicos del Agua , Polímeros/química , Violeta de Genciana/química , Pirroles/química , Adsorción , Colorantes/química , Biopolímeros , Hidrogeles/química , Agua , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA