Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Mar Drugs ; 22(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38786596

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
2.
Chin J Integr Med ; 29(6): 508-516, 2023 Jun.
Article En | MEDLINE | ID: mdl-36251141

OBJECTIVE: To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis. METHODS: The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells. RESULTS: The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01). CONCLUSION: GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.


Arthritis, Rheumatoid , MicroRNAs , Humans , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Gentisates/pharmacology , Cell Movement/genetics
3.
Article En | WPRIM | ID: wpr-982285

OBJECTIVE@#To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis.@*METHODS@#The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells.@*RESULTS@#The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01).@*CONCLUSION@#GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.


Humans , Cell Proliferation , MicroRNAs/metabolism , Arthritis, Rheumatoid/genetics , Gentisates/pharmacology , Cell Movement/genetics
4.
J Orthop Surg Res ; 17(1): 109, 2022 Feb 20.
Article En | MEDLINE | ID: mdl-35184721

BACKGROUND: RAF and ERK pathways are known to be activated in human rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), which play an important role in the pathogenesis and destruction of RA. Gentisic acid (GA) was a natural product derived from plants, which has been reported can attenuate pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway. Whether GA can inhibit the occurrence and development of RA through RAF/ERK signaling pathway has not been reported. The purpose of this study is to determine whether GA may have a certain therapeutic effect on RA-FLS. METHOD: Bovine type II collagen was used to establish a rat model of rheumatism. Enzyme-linked immunosorbent assay was used to detect inflammatory factors, anti-inflammatory mediators, and rheumatoid factor. Hematoxylin and eosin and TUNEL staining were used to detect the effect of GA on histochemical with rheumatoid arthritis. RAF, ERK, and p-ERK expressions in synovial tissue were measured by western blot and immunohistochemical. Besides, human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A was used to investigate the biological behavior influenced by GA. Apoptosis assay was performed to detect apoptosis of GA on MH7A cells. Transwell invasion assay was performed to detect the ability of cell migration. RESULT: The result showed that GA could reduce joint swelling and inflammation. At the same time, it can also promote the apoptosis of synovial cells and down-regulate the RAF/ERK pathway. CONCLUSION: GA may ameliorate inflammatory factors' abnormality, synovial hyperplasia, and apoptosis of synovium via inhibiting the RAF/ERK signaling pathway.


Arthritis, Rheumatoid/prevention & control , Gentisates/pharmacology , Signal Transduction , Synovial Membrane/metabolism , Synoviocytes/metabolism , Animals , Arthritis, Rheumatoid/pathology , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Fibroblasts/drug effects , MAP Kinase Signaling System , Mice , Rats , Signal Transduction/drug effects
5.
J Microbiol Biotechnol ; 31(8): 1079-1087, 2021 Aug 28.
Article En | MEDLINE | ID: mdl-34226400

Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.


Adipogenesis/drug effects , Anti-Inflammatory Agents/pharmacology , Gentisates/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Survival/drug effects , Coculture Techniques , Cytokines/metabolism , Inflammation/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
6.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article En | MEDLINE | ID: mdl-33572316

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Antioxidants/pharmacology , Gentisates/pharmacology , Homogentisic Acid/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biotechnology/methods , Fungal Proteins/metabolism , Gentisates/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Homogentisic Acid/metabolism , Laccase/metabolism , Melanins/chemistry , Polyporaceae/enzymology
7.
Food Funct ; 12(3): 1262-1270, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33434262

Since obesity occurs when energy intake is higher than energy expenditure, increasing energy expenditure is an effective strategy to prevent or treat obesity. Brown adipose tissue (BAT) is a classic energy-consuming organ whose thermogenesis function can be activated by dietary components. Gentisic acid (2,5-dihydroxybenzoic acid, (DHB)) is widely found in food and exhibits many physiological functions, which include anti-inflammatory, antimicrobial, antioxidant, and hepatoprotective properties. However, its anti-obesity effect and mechanism have yet to be examined. This study investigated the effect and mechanism of DHB in preventing diet-induced obesity in mice from the perspective of energy metabolism. The C57BL/6 mice were fed a normal diet (ND), a high-fat and high-fructose diet (HFFD) or HFFD plus 2 mg mL-1 DHB (DHB + HFFD) for 12 weeks. Measuring obesity, lipid metabolism, energy metabolism and BAT related indicators. Moreover, the C3H10T1/2 cells were used to assess the effect of DHB on brown adipocytes in vitro. The results proved that, at the end of the experiment, the body weight of the mice in the DHB + HFFD group was 14.97% lower than in the HFFD group. DHB reduced the weight of the major organs, improved insulin sensitivity, and decreased systemic lipid accumulation. Moreover, DHB administration significantly increased energy metabolism, which was (partly) due to the activation of BAT thermogenesis. Furthermore, DHB supplementation enhanced the expression of the fatty acid oxidation related proteins in BAT and the brown adipocytes, indicating that DHB augmented the utilization of fatty acids by BAT, which is the primary substance of thermogenesis. This study reveals that DHB administration prevents HFFD induced obesity in mice by (at least partly) accelerating the oxidation of fatty acids and stimulating the thermogenesis of BAT.


Diet, High-Fat/adverse effects , Dietary Sugars/adverse effects , Fructose/administration & dosage , Gentisates/pharmacology , Obesity/chemically induced , Animals , Cell Line , Diet , Dietary Sugars/administration & dosage , Fibroblasts/drug effects , Fructose/adverse effects , Male , Mice , Mice, Inbred C57BL
8.
J Photochem Photobiol B ; 214: 112081, 2021 Jan.
Article En | MEDLINE | ID: mdl-33239223

The objective of this study was to investigate synergistic antibacterial activity based on a combination of UV-A light and three classes of food grade compounds: benzoic acid derivatives, cinnamic acid derivatives, and gallates. By using Escherichia coli O157:H7 as the model strain, it was observed that three cinnamic acid derivatives (ferulic acid, coumaric acid, and caffeic acid) and one benzoic acid derivative (2,5-dihydroxybenzoic acid) presented strong synergistic antibacterial activity with UV-A light radiation, where 1 mM levels of these compounds plus with 15 min of UV-A light (total light dose of 6.1 cm-2) led to more than 7-log CFU mL-1 of bacterial inactivation. In contrast, synergistic antibacterial activity between UV-A light and most benzoic acid derivatives (benzoic acid, gallic acid, vanillic acid, and 2,5-dimethoxybenzoic acid) were only observed after higher concentrations of these compounds were applied (10 mM). Lastly, from the three gallates tested (methyl gallate, ethyl gallate, and propyl gallate), only propyl gallate showed strong antibacterial synergism with UV-A light, where 10 mM of propyl gallate plus 15 min of UV-A light led to approximately 6.5-log of bacterial reduction. Presence of antioxidant compounds mitigated the light-mediated antibacterial activity of gallic acid, 2,5-dihydroxybenzoic acid, and propyl gallate. Similarly, the light-mediated antibacterial activity of these compounds was significantly (P < 0.05) reduced against metabolic-inhibited bacterial cells (sodium azide pretreatment). On the other hand, the antibacterial synergism between ferulic acid and UV-A light was not affected by the presence of antioxidants or the metabolic state of the bacterial cells. Due to the increasing concerns of antimicrobial resistant (AMR) pathogens, the study also investigated the proposed synergistic treatment on AMR Salmonella. Combinations of 1 mM of ferulic acid or 1 mM of 2,5-dihydroxybenzoic acid with UV-A light radiation was able to inactivate more than 6-log of a multi-drug resistant Salmonella Typhimurium strain.


Anti-Bacterial Agents/chemistry , Hydroxybenzoates/chemistry , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Combined Modality Therapy , Coumaric Acids/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Gallic Acid/pharmacology , Gentisates/pharmacology , Hydroxybenzoates/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Structure-Activity Relationship , Ultraviolet Rays
9.
Mar Drugs ; 18(9)2020 Sep 08.
Article En | MEDLINE | ID: mdl-32911774

The strain Aspergillus chevalieri TM2-S6 was isolated from the sponge Axinella and identified according to internal transcribed spacer (ITS) molecular sequence homology with Aspergillus species from the section Restricti. The strain was cultivated 9 days on potato dextrose broth (PDB), and the medium evaluated as antioxidant on primary normal human dermal fibroblasts (NHDF). The cultivation broth was submitted to sterile filtration, lyophilized and used without any further processing to give the Aspergillus chevalieri TM2-S6 cultivation broth ingredient named ACBB. ACCB contains two main compounds: tetrahydroauroglaucin and flavoglaucin. Under oxidative stress, ACCB showed a significant promotion of cell viability. To elucidate the mechanism of action, the impact on a panel of hundreds of genes involved in fibroblast physiology was evaluated. Thus, ACCB stimulates cell proliferation (VEGFA, TGFB3), antioxidant response (GPX1, SOD1, NRF2), and extracellular matrix organization (COL1A1, COL3A1, CD44, MMP14). ACCD also reduced aging (SIRT1, SIRT2, FOXO3). These findings indicate that Aspergillus chevalieri TM2-S6 cultivation broth exhibits significant in vitro skin protection of human fibroblasts under oxidative stress, making it a potential cosmetic ingredient.


Antioxidants/pharmacology , Aspergillus/metabolism , Fibroblasts/drug effects , Gentisates/pharmacology , Oxidative Stress/drug effects , Skin/drug effects , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Axinella/microbiology , Cell Survival/drug effects , Cells, Cultured , Cytoprotection , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Gentisates/chemistry , Gentisates/isolation & purification , Humans , Hydrogen Peroxide/toxicity , Skin/metabolism , Skin/pathology , Skin Aging/drug effects
10.
Int J Med Sci ; 17(5): 626-631, 2020.
Article En | MEDLINE | ID: mdl-32210712

Keratinocyte proliferation is important for skin wound healing. The wound healing process includes blood clotting around the wound, removal of dead cells and pathogens through inflammation, and then re-epithelialization through proliferation and maturation. Proliferation assay was performed on acid natural compounds to identify candidates for natural-derived components of skin injury treatment. We found that gentisic acid promoted high cell proliferation activity compared with other compounds. Gentisic acid improved HaCaT cell proliferation by over 20% in MTT assay. Gentisic acid also had higher healing activity in an in vitro wound healing assay than allantoin as a positive control. Furthermore, we have identified how the treatment of gentisic acid can increase proliferation in the cell. Western blot analysis of proteins in the mitogen-activated protein (MAP) kinase signaling pathway showed that ERK1/2 phosphorylation was increased by gentisic acid treatment. Thus, our study indicates that gentisic acid promotes the proliferation of keratinocyte by phosphorylation of ERK1/2.


Gentisates/pharmacology , Keratinocytes/drug effects , Wound Healing/drug effects , Cell Line , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Extracellular Signal-Regulated MAP Kinases/metabolism , Gentisates/therapeutic use , Humans , Phosphorylation/drug effects
11.
Cells ; 9(2)2020 02 11.
Article En | MEDLINE | ID: mdl-32053908

The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid ß-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Mitochondria/drug effects , Protein Biosynthesis/drug effects , AMP-Activated Protein Kinase Kinases , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Doxycycline/pharmacology , Drug Synergism , Female , Gentisates/chemistry , Gentisates/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Ketoglutarate Dehydrogenase Complex/genetics , Mitochondria/pathology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Oxidative Phosphorylation/drug effects , Protein Kinases/genetics , Ribosomes/drug effects
12.
Curr Radiopharm ; 13(2): 107-119, 2020.
Article En | MEDLINE | ID: mdl-31526356

BACKGROUND: The radiolabelling of receptor-binding peptides for therapy is a challenge since the peptide itself is exposed (during labelling, storage and transport) to radiation-induced damage, directly or indirectly, in aqueous solution. Hence, the use of radiostabilizers seems to be mandatory, especially in peptide molecules that contain radiation-sensitive amino acids. OBJECTIVE: The aim of this study was to investigate the effect of two stabilizers, gentisic acid and methionine, to delve into how each of them affects the radiolabelling and stability of the minigastrin analogue [177Lu]Lu-DOTA-His-His-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 through the analysis of the 22 species distinguished over time by an optimized HPLC system. METHODS: The stabilizers, in different combinations, were present from the beginning of the labelling process carried out at 96 °C for 15 min. The stability was studied for up to 7 days. RESULTS: The unexpected selective oxidation of the methionine residue of the radiolabelled peptide, promoted by gentisic acid, led to studying the effect of pH, from 3.5 to 6.0, in the presence of only this stabilizer. A pH-dependent antioxidant behaviour was revealed, showing a decrease in peptide impurities but an increase in the selective oxidation as the pH was increased. CONCLUSION: The selective oxidation of the methionine residue could be induced by oxidizing species probably produced in the reaction between gentisic acid and free radicals of water, during the protection of the radiolabelled peptide from the attack of these harmful species. Therefore, the addition of methionine becomes necessary to effectively decrease this selective oxidation in the methioninecontaining peptide.


Antioxidants/pharmacology , Gastrins/metabolism , Gentisates/pharmacology , Lutetium , Methionine/metabolism , Oxidants/pharmacology , Radioisotopes , Chromatography, High Pressure Liquid , In Vitro Techniques , Radiopharmaceuticals
13.
Phytother Res ; 34(4): 729-741, 2020 Apr.
Article En | MEDLINE | ID: mdl-31825145

Beneficial therapeutic effects of phenolic acids have been proven in various research projects including in vivo and in vitro studies. Gentisic acid (GA) is a phenolic acid that has been associated with useful effects on human health, such as antiinflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities. It is an important metabolite of aspirin and also widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms. This study was undertaken to review the pharmacological effects, pharmacokinetic properties as well as toxicity and pharmaceutical applications of GA.


Gentisates/pharmacology , Gentisates/toxicity , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspirin/chemistry , Aspirin/metabolism , Fruit/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Hibiscus/chemistry , Humans , Hydroxybenzoates/metabolism , Hydroxybenzoates/pharmacology , Olea/chemistry , Phytotherapy/methods , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Vitis/chemistry
14.
Behav Pharmacol ; 30(8): 627-641, 2019 12.
Article En | MEDLINE | ID: mdl-31703028

Neuropsychiatric disorders place a very high burden on the global health and economy. The efficacies of currently available drugs in the psychiatric armamentarium are suboptimal and almost all of them target several neurotransmitter pathways. But it is more and more recognized that the neuroinflammation and associated oxidative pathways are important players in the etiopathogenesis of psychiatric disorders. In parallel to this new concept, recent investigations indicate that adjunction of acetylsalicylic acid (ASA) to the orthodox psychiatric treatments augments therapeutic efficacy in bipolar disorder and schizophrenia. Gentisic acid is a redox active quinonoid ASA metabolite and an endogenously produced siderophore with much more potent antioxidant effects than its parent compound. Moreover, it harbours molecular features that provide its selective conversion to even more potent anti-inflammatory quinonoid molecules within the inflammatory micromilieu. We believe that ASA alone and its combination with gentisic acid should be studied in animal models of psychiatric disorders to reveal their potential in regard to the augmentation of currently available treatments. If several animal studies prove their potential, clinical trials could easily be conducted, as both ASA and gentisic acid have a relatively high biosafety and a long history of clinical use.


Aspirin/metabolism , Aspirin/pharmacology , Mental Disorders/drug therapy , Anti-Inflammatory Agents , Antioxidants/therapeutic use , Bipolar Disorder/drug therapy , Gentisates/metabolism , Gentisates/pharmacology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Schizophrenia/drug therapy
15.
Colloids Surf B Biointerfaces ; 183: 110422, 2019 Nov 01.
Article En | MEDLINE | ID: mdl-31437609

Multifunctional liposomes incorporating ß-sitosterol were developed for delivery of gentisic acid (GA). The interactions of both compounds with phospholipid bilayer were interpreted viaeffects of different ß-sitosterol content (0, 20 and 50 mol %) and different gentisic acid to lipid ratio (nGA/nlip from 10-5 to 1) on membrane fluidity and thermotropic properties. Multilamellar vesicles of phosphatidylcholines (with size range between 1350 and 1900 nm) effectively encapsulated GA (54%) when nGA/nlip was higher than 0.01. Suppression of lipid peroxidation was directly related to concentration of GA. The resistance to diffusion of gentisic acid from liposomes increased for ˜50% in samples incorporating 50 mol % ß-sitosterol compared to sterol-free liposomes. Finally, simulated in vitro gastrointestinal conditions showed that the release was mainly affected by low pH of simulated gastric fluid and the presence of cholates in simulated intestinal fluid, rather than by enzymes activity.


Gentisates/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Sitosterols/metabolism , Biomimetic Materials/chemistry , Boron Compounds/chemistry , Diffusion , Drug Compounding/methods , Drug Liberation , Fluorescent Dyes/chemistry , Gastric Juice/chemistry , Gentisates/pharmacology , Hydrogen-Ion Concentration , Kinetics , Lipid Peroxidation/drug effects , Membrane Fluidity/drug effects , Sitosterols/chemistry , Structure-Activity Relationship
16.
J Med Food ; 22(11): 1118-1126, 2019 Nov.
Article En | MEDLINE | ID: mdl-31241392

In recent years, natural products gained popularity with their anti-inflammatory and antioxidant effects mediated by chemical compounds within their composition. Study results offering them as palliative therapy options in cancer or as anticancer agents with high levels of cytotoxicity brought a new approach to combine cancer treatment protocols with these products. From a different perspective, edible types of these products are suggested in daily diets due to their potential cancer preventive effects. Our preliminary work was on blueberry extracts (Vaccinium myrtillus) as a main representative of these natural products, and the contents of the extracts were analyzed with liquid chromatography tandem mass spectrometry (LC MS/MS) to reveal the composition and distribution of polyphenolic compounds within. The most abundant polyphenols detected in V. myrtillus extracts were quercetin, kaempferol, and a phenolic acid, gentisic acid (GA). The compounds were further evaluated on treated HCT-116 cells for their potential anticancer effects by measuring total antioxidant status, total oxidant status, and 8-hydroxydeoxyguanosine levels for evaluation of oxidative stress and through protein array analysis and flow cytometric analysis for evaluation of apoptosis. In analysis of oxidative stress parameters, reduced total oxidant levels and reduced oxidative stress index levels were found in cells treated with the compounds in comparison with untreated cells. In apoptosis-related protein profiles, at least twofold reduction in various apoptotic proteins was observed after quercetin and kaempferol treatment, whereas a different profile was observed for GA. Overall, results of this study showed that quercetin and kaempferol have strong cytotoxic, antioxidant, and apoptotic effects, although GA is mostly effective as an antioxidant polyphenol on HCT-116 cells.


Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Blueberry Plants/chemistry , Gentisates/pharmacology , Kaempferols/pharmacology , Oxidative Stress/drug effects , Quercetin/pharmacology , Antioxidants/pharmacology , HCT116 Cells , Humans , Plant Extracts/chemistry
17.
Sci Rep ; 9(1): 3018, 2019 02 28.
Article En | MEDLINE | ID: mdl-30816171

We previously reported that gentisic acid attenuates cardiac hypertrophy and fibrosis in transverse aortic constriction (TAC)-induced cardiac hypertrophy. Here, we examined whether gentisic acid prevents the development of heart failure. Heart failure was induced in mice via chronic TAC. Mice were administered the vehicle, gentisic acid (10 and 100 mg∙kg-1∙day-1), or bisoprolol (0.5 mg∙kg-1∙day-1) orally for 3 weeks, beginning 3 weeks after TAC. After oral administration of gentisic acid (2000 mg∙kg-1), no significant differences in organ weight, histology, or analyzed serum and hematological parameters were observed between female mice in the control and gentisic acid-treated groups. Gentisic acid administration inhibited cardiac dysfunction in a dose-dependent manner, and reduced cardiac hypertrophy and fibrosis, as was revealed via western blotting, quantitative real-time PCR, and Masson's trichrome staining. Gentisic acid dose-dependently reduced the expression of fibrosis marker genes, suppressed the renin-angiotensin-aldosterone system, and reduced lung size and pulmonary vascular remodeling. Our data indicate that gentisic acid prevents cardiac hypertrophy, fibrosis, cardiac dysfunction, and pulmonary pathology in TAC-induced heart failure. These findings suggest that supplementation with gentisic acid may provide an advantage in preventing the progression from cardiac hypertrophy to heart failure.


Cardiomegaly/drug therapy , Gentisates/pharmacology , Heart Failure/drug therapy , Animals , Disease Models, Animal , Fibrosis/drug therapy , Male , Mice , Myocardium/pathology , Myocytes, Cardiac/drug effects
18.
J Cell Mol Med ; 22(12): 5964-5977, 2018 12.
Article En | MEDLINE | ID: mdl-30256522

We previously reported that gentisic acid (2,5-dihydroxybenzoic acid) is the third most abundant phenolic component of Dendropanax morbifera branch extracts. Here, we investigated its effects on cardiac hypertrophy and fibrosis in a mouse model of pressure overload and compared them to those of the beta blocker bisoprolol and calcium channel blocker diltiazem. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC). Beginning 2 weeks after this procedure, the mice were given daily intraperitoneal injections of gentisic acid (100 mg/kg/d), bisoprolol (5 mg/kg/d) or diltiazem (10 mg/kg/d) for 3 weeks. Cardiac hypertrophy was evaluated by the heart weight-to-body weight ratio, the cardiomyocyte cross-sectional area after haematoxylin and eosin staining, and echocardiography. Markers of cardiac hypertrophy and fibrosis were tested by reverse transcription-quantitative real-time polymerase chain reaction, western blotting and Masson's trichrome staining. The suppressive effects of gentisic acid treatment on TAC-induced cardiac hypertrophy and fibrosis were comparable to those of bisoprolol administration. Cardiac hypertrophy was reversed and left ventricular septum and posterior wall thickness were restored by gentisic acid, bisoprolol and diltiazem treatment. Cardiac hypertrophic marker gene expression and atrial and brain natriuretic peptide levels were decreased by gentisic acid and bisoprolol, as were cardiac (interstitial and perivascular) fibrosis and fibrosis-related gene expression. Cardiac hypertrophy-associated upregulation of the transcription factors GATA4 and Sp1 and activation of extracellular signal-regulated kinase 1/2 were also negated by these drugs. These results suggest that gentisic acid could serve as a therapeutic agent for cardiac hypertrophy and fibrosis.


Cardiomegaly/drug therapy , Cardiomegaly/enzymology , Gentisates/therapeutic use , MAP Kinase Signaling System , Myocardium/pathology , Pressure , Animals , Aorta/pathology , Cardiomegaly/genetics , Cardiomegaly/pathology , Constriction, Pathologic , Electrocardiography , Fibrosis , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Gentisates/pharmacology , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/drug therapy , MAP Kinase Signaling System/drug effects , Male , Mice , Phosphorylation/drug effects , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism
19.
Eur Cell Mater ; 35: 1-12, 2018 01 12.
Article En | MEDLINE | ID: mdl-29327779

Osteoporosis is a disease characterized by low bone mass, most commonly caused by an increase in bone resorption that is not matched by sufficient bone formation. The most common complications of postmenopausal osteoporosis are bone-related defects and fractures. Fracture healing is a multifactorial bone regeneration process, influenced by both biological and mechanical factors related to age, osteoporosis and stability of the osteosynthesis. During the treatment of bone defects in osteoporotic conditions, imbalanced bone remodeling is the leading cause for implant failure. To overcome these problems, ethyl-2,5-dihydroxybenzoate (E-2,5-DHB), a drug that promotes bone formation and inhibits bone resorption, was used. E-2,5-DHB-incorporating titanium (Ti) implants using poly(lactic-co-glycolic acid) (PLGA) coating for local delivery of E-2,5-DHB were developed and the effects on bone healing of femoral defects were evaluated in an osteoporotic model. The release of E-2,5-DHB resulted in decreased bone resorption and increased bone formation around the implant. Thus, it was confirmed that, in the osteoporotic model, bone healing was increased and implant fixation was enhanced. These results suggested that E-2,5-DHB-coated Ti implants have great potential as an ultimate local drug delivery system for bone tissue scaffolds.


Bone Regeneration/drug effects , Bone and Bones/drug effects , Bone and Bones/physiopathology , Gentisates/pharmacology , Osteoporosis/physiopathology , Printing, Three-Dimensional , Prostheses and Implants , Animals , Bone Density/drug effects , Cell Differentiation/drug effects , Coated Materials, Biocompatible/pharmacology , Disease Models, Animal , Female , Femur/diagnostic imaging , Femur/drug effects , Femur/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Ovariectomy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats, Sprague-Dawley , Reproducibility of Results , Titanium/pharmacology , Wound Healing/drug effects
20.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Article En | MEDLINE | ID: mdl-29378951

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Lipocalin-2/physiology , Mitochondria/pathology , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology , Siderophores/metabolism , Animals , Gentisates/pharmacology , Hydroxybenzoates/pharmacology , Iron/metabolism , Male , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
...