Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891810

RESUMEN

Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.


Asunto(s)
Alendronato , Conservadores de la Densidad Ósea , Densidad Ósea , Geraniltranstransferasa , Osteoporosis , Polimorfismo de Nucleótido Simple , Insuficiencia del Tratamiento , Humanos , Alendronato/uso terapéutico , Alendronato/farmacología , Densidad Ósea/efectos de los fármacos , Densidad Ósea/genética , Femenino , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Masculino , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Anciano , Persona de Mediana Edad , Conservadores de la Densidad Ósea/uso terapéutico , Genotipo , Alelos , Estudios de Casos y Controles
2.
Parasit Vectors ; 13(1): 168, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248823

RESUMEN

BACKGROUND: The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia. METHODS: We performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry. RESULTS: The nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs. CONCLUSIONS: Giardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Difosfonatos/farmacología , Geraniltranstransferasa/química , Giardia/enzimología , Giardia/ultraestructura , Leishmania/enzimología , Leishmania/ultraestructura , Aminoácidos/genética , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Geraniltranstransferasa/antagonistas & inhibidores , Giardia/efectos de los fármacos , Concentración 50 Inhibidora , Leishmania/efectos de los fármacos , Microscopía Electrónica de Transmisión , Filogenia , Alineación de Secuencia , Relación Estructura-Actividad
3.
J Mol Model ; 24(11): 314, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30327889

RESUMEN

Leishmaniasis is caused by protozoa of the genus Leishmania spp. and is considered the second most important protozoa in the world due to the number of cases and mortality. Despite its importance in terms of public health, the treatment of patients is limited and has mostly low levels of efficacy and safety. Farnesyl pyrophosphate synthase (FPPS) acts in the early stages of isoprenoid synthesis, and is important for maintaining the integrity of the lipid bilayer of the parasite that causes the disease. The aim of this work was to identify one potential inhibitor of the FPPS of Leishmania major through virtual screening by pharmacophore modeling and docking. A total of 85,000 compounds from a natural products database (ZINC15) was submitted for virtual hierarchical screening, and the top ranked molecule in both methods was analyzed by intermolecular interaction profile and 20 ns molecular dynamics simulations. These results showed a promising compound from natural products that mimic the major interactions present in the substrate/inhibitor.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Leishmania major/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Geraniltranstransferasa/metabolismo , Leishmania major/efectos de los fármacos , Ligandos
4.
Int J Food Microbiol ; 282: 42-48, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-29902782

RESUMEN

The objective of this work is to demonstrate if the hexaprenyl pyrophosphate synthetase Coq1p might be involved in monoterpenes synthesis in Saccharomyces cerevisiae, although its currently known function in yeast is to catalyze the first step in ubiquinone biosynthesis. However, in a BY4743 laboratory strain, the presence of an empty plasmid in a chemically defined grape juice medium results in a statistically significant increase of linalool, (E)-nerolidol and (E,E)-farnesol. When COQ1 is overexpressed from a plasmid, the levels of the volatile isoprenoids are further increased. Furthermore, overexpression of COQ1 in the same genetic context but with a mutated farnesyl pyrophosphate synthetase (erg20 mutation K197E), results in statistically significant higher levels of linalool (above 750 µg/L), geraniol, α-terpineol, and the sesquiterpenes, farnesol and nerolidol (total concentration of volatile isoprenoids surpasses 1300 µg/L). We show that the levels of monoterpenes and sesquiterpenes that S. cerevisiae can produce, in the absence of plant genes, depend on the composition of the medium and the genetic context. To the best of our knowledge, this is the highest level of linalool produced by S. cerevisiae up to now. Further research will be needed for understanding how COQ1 and the medium composition might interact to increase flavor complexity of fermented beverages.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Vitis/microbiología , Monoterpenos Acíclicos , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Monoterpenos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biol Inorg Chem ; 23(2): 303-312, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29349663

RESUMEN

To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co2+, Mn2+, Ni2+) with the bisphosphonate ibandronate (iba, H4iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(Hxiba)](2-x)- (x = 0-3) and [M(Hiba)2]4- together with the formation of the neutral polynuclear species [M2iba] and [M3(Hiba)2] were detected for all studied systems. In the solid state, complexes of the formula [M3(Hiba)2(H2O)4]·6H2O were obtained and characterized. All obtained complexes, forming [M(Hiba)]- species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Ácido Ibandrónico/química , Ácido Ibandrónico/farmacología , Metales/química , Transferasas Alquil y Aril/antagonistas & inhibidores , Animales , Chlorocebus aethiops , Geraniltranstransferasa/antagonistas & inhibidores , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Células Vero
6.
FEMS Yeast Res ; 17(4)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854674

RESUMEN

Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Geraniltranstransferasa/química , Mutación Puntual , Saccharomyces cerevisiae/enzimología , Terpenos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Hemiterpenos/metabolismo , Cinética , Ingeniería Metabólica , Simulación del Acoplamiento Molecular , Compuestos Organofosforados/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sesquiterpenos/metabolismo , Especificidad por Sustrato , Termodinámica
7.
Molecules ; 22(1)2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054995

RESUMEN

Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates-Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship.


Asunto(s)
Antiprotozoarios/síntesis química , Difosfonatos/síntesis química , Inhibidores Enzimáticos/síntesis química , Geraniltranstransferasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Chlorocebus aethiops , Difosfonatos/farmacología , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Expresión Génica , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Halogenación , Humanos , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Toxoplasma/enzimología , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
8.
Artículo en Inglés | MEDLINE | ID: mdl-27895021

RESUMEN

We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfone-containing compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 µM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 µM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 µM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites.


Asunto(s)
Antiprotozoarios/farmacología , Cryptosporidium parvum/efectos de los fármacos , Difosfonatos/farmacología , Plasmodium falciparum/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Técnicas de Química Sintética , Cryptosporidium parvum/crecimiento & desarrollo , Difosfonatos/síntesis química , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Humanos , Ratones Endogámicos , Plasmodium falciparum/crecimiento & desarrollo , Azufre/química , Azufre/farmacología , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico
9.
Expert Opin Drug Discov ; 11(3): 307-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26781029

RESUMEN

INTRODUCTION: Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give rise to one molecule of geranyl diphosphate, which on a further reaction with another molecule of isopentenyl diphosphate forms the 15-carbon isoprenoid farnesyl diphosphate. This molecule is the obliged precursor for the biosynthesis of sterols, ubiquinones, dolichols, heme A, and prenylated proteins. The blockade of FPPS prevents the synthesis of farnesyl diphosphate and the downstream essential products. Due to its crucial role in isoprenoid biosynthesis, this enzyme has been winnowed as a molecular target for the treatment of different bone disorders and to control parasitic diseases, particularly, those produced by trypanosomatids and Apicomplexan parasites. AREAS COVERED: This article discusses some relevant structural features of farnesyl pyrophosphate synthase. It also discusses the precise mode of action of relevant modulators, including both bisphosphonate and non-bisphosphonate inhibitors and the recent advances made in the development of effective inhibitors of the enzymatic activity of this target enzyme. EXPERT OPINION: Notwithstanding their lack of drug-like character, bisphosphonates are still the most advantageous class of inhibitors of the enzymatic activity of farnesyl pyrophosphate synthase. The poor drug-like character is largely compensated by the high affinity of the bisphosphonate moiety by bone mineral hydroxyapatite in humans. Several bisphosphonates are currently in use for the treatment of a variety of bone disorders. Currently, the great prospects that bisphosphonates behave as antiparasitic agents is due to their accumulation in acidocalcisomes, organelles with equivalent composition to bone mineral, hence facilitating their antiparasitic action.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Antiparasitarios/farmacología , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/patología , Difosfonatos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Geraniltranstransferasa/metabolismo , Humanos , Terapia Molecular Dirigida , Enfermedades Parasitarias/tratamiento farmacológico , Enfermedades Parasitarias/parasitología , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo
10.
Sci Rep ; 5: 18429, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26688062

RESUMEN

Malaria is a tropical disease with significant morbidity and mortality. A better understanding of the metabolism of its most important etiological agent, Plasmodium falciparum, is paramount to the development of better treatment and other mitigation measures. Farnesyldiphosphate synthase/geranylgeranyldiphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains present in many essential structures. In P. falciparum, as well as a handful of other organisms, FPPS/GGPPS has been shown to be a bifunctional enzyme. By genetic tagging and microscopy, we observed a changing localization of FPPS/GGPPS in blood stage parasites. Given the great importance of alternative splicing and other transcriptional phenomena in gene regulation and the generation of protein diversity, we have investigated the processing of the FPPS/GGPPS transcript in P. falciparum by high-throughput sequencing methods in four time-points along the intraerythrocytic cycle of P. falciparum. We have identified levels of transcript diversity an order of magnitude higher than previously observed in this organism, as well as a few stage-specific splicing events. Our data suggest that alternative splicing in P. falciparum is an important feature for gene regulation and the generation of protein diversity.


Asunto(s)
Empalme Alternativo/genética , Geraniltranstransferasa/genética , Malaria Falciparum/genética , Transcripción Genética , Animales , Regulación Enzimológica de la Expresión Génica , Variación Genética , Geraniltranstransferasa/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad
11.
Genet Mol Res ; 14(1): 349-61, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25729967

RESUMEN

Matricaria recutita (L.), commonly known as chamomile, is one of the most valuable medicinal plants because it synthesizes a large number of pharmacologically active secondary metabolites known as α-bisabolol and chamazulene. Although the plant has been well characterized in terms of chemical constituents of essential oil as well as pharmacological properties, little is known about the genes responsible for biosynthesis of these compounds. In this study, we report a new full-length cDNA encoding farnesyl diphosphate synthase (FPS), a key enzyme in the pathway of biosynthesis of isoprenoids, from M. recutita. The cDNA of MrFPS comprises 1032 bp and encodes 343 amino acid residues with a calculated molecular mass of 39.4 kDa. The amino acid sequence homology and phylogenetic analysis indicated that MrFPS belongs to the plant FPS super-family and is closely related to FPS from the Asteraceae family. Expression of the MrFPS gene in Escherichia coli yielded FPS activity. Using real-time quantitative PCR, the expression pattern of the MrFPS gene was analyzed in different tissues of M. recutita as well as in response to methyl jasmonate. The expression analysis demonstrated that MrFPS expression varies in different tissues (with maximal expression in flowers and stems) and was significantly elevated in response to methyl jasmonate. This study will certainly enhance our understanding of the role of MrFPS in the biosynthesis and regulation of valuable secondary metabolites in M. recutita at a molecular level.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Geraniltranstransferasa/genética , Matricaria/enzimología , Matricaria/genética , Oxilipinas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Genes de Plantas , Geraniltranstransferasa/química , Geraniltranstransferasa/aislamiento & purificación , Matricaria/efectos de los fármacos , Matricaria/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/genética
12.
Genet Mol Res ; 13(4): 9874-82, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25501197

RESUMEN

Blumea balsamifera DC is a member of the Compositae family and is frequently used as traditional Chinese medicine. Blumea balsamifera is rich in monoterpenes, which possess a variety of pharmacological activities, such as antioxidant, anti-bacteria, and anti-viral activities. Farnesyl diphosphate synthase (FPS) is a key enzyme in the biosynthetic pathway of terpenes, playing an important regulatory role in plant growth, such as resistance and secondary metabolism. Based on the conserved oligo amino acid residues of published FPS genes from other higher plant species, a cDNA sequence, designated BbFPS, was isolated from B. balsamifera DC using polymerase chain reaction. The clones were an average of 1.6 kb and contained an open reading frame that predicted a polypeptide of 342 amino acids with 89.07% identity to FPS from other plants. The deduced amino acid sequence was dominated by hydrophobic regions and contained 2 highly conserved DDxxD motifs that are essential for proper functioning of FPS. Phylogenetic analysis indicated that FPS grouped with other composite families. Prediction of secondary structure and subcellular localization suggested that alpha helices made up 70% of the amino acids of the sequence.


Asunto(s)
Asteraceae/enzimología , Asteraceae/genética , Genes de Plantas , Geraniltranstransferasa/genética , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Evolución Molecular , Geraniltranstransferasa/química , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína
13.
PLoS One ; 9(5): e96626, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24796858

RESUMEN

The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.


Asunto(s)
Basidiomycota/enzimología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geraniltranstransferasa/genética , Fosfatos de Poliisoprenilo/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Carbono/química , Carotenoides/biosíntesis , Cromatografía en Capa Delgada , Escherichia coli/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/química , Geraniltranstransferasa/química , Datos de Secuencia Molecular , Mutación , Plásmidos , Ingeniería de Proteínas , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Sesquiterpenos , Esteroles/química , Xantófilas/química
14.
Bioorg Med Chem ; 22(1): 398-405, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24300918

RESUMEN

As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 µM against tachyzoites of T. gondii and an IC50 of 0.051 µM against TgFPPS.


Asunto(s)
Antiparasitarios/farmacología , Difosfonatos/farmacología , Geraniltranstransferasa/química , Toxoplasma/enzimología , Trypanosoma cruzi/enzimología , Diseño de Fármacos , Relación Estructura-Actividad , Toxoplasma/metabolismo , Trypanosoma cruzi/metabolismo
15.
Plant Physiol Biochem ; 73: 176-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24128694

RESUMEN

Isoprenoids belong to a large family of structurally and functionally different natural compounds found universally from prokaryotes to higher animals and plants. In Hevea brasiliensis, the commercially important cis-polyisoprene (rubber) is synthesised as part of its defence mechanism in addition to other common isoprenoids like phytosterols, growth hormones etc. Farnesyl diphosphate synthase (FDPS) is a key enzyme in this process which catalyses the conversion of isoprene units into polyisoprene. Although prior sequence information is available, the structural variants of the FDPS gene presently existing in Hevea population are largely unknown. Since gene structure has a major role in gene regulation, extensive sequence analysis of this gene from different genotypes was carried out to identify the prevailing structural variants. We identified several SNPs and large indels which were associated with a partial transposable element (TE). Modification of key regulatory motifs and splice sites induced by the retroelement was also identified in the first intron. Screening of popular rubber clones, wild germplasm accessions and Hevea species revealed that the retroelement is responsible for the generation of new alleles with varying degrees of sequence homology. Segregation analysis of a progeny population confirmed that the alleles are not paralogs and are inherited in a Mendelian mode. Our findings suggest that the first intron of the FDPS gene has been subjected to various chromosomal rearrangements due to the interaction of a retrotransposon, resulting in novel alleles which may substantially contribute towards the evolution of this major gene in rubber. Moreover, the results indicate the possible existence of a retrotransposon-mediated epigenetic gene regulatory mechanism in Hevea.


Asunto(s)
Evolución Molecular , Genes de Plantas , Geraniltranstransferasa/genética , Hemiterpenos/genética , Hevea/genética , Redes y Vías Metabólicas/genética , Retroelementos , Alelos , Secuencia de Bases , Butadienos , Cromosomas de las Plantas , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Geraniltranstransferasa/metabolismo , Hemiterpenos/biosíntesis , Hevea/química , Hevea/enzimología , Hevea/metabolismo , Intrones , Datos de Secuencia Molecular , Pentanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Goma , Homología de Secuencia , Terpenos
16.
Dalton Trans ; 41(21): 6468-76, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22344249

RESUMEN

In the search for a pharmacological answer to treat Chagas disease, eight metal complexes with two bioactive bisphosphonates, alendronate (Ale) and pamidronate (Pam), were described. Complexes of the formula [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, with M = Cu, Co, Mn, Ni, and ([CuPam]·H(2)O)(n) as well as [M(II)(Pam)(2)(H(2)O)(2)]·3H(2)O, with M = Co, Mn and Ni, were synthesized and fully characterized. Crystal structure of [Cu(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, [Co(II)(Pam)(2)(H(2)O)(2)] and [Ni(II)(Pam)(2)(H(2)O)(2)] were solved by X-ray single crystal diffraction methods and the structures of [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O complexes M = Co, Mn and Ni were studied by X-ray powder diffraction methods. All obtained complexes were active against the amastigote form of Trypanosoma cruzi (T. cruzi), etiological agent of Chagas disease. Most of them were more active than the corresponding free ligands showing no toxicity for mammalian cells. The main mechanism of the antiparasitic action of bisphosphonates, inhibition of parasitic farnesyl diphosphate synthase (TcFPPS), remains in the obtained metal complexes and an increase in the inhibiting enzyme levels was observed upon coordination. Observed enzymatic inhibition was selective for TcFPPS as the metal complexes showed no or little inhibition of human FPPS. Additionally, metal complexation might improve the bioavailability of the complexes through the hindrance of the phosphonate group's ionization at physiological pH and, eventually, through the ability of plasma proteins to work as complex transporters.


Asunto(s)
Difosfonatos/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Trypanosoma cruzi/enzimología , Animales , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Humanos , Concentración 50 Inhibidora , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Albúmina Sérica Bovina/metabolismo , Trypanosoma cruzi/citología , Trypanosoma cruzi/efectos de los fármacos , Células Vero
17.
Org Biomol Chem ; 10(7): 1424-33, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22215028

RESUMEN

α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and against Toxoplasma gondii, the agent responsible for toxoplasmosis, and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T. gondii (TgFPPS). Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) proved to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range, exhibiting an IC(50) of 30 nM. This compound was two-fold more potent than risedronate (IC(50) = 74 nM) that was taken as a positive control. This enzymatic activity was associated with a strong cell growth inhibition against tachyzoites of T. gondii, with an IC(50) value of 2.7 µM.


Asunto(s)
Antiprotozoarios/farmacología , Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/enzimología , Antiprotozoarios/química , Difosfonatos/química , Inhibidores Enzimáticos/química , Geraniltranstransferasa/metabolismo , Toxoplasma/metabolismo
18.
Bioorg Med Chem ; 19(7): 2211-7, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21419634

RESUMEN

The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 µM, while this compound showed an IC(50) value of 0.81 µM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 µM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 µM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 µM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.


Asunto(s)
Antiprotozoarios/química , Difosfonatos/química , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Chlorocebus aethiops , Difosfonatos/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/metabolismo , Terapia Molecular Dirigida , Relación Estructura-Actividad , Toxoplasma/enzimología , Trypanosoma cruzi/enzimología , Células Vero
19.
J Inorg Biochem ; 104(12): 1252-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20817265

RESUMEN

In the search for new metal-based drugs for the treatment of Chagas disease, the most widespread Latin American parasitic disease, novel complexes of the bioactive ligand risedronate (Ris, (1-hydroxy-1-phosphono-2-pyridin-3-yl-ethyl)phosphonate), [M(II)(Ris)(2)]·4H(2)O, where M═Cu, Co, Mn and Ni, and [Ni(II)(Ris)(2)(H(2)O)(2)]·H(2)O were synthesized and characterized by using analytical measurements, thermogravimetric analyses, cyclic voltammetry and infrared and Raman spectroscopies. Crystal structures of [Cu(II)(Ris)(2)]·4H(2)O and [Ni(II)(Ris)(2)(H(2)O)(2)]·H(2)O were solved by single crystal X-ray diffraction methods. The complexes, as well as the free ligand, were evaluated in vitro against epimastigotes and intracellular amastigotes of the parasite Trypanosoma cruzi, causative agent of Chagas disease. Results demonstrated that the coordination of risedronate to different metal ions improved the antiproliferative effect against T. cruzi, exhibiting growth inhibition values against the intracellular amastigotes ranging the low micromolar levels. In addition, this strong activity could be related to high inhibition of farnesyl diphosphate synthase enzyme. On the other hand, protein interaction studies showed that all the complexes strongly interact with albumin thus providing a suitable means of transporting them to tissues in vivo.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Ácido Etidrónico/análogos & derivados , Trypanosoma cruzi/efectos de los fármacos , Animales , Ácido Etidrónico/química , Ácido Etidrónico/uso terapéutico , Geraniltranstransferasa/metabolismo , Modelos Químicos , Ácido Risedrónico , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidad , Difracción de Rayos X
20.
Bioorg Med Chem ; 16(6): 3283-90, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096393

RESUMEN

The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC(50) values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC(50) value of 0.84 microM, while this compound showed an IC(50) value of 0.49 microM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC(50) values of 4.1 microM and 2.6 microM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 microM and 0.25 microM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.


Asunto(s)
Antiprotozoarios/química , Difosfonatos/química , Difosfonatos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Difosfonatos/síntesis química , Inhibidores Enzimáticos , Concentración 50 Inhibidora , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA