Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.515
1.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722309

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


B-Lymphocytes , CD4-Positive T-Lymphocytes , Qa-SNARE Proteins , Animals , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/metabolism , Mice, Knockout , Mice, Inbred C57BL , Female , Male , Germinal Center/immunology , Germinal Center/metabolism , Immunity, Humoral , Exocytosis
2.
Front Immunol ; 15: 1369626, 2024.
Article En | MEDLINE | ID: mdl-38690273

Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.


Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Germinal Center/immunology
3.
PLoS One ; 19(5): e0301853, 2024.
Article En | MEDLINE | ID: mdl-38709804

BACKGROUND: Altered immunological responses in the palatine tonsils may be involved in the pathogenesis of IgA nephropathy (IgAN). The germinal center serves as the site for antigen-specific humoral immune responses in the palatine tonsils. Germinal center involution is frequently observed in the palatine tonsils of IgAN (IgAN tonsils). However, the pathogenic significance of these characteristic changes remains unclear. This study aimed to investigate the morphological changes in secondary lymphoid follicles in IgAN tonsils and to evaluate the correlation between the morphometric results and the clinicopathological severity of IgAN. METHODS: The tonsils of age-matched patients with recurrent tonsillitis (RT tonsils) were used as controls. The correlation between the degree of lymphoid follicular involution and histopathological severities in clinical or kidney biopsy was evaluated. RESULTS: In total, 87 patients with IgAN were included (48% male, median age 35 years, median estimated glomerular filtration rate: 74 mL/min/1.73 m2). Compared to RT tonsils, IgAN tonsils showed smaller median sizes of lymphoid follicles and germinal centers (P < 0.001). The relative areas of lymphoid follicles (%LFA) and germinal centers (%GCA) in the total tonsillar tissue were smaller in the IgAN tonsils than in the RT tonsils (P < 0.001). In contrast, the median proportion of mantle zones in the total tonsillar tissue was comparable between the groups. A lower %LFA was associated with a longer period from the onset of urinary abnormalities to biopsy diagnosis and higher urinary protein excretion (P = 0.01). %LFA showed significant negative correlations with frequencies of glomeruli with both global and segmental sclerosis. CONCLUSIONS: The present study confirmed accelerated germinal center involution in the tonsils of patients with IgAN. This characteristic change in the IgAN tonsil correlates with heavy proteinuria and advanced chronic histopathological changes in the kidneys, thereby suggesting the involvement of repeated tonsillar immunoreactions during IgAN progression.


Germinal Center , Glomerulonephritis, IGA , Palatine Tonsil , Humans , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/immunology , Palatine Tonsil/pathology , Palatine Tonsil/immunology , Germinal Center/immunology , Germinal Center/pathology , Male , Female , Adult , Tonsillitis/pathology , Tonsillitis/immunology , Middle Aged , Young Adult , Kidney/pathology , Kidney/immunology
4.
Science ; 384(6695): eadj4857, 2024 May 03.
Article En | MEDLINE | ID: mdl-38696569

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.


B-Lymphocytes , Germinal Center , Lymphocytes, Tumor-Infiltrating , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immunotherapy , Transcriptome , Single-Cell Analysis , Epigenesis, Genetic , Immunity, Humoral , T-Lymphocytes/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology
5.
Sci Adv ; 10(17): eadn3760, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669336

Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.


B-Lymphocytes , Germinal Center , Receptors, Nicotinic , Vagus Nerve Stimulation , alpha7 Nicotinic Acetylcholine Receptor , Animals , Germinal Center/metabolism , Germinal Center/immunology , Vagus Nerve Stimulation/methods , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Mice , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Dendritic Cells, Follicular/metabolism , Dendritic Cells, Follicular/immunology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/immunology , Receptors, Antigen, B-Cell/metabolism , Cell Differentiation , Mice, Inbred C57BL , Immunoglobulin G/immunology , Vagus Nerve/metabolism , Vagus Nerve/physiology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology
6.
Front Immunol ; 15: 1340001, 2024.
Article En | MEDLINE | ID: mdl-38680492

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Cell Differentiation , Germinal Center , Membrane Proteins , Nucleotides, Cyclic , Signal Transduction , Germinal Center/immunology , Germinal Center/metabolism , Animals , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/immunology , Cell Differentiation/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism
7.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570506

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Lymphoma, Large B-Cell, Diffuse , Animals , Mice , B-Lymphocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Tumor Microenvironment/genetics
8.
J Clin Invest ; 134(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38557496

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


CD4-Positive T-Lymphocytes , Receptors, Chimeric Antigen , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4-Positive T-Lymphocytes/immunology , Germinal Center/immunology , HIV Infections/therapy , Macaca mulatta/metabolism , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen/genetics , Simian Acquired Immunodeficiency Syndrome/therapy
9.
Sci Immunol ; 9(94): eadk0092, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38579014

The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.


B-Lymphocytes , Immunoglobulin G , Membrane Proteins , Animals , Mice , Germinal Center , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Signal Transduction , Membrane Proteins/metabolism
10.
PLoS Pathog ; 20(4): e1011939, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683861

Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.


Epigenesis, Genetic , Epstein-Barr Virus Infections , Gene Expression Regulation, Viral , Germinal Center , Herpesvirus 4, Human , Virus Latency , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Germinal Center/immunology , Germinal Center/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/immunology , Cytokines/metabolism , B-Lymphocytes/virology , B-Lymphocytes/metabolism
11.
J Immunol ; 212(9): 1467-1478, 2024 May 01.
Article En | MEDLINE | ID: mdl-38477614

Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.


CD4-Positive T-Lymphocytes , Interleukins , Malaria , Plasmodium , Animals , Mice , B-Lymphocytes , CD4-Positive T-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Malaria/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Plasmodium/immunology
12.
Nat Commun ; 15(1): 2569, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519473

The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.


B-Lymphocytes , Mitochondria , Mice , Animals , Mitochondria/genetics , Germinal Center , Mice, Knockout , Lymphocyte Activation
13.
Sci Immunol ; 9(93): eadj7124, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38552029

Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.


B-Lymphocytes , T-Lymphocytes , Germinal Center , Receptors, Antigen, B-Cell/metabolism , RNA, Messenger/metabolism
14.
Cell Rep ; 43(3): 113869, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38431843

Autoimmune diseases strain healthcare systems worldwide as their incidence rises, and current treatments put patients at risk for infections. An increased understanding of autoimmune diseases is required to develop targeted therapies that do not impair normal immune function. Many autoimmune diseases present with autoantibodies, which drive local or systemic inflammation. This indicates the presence of autoreactive B cells that have escaped tolerance. An important step in the development of autoreactive B cells is the germinal center (GC) reaction, where they undergo affinity maturation toward cognate self-antigen. Follicular dendritic cells (FDCs) perform the essential task of antigen presentation to B cells during the affinity maturation process. However, in recent years, it has become clear that FDCs play a much more active role in regulation of GC processes. Here, we evaluate the biology of FDCs in the context of autoimmune disease, with the goal of informing future therapeutic strategies.


Autoimmune Diseases , Dendritic Cells, Follicular , Humans , Autoimmunity , Germinal Center , B-Lymphocytes
15.
Nature ; 628(8008): 612-619, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509366

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
16.
Immunity ; 57(4): 843-858.e5, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38513666

Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.


Interleukin-4 , Transcription Factors , B-Lymphocytes , Germinal Center , Interleukin-4/metabolism , Memory B Cells , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Transcription Factors/metabolism
17.
Trends Immunol ; 45(4): 234-236, 2024 Apr.
Article En | MEDLINE | ID: mdl-38521715

The role of antibody affinity in plasma cell (PC) differentiation from germinal centers (GCs) remains contested. Parallel studies by Sprumont et al. and Sutton and Gao et al. show that PCs emerging from GCs produce antibodies with a diverse range of affinities and lack signatures of affinity-based selection. Therefore, commitment to the PC lineage is affinity independent.


B-Lymphocytes , Germinal Center , Humans , Lymphocyte Activation , Cell Lineage , Cell Differentiation , Plasma Cells
18.
Sci Immunol ; 9(93): eadi8150, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38517953

In autoreactive germinal centers (GC) initiated by a single rogue B cell clone, wild-type B cells expand and give rise to clones that target other autoantigens, known as epitope spreading. The chronic, progressive nature of epitope spreading calls for early interventions to limit autoimmune pathologies, but the kinetics and molecular requirements for wild-type B cell invasion and participation in GC remain largely unknown. With parabiosis and adoptive transfer approaches in a murine model of systemic lupus erythematosus, we demonstrate that wild-type B cells join existing GCs rapidly, clonally expand, persist, and contribute to autoantibody production and diversification. The invasion of autoreactive GCs by wild-type B cells required TLR7, B cell receptor specificity, antigen presentation, and type I interferon signaling. The adoptive transfer model provides a tool for identifying early events in the breaking of B cell tolerance in autoimmunity.


B-Lymphocytes , Lupus Erythematosus, Systemic , Mice , Animals , Germinal Center , Autoimmunity , Epitopes
20.
Cancer Cell ; 42(4): 507-509, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38458185

The mSWI/SNF subunits ARID1A and SMARCA4 are mutated in B cell lymphomas. Now, Barisic et al. and Deng et al. find that loss of ARID1A or SMARCA4 contributes to lymphomagenesis by causing B cells to aberrantly re-enter germinal centers where they undergo repeated rounds of proliferation and somatic hypermutation.


DNA Helicases , Germinal Center , Humans , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
...