Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.683
1.
Sci Rep ; 14(1): 10607, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719866

Guilt is a negative emotion elicited by realizing one has caused actual or perceived harm to another person. One of guilt's primary functions is to signal that one is aware of the harm that was caused and regrets it, an indication that the harm will not be repeated. Verbal expressions of guilt are often deemed insufficient by observers when not accompanied by nonverbal signals such as facial expression, gesture, posture, or gaze. Some research has investigated isolated nonverbal expressions in guilt, however none to date has explored multiple nonverbal channels simultaneously. This study explored facial expression, gesture, posture, and gaze during the real-time experience of guilt when response demands are minimal. Healthy adults completed a novel task involving watching videos designed to elicit guilt, as well as comparison emotions. During the video task, participants were continuously recorded to capture nonverbal behaviour, which was then analyzed via automated facial expression software. We found that while feeling guilt, individuals engaged less in several nonverbal behaviours than they did while experiencing the comparison emotions. This may reflect the highly social aspect of guilt, suggesting that an audience is required to prompt a guilt display, or may suggest that guilt does not have clear nonverbal correlates.


Facial Expression , Guilt , Humans , Male , Female , Adult , Young Adult , Nonverbal Communication/psychology , Emotions/physiology , Gestures
2.
Commun Biol ; 7(1): 472, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724671

Many species communicate by combining signals into multimodal combinations. Elephants live in multi-level societies where individuals regularly separate and reunite. Upon reunion, elephants often engage in elaborate greeting rituals, where they use vocalisations and body acts produced with different body parts and of various sensory modalities (e.g., audible, tactile). However, whether these body acts represent communicative gestures and whether elephants combine vocalisations and gestures during greeting is still unknown. Here we use separation-reunion events to explore the greeting behaviour of semi-captive elephants (Loxodonta africana). We investigate whether elephants use silent-visual, audible, and tactile gestures directing them at their audience based on their state of visual attention and how they combine these gestures with vocalisations during greeting. We show that elephants select gesture modality appropriately according to their audience's visual attention, suggesting evidence of first-order intentional communicative use. We further show that elephants integrate vocalisations and gestures into different combinations and orders. The most frequent combination consists of rumble vocalisations with ear-flapping gestures, used most often between females. By showing that a species evolutionarily distant to our own primate lineage shows sensitivity to their audience's visual attention in their gesturing and combines gestures with vocalisations, our study advances our understanding of the emergence of first-order intentionality and multimodal communication across taxa.


Animal Communication , Elephants , Gestures , Vocalization, Animal , Animals , Elephants/physiology , Female , Male , Vocalization, Animal/physiology , Social Behavior
3.
BMC Med Educ ; 24(1): 509, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715008

BACKGROUND: In this era of rapid technological development, medical schools have had to use modern technology to enhance traditional teaching. Online teaching was preferred by many medical schools. However due to the complexity of intracranial anatomy, it was challenging for the students to study this part online, and the students were likely to be tired of neurosurgery, which is disadvantageous to the development of neurosurgery. Therefore, we developed this database to help students learn better neuroanatomy. MAIN BODY: The data were sourced from Rhoton's Cranial Anatomy and Surgical Approaches and Neurosurgery Tricks of the Trade in this database. Then we designed many hand gesture figures connected with the atlas of anatomy. Our database was divided into three parts: intracranial arteries, intracranial veins, and neurosurgery approaches. Each section below contains an atlas of anatomy, and gestures represent vessels and nerves. Pictures of hand gestures and atlas of anatomy are available to view on GRAVEN ( www.graven.cn ) without restrictions for all teachers and students. We recruited 50 undergraduate students and randomly divided them into two groups: using traditional teaching methods or GRAVEN database combined with above traditional teaching methods. Results revealed a significant improvement in academic performance in using GRAVEN database combined with traditional teaching methods compared to the traditional teaching methods. CONCLUSION: This database was vital to help students learn about intracranial anatomy and neurosurgical approaches. Gesture teaching can effectively simulate the relationship between human organs and tissues through the flexibility of hands and fingers, improving anatomy interest and education.


Databases, Factual , Education, Medical, Undergraduate , Gestures , Neurosurgery , Humans , Neurosurgery/education , Education, Medical, Undergraduate/methods , Students, Medical , Neuroanatomy/education , Teaching , Female , Male
4.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732808

Currently, surface EMG signals have a wide range of applications in human-computer interaction systems. However, selecting features for gesture recognition models based on traditional machine learning can be challenging and may not yield satisfactory results. Considering the strong nonlinear generalization ability of neural networks, this paper proposes a two-stream residual network model with an attention mechanism for gesture recognition. One branch processes surface EMG signals, while the other processes hand acceleration signals. Segmented networks are utilized to fully extract the physiological and kinematic features of the hand. To enhance the model's capacity to learn crucial information, we introduce an attention mechanism after global average pooling. This mechanism strengthens relevant features and weakens irrelevant ones. Finally, the deep features obtained from the two branches of learning are fused to further improve the accuracy of multi-gesture recognition. The experiments conducted on the NinaPro DB2 public dataset resulted in a recognition accuracy of 88.25% for 49 gestures. This demonstrates that our network model can effectively capture gesture features, enhancing accuracy and robustness across various gestures. This approach to multi-source information fusion is expected to provide more accurate and real-time commands for exoskeleton robots and myoelectric prosthetic control systems, thereby enhancing the user experience and the naturalness of robot operation.


Electromyography , Gestures , Neural Networks, Computer , Humans , Electromyography/methods , Signal Processing, Computer-Assisted , Pattern Recognition, Automated/methods , Acceleration , Algorithms , Hand/physiology , Machine Learning , Biomechanical Phenomena/physiology
5.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732843

As the number of electronic gadgets in our daily lives is increasing and most of them require some kind of human interaction, this demands innovative, convenient input methods. There are limitations to state-of-the-art (SotA) ultrasound-based hand gesture recognition (HGR) systems in terms of robustness and accuracy. This research presents a novel machine learning (ML)-based end-to-end solution for hand gesture recognition with low-cost micro-electromechanical (MEMS) system ultrasonic transducers. In contrast to prior methods, our ML model processes the raw echo samples directly instead of using pre-processed data. Consequently, the processing flow presented in this work leaves it to the ML model to extract the important information from the echo data. The success of this approach is demonstrated as follows. Four MEMS ultrasonic transducers are placed in three different geometrical arrangements. For each arrangement, different types of ML models are optimized and benchmarked on datasets acquired with the presented custom hardware (HW): convolutional neural networks (CNNs), gated recurrent units (GRUs), long short-term memory (LSTM), vision transformer (ViT), and cross-attention multi-scale vision transformer (CrossViT). The three last-mentioned ML models reached more than 88% accuracy. The most important innovation described in this research paper is that we were able to demonstrate that little pre-processing is necessary to obtain high accuracy in ultrasonic HGR for several arrangements of cost-effective and low-power MEMS ultrasonic transducer arrays. Even the computationally intensive Fourier transform can be omitted. The presented approach is further compared to HGR systems using other sensor types such as vision, WiFi, radar, and state-of-the-art ultrasound-based HGR systems. Direct processing of the sensor signals by a compact model makes ultrasonic hand gesture recognition a true low-cost and power-efficient input method.


Gestures , Hand , Machine Learning , Neural Networks, Computer , Humans , Hand/physiology , Pattern Recognition, Automated/methods , Ultrasonography/methods , Ultrasonography/instrumentation , Ultrasonics/instrumentation , Algorithms
6.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732846

Brain-computer interfaces (BCIs) allow information to be transmitted directly from the human brain to a computer, enhancing the ability of human brain activity to interact with the environment. In particular, BCI-based control systems are highly desirable because they can control equipment used by people with disabilities, such as wheelchairs and prosthetic legs. BCIs make use of electroencephalograms (EEGs) to decode the human brain's status. This paper presents an EEG-based facial gesture recognition method based on a self-organizing map (SOM). The proposed facial gesture recognition uses α, ß, and θ power bands of the EEG signals as the features of the gesture. The SOM-Hebb classifier is utilized to classify the feature vectors. We utilized the proposed method to develop an online facial gesture recognition system. The facial gestures were defined by combining facial movements that are easy to detect in EEG signals. The recognition accuracy of the system was examined through experiments. The recognition accuracy of the system ranged from 76.90% to 97.57% depending on the number of gestures recognized. The lowest accuracy (76.90%) occurred when recognizing seven gestures, though this is still quite accurate when compared to other EEG-based recognition systems. The implemented online recognition system was developed using MATLAB, and the system took 5.7 s to complete the recognition flow.


Brain-Computer Interfaces , Electroencephalography , Gestures , Humans , Electroencephalography/methods , Face/physiology , Algorithms , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Brain/physiology , Male
7.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732933

This paper investigates a method for precise mapping of human arm movements using sEMG signals. A multi-channel approach captures the sEMG signals, which, combined with the accurately calculated joint angles from an Inertial Measurement Unit, allows for action recognition and mapping through deep learning algorithms. Firstly, signal acquisition and processing were carried out, which involved acquiring data from various movements (hand gestures, single-degree-of-freedom joint movements, and continuous joint actions) and sensor placement. Then, interference signals were filtered out through filters, and the signals were preprocessed using normalization and moving averages to obtain sEMG signals with obvious features. Additionally, this paper constructs a hybrid network model, combining Convolutional Neural Networks and Artificial Neural Networks, and employs a multi-feature fusion algorithm to enhance the accuracy of gesture recognition. Furthermore, a nonlinear fitting between sEMG signals and joint angles was established based on a backpropagation neural network, incorporating momentum term and adaptive learning rate adjustments. Finally, based on the gesture recognition and joint angle prediction model, prosthetic arm control experiments were conducted, achieving highly accurate arm movement prediction and execution. This paper not only validates the potential application of sEMG signals in the precise control of robotic arms but also lays a solid foundation for the development of more intuitive and responsive prostheses and assistive devices.


Algorithms , Arm , Electromyography , Movement , Neural Networks, Computer , Signal Processing, Computer-Assisted , Humans , Electromyography/methods , Arm/physiology , Movement/physiology , Gestures , Male , Adult
8.
CBE Life Sci Educ ; 23(2): ar16, 2024 Jun.
Article En | MEDLINE | ID: mdl-38620007

Interpreting three-dimensional models of biological macromolecules is a key skill in biochemistry, closely tied to students' visuospatial abilities. As students interact with these models and explain biochemical concepts, they often use gesture to complement verbal descriptions. Here, we utilize an embodied cognition-based approach to characterize undergraduate students' gesture production as they described and interpreted an augmented reality (AR) model of potassium channel structure and function. Our analysis uncovered two emergent patterns of gesture production employed by students, as well as common sets of gestures linked across categories of biochemistry content. Additionally, we present three cases that highlight changes in gesture production following interaction with a 3D AR visualization. Together, these observations highlight the importance of attending to gesture in learner-centered pedagogies in undergraduate biochemistry education.


Gestures , Students , Humans , Biochemistry/education
9.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38676024

In recent decades, technological advancements have transformed the industry, highlighting the efficiency of automation and safety. The integration of augmented reality (AR) and gesture recognition has emerged as an innovative approach to create interactive environments for industrial equipment. Gesture recognition enhances AR applications by allowing intuitive interactions. This study presents a web-based architecture for the integration of AR and gesture recognition, designed to interact with industrial equipment. Emphasizing hardware-agnostic compatibility, the proposed structure offers an intuitive interaction with equipment control systems through natural gestures. Experimental validation, conducted using Google Glass, demonstrated the practical viability and potential of this approach in industrial operations. The development focused on optimizing the system's software and implementing techniques such as normalization, clamping, conversion, and filtering to achieve accurate and reliable gesture recognition under different usage conditions. The proposed approach promotes safer and more efficient industrial operations, contributing to research in AR and gesture recognition. Future work will include improving the gesture recognition accuracy, exploring alternative gestures, and expanding the platform integration to improve the user experience.


Augmented Reality , Gestures , Humans , Industry , Software , Pattern Recognition, Automated/methods , User-Computer Interface
10.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38676137

Human action recognition (HAR) is growing in machine learning with a wide range of applications. One challenging aspect of HAR is recognizing human actions while playing music, further complicated by the need to recognize the musical notes being played. This paper proposes a deep learning-based method for simultaneous HAR and musical note recognition in music performances. We conducted experiments on Morin khuur performances, a traditional Mongolian instrument. The proposed method consists of two stages. First, we created a new dataset of Morin khuur performances. We used motion capture systems and depth sensors to collect data that includes hand keypoints, instrument segmentation information, and detailed movement information. We then analyzed RGB images, depth images, and motion data to determine which type of data provides the most valuable features for recognizing actions and notes in music performances. The second stage utilizes a Spatial Temporal Attention Graph Convolutional Network (STA-GCN) to recognize musical notes as continuous gestures. The STA-GCN model is designed to learn the relationships between hand keypoints and instrument segmentation information, which are crucial for accurate recognition. Evaluation on our dataset demonstrates that our model outperforms the traditional ST-GCN model, achieving an accuracy of 81.4%.


Deep Learning , Music , Humans , Neural Networks, Computer , Human Activities , Pattern Recognition, Automated/methods , Gestures , Algorithms , Movement/physiology
11.
Sensors (Basel) ; 24(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38676207

Teaching gesture recognition is a technique used to recognize the hand movements of teachers in classroom teaching scenarios. This technology is widely used in education, including for classroom teaching evaluation, enhancing online teaching, and assisting special education. However, current research on gesture recognition in teaching mainly focuses on detecting the static gestures of individual students and analyzing their classroom behavior. To analyze the teacher's gestures and mitigate the difficulty of single-target dynamic gesture recognition in multi-person teaching scenarios, this paper proposes skeleton-based teaching gesture recognition (ST-TGR), which learns through spatio-temporal representation. This method mainly uses the human pose estimation technique RTMPose to extract the coordinates of the keypoints of the teacher's skeleton and then inputs the recognized sequence of the teacher's skeleton into the MoGRU action recognition network for classifying gesture actions. The MoGRU action recognition module mainly learns the spatio-temporal representation of target actions by stacking a multi-scale bidirectional gated recurrent unit (BiGRU) and using improved attention mechanism modules. To validate the generalization of the action recognition network model, we conducted comparative experiments on datasets including NTU RGB+D 60, UT-Kinect Action3D, SBU Kinect Interaction, and Florence 3D. The results indicate that, compared with most existing baseline models, the model proposed in this article exhibits better performance in recognition accuracy and speed.


Gestures , Humans , Pattern Recognition, Automated/methods , Algorithms , Teaching
12.
Proc Biol Sci ; 291(2020): 20240250, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38565151

Communication needs to be complex enough to be functional while minimizing learning and production costs. Recent work suggests that the vocalizations and gestures of some songbirds, cetaceans and great apes may conform to linguistic laws that reflect this trade-off between efficiency and complexity. In studies of non-human communication, though, clustering signals into types cannot be done a priori, and decisions about the appropriate grain of analysis may affect statistical signals in the data. The aim of this study was to assess the evidence for language-like efficiency and structure in house finch (Haemorhous mexicanus) song across three levels of granularity in syllable clustering. The results show strong evidence for Zipf's rank-frequency law, Zipf's law of abbreviation and Menzerath's law. Additional analyses show that house finch songs have small-world structure, thought to reflect systematic structure in syntax, and the mutual information decay of sequences is consistent with a combination of Markovian and hierarchical processes. These statistical patterns are robust across three levels of granularity in syllable clustering, pointing to a limited form of scale invariance. In sum, it appears that house finch song has been shaped by pressure for efficiency, possibly to offset the costs of female preferences for complexity.


Finches , Animals , Female , Language , Linguistics , Learning , Gestures , Cetacea , Vocalization, Animal
13.
PLoS One ; 19(4): e0298699, 2024.
Article En | MEDLINE | ID: mdl-38574042

Sign language recognition presents significant challenges due to the intricate nature of hand gestures and the necessity to capture fine-grained details. In response to these challenges, a novel approach is proposed-Lightweight Attentive VGG16 with Random Forest (LAVRF) model. LAVRF introduces a refined adaptation of the VGG16 model integrated with attention modules, complemented by a Random Forest classifier. By streamlining the VGG16 architecture, the Lightweight Attentive VGG16 effectively manages complexity while incorporating attention mechanisms that dynamically concentrate on pertinent regions within input images, resulting in enhanced representation learning. Leveraging the Random Forest classifier provides notable benefits, including proficient handling of high-dimensional feature representations, reduction of variance and overfitting concerns, and resilience against noisy and incomplete data. Additionally, the model performance is further optimized through hyperparameter optimization, utilizing the Optuna in conjunction with hill climbing, which efficiently explores the hyperparameter space to discover optimal configurations. The proposed LAVRF model demonstrates outstanding accuracy on three datasets, achieving remarkable results of 99.98%, 99.90%, and 100% on the American Sign Language, American Sign Language with Digits, and NUS Hand Posture datasets, respectively.


Random Forest , Sign Language , Humans , Pattern Recognition, Automated/methods , Gestures , Upper Extremity
14.
Sci Rep ; 14(1): 7906, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575710

This paper delves into the specialized domain of human action recognition, focusing on the Identification of Indian classical dance poses, specifically Bharatanatyam. Within the dance context, a "Karana" embodies a synchronized and harmonious movement encompassing body, hands, and feet, as defined by the Natyashastra. The essence of Karana lies in the amalgamation of nritta hasta (hand movements), sthaana (body postures), and chaari (leg movements). Although numerous, Natyashastra codifies 108 karanas, showcased in the intricate stone carvings adorning the Nataraj temples of Chidambaram, where Lord Shiva's association with these movements is depicted. Automating pose identification in Bharatanatyam poses challenges due to the vast array of variations, encompassing hand and body postures, mudras (hand gestures), facial expressions, and head gestures. To simplify this intricate task, this research employs image processing and automation techniques. The proposed methodology comprises four stages: acquisition and pre-processing of images involving skeletonization and Data Augmentation techniques, feature extraction from images, classification of dance poses using a deep learning network-based convolution neural network model (InceptionResNetV2), and visualization of 3D models through mesh creation from point clouds. The use of advanced technologies, such as the MediaPipe library for body key point detection and deep learning networks, streamlines the identification process. Data augmentation, a pivotal step, expands small datasets, enhancing the model's accuracy. The convolution neural network model showcased its effectiveness in accurately recognizing intricate dance movements, paving the way for streamlined analysis and interpretation. This innovative approach not only simplifies the identification of Bharatanatyam poses but also sets a precedent for enhancing accessibility and efficiency for practitioners and researchers in the Indian classical dance.


Augmented Reality , Humans , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Head , Gestures
15.
J Neural Eng ; 21(2)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38565124

Objective.Recent studies have shown that integrating inertial measurement unit (IMU) signals with surface electromyographic (sEMG) can greatly improve hand gesture recognition (HGR) performance in applications such as prosthetic control and rehabilitation training. However, current deep learning models for multimodal HGR encounter difficulties in invasive modal fusion, complex feature extraction from heterogeneous signals, and limited inter-subject model generalization. To address these challenges, this study aims to develop an end-to-end and inter-subject transferable model that utilizes non-invasively fused sEMG and acceleration (ACC) data.Approach.The proposed non-invasive modal fusion-transformer (NIMFT) model utilizes 1D-convolutional neural networks-based patch embedding for local information extraction and employs a multi-head cross-attention (MCA) mechanism to non-invasively integrate sEMG and ACC signals, stabilizing the variability induced by sEMG. The proposed architecture undergoes detailed ablation studies after hyperparameter tuning. Transfer learning is employed by fine-tuning a pre-trained model on new subject and a comparative analysis is performed between the fine-tuning and subject-specific model. Additionally, the performance of NIMFT is compared to state-of-the-art fusion models.Main results.The NIMFT model achieved recognition accuracies of 93.91%, 91.02%, and 95.56% on the three action sets in the Ninapro DB2 dataset. The proposed embedding method and MCA outperformed the traditional invasive modal fusion transformer by 2.01% (embedding) and 1.23% (fusion), respectively. In comparison to subject-specific models, the fine-tuning model exhibited the highest average accuracy improvement of 2.26%, achieving a final accuracy of 96.13%. Moreover, the NIMFT model demonstrated superiority in terms of accuracy, recall, precision, and F1-score compared to the latest modal fusion models with similar model scale.Significance.The NIMFT is a novel end-to-end HGR model, utilizes a non-invasive MCA mechanism to integrate long-range intermodal information effectively. Compared to recent modal fusion models, it demonstrates superior performance in inter-subject experiments and offers higher training efficiency and accuracy levels through transfer learning than subject-specific approaches.


Gestures , Recognition, Psychology , Mental Recall , Electric Power Supplies , Neural Networks, Computer , Electromyography
16.
Cogn Sci ; 48(3): e13425, 2024 03.
Article En | MEDLINE | ID: mdl-38500335

Temporal perspectives allow us to place ourselves and temporal events on a timeline, making it easier to conceptualize time. This study investigates how we take different temporal perspectives in our temporal gestures. We asked participants (n = 36) to retell temporal scenarios written in the Moving-Ego, Moving-Time, and Time-Reference-Point perspectives in spontaneous and encouraged gesture conditions. Participants took temporal perspectives mostly in similar ways regardless of the gesture condition. Perspective comparisons showed that temporal gestures of our participants resonated better with the Ego- (i.e., Moving-Ego and Moving-Time) versus Time-Reference-Point distinction instead of the classical Moving-Ego versus Moving-Time contrast. Specifically, participants mostly produced more Moving-Ego and Time-Reference-Point gestures for the corresponding scenarios and speech; however, the Moving-Time perspective was not adopted more than the others in any condition. Similarly, the Moving-Time gestures did not favor an axis over the others, whereas Moving-Ego gestures were mostly sagittal and Time-Reference-Point gestures were mostly lateral. These findings suggest that we incorporate temporal perspectives into our temporal gestures to a considerable extent; however, the classical Moving-Ego and Moving-Time classification may not hold for temporal gestures.


Gestures , Time Perception , Humans , Speech , Time
17.
Cogn Sci ; 48(3): e13428, 2024 03.
Article En | MEDLINE | ID: mdl-38528790

Public speakers like politicians carefully craft their words to maximize the clarity, impact, and persuasiveness of their messages. However, these messages can be shaped by more than words. Gestures play an important role in how spoken arguments are perceived, conceptualized, and remembered by audiences. Studies of political speech have explored the ways spoken arguments are used to persuade audiences and cue applause. Studies of politicians' gestures have explored the ways politicians illustrate different concepts with their hands, but have not focused on gesture's potential as a tool of persuasion. Our paper combines these traditions to ask first, how politicians gesture when using spoken rhetorical devices aimed at persuading audiences, and second, whether these gestures influence the ways their arguments are perceived. Study 1 examined two rhetorical devices-contrasts and lists-used by three politicians during U.S. presidential debates and asked whether the gestures produced during contrasts and lists differ. Gestures produced during contrasts were more likely to involve changes in hand location, and gestures produced during lists were more likely to involve changes in trajectory. Study 2 used footage from the same debates in an experiment to ask whether gesture influenced the way people perceived the politicians' arguments. When participants had access to gestural information, they perceived contrasted items as more different from one another and listed items as more similar to one another than they did when they only had access to speech. This was true even when participants had access to only gesture (in muted videos). We conclude that gesture is effective at communicating concepts of similarity and difference and that politicians (and likely other speakers) take advantage of gesture's persuasive potential.


Gestures , Speech , Humans , Language , Language Development , Hand
18.
Sensors (Basel) ; 24(6)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38544014

This study investigates the characteristics of a novel origami-based, elastomeric actuator and a soft gripper, which are controlled by hand gestures that are recognized through machine learning algorithms. The lightweight paper-elastomer structure employed in this research exhibits distinct actuation features in four key areas: (1) It requires approximately 20% less pressure for the same bending amplitude compared to pneumatic network actuators (Pneu-Net) of equivalent weight, and even less pressure compared to other actuators with non-linear bending behavior; (2) The control of the device is examined by validating the relationship between pressure and the bending angle, as well as the interaction force and pressure at a fixed bending angle; (3) A soft robotic gripper comprising three actuators is designed. Enveloping and pinch grasping experiments are conducted on various shapes, which demonstrate the gripper's potential in handling a wide range of objects for numerous applications; and (4) A gesture recognition algorithm is developed to control the gripper using electromyogram (EMG) signals from the user's muscles.


Algorithms , Elastomers , Electromyography , Gestures , Machine Learning
19.
Sensors (Basel) ; 24(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38544240

Radio frequency (RF) technology has been applied to enable advanced behavioral sensing in human-computer interaction. Due to its device-free sensing capability and wide availability on Internet of Things devices. Enabling finger gesture-based identification with high accuracy can be challenging due to low RF signal resolution and user heterogeneity. In this paper, we propose MeshID, a novel RF-based user identification scheme that enables identification through finger gestures with high accuracy. MeshID significantly improves the sensing sensitivity on RF signal interference, and hence is able to extract subtle individual biometrics through velocity distribution profiling (VDP) features from less-distinct finger motions such as drawing digits in the air. We design an efficient few-shot model retraining framework based on first component reverse module, achieving high model robustness and performance in a complex environment. We conduct comprehensive real-world experiments and the results show that MeshID achieves a user identification accuracy of 95.17% on average in three indoor environments. The results indicate that MeshID outperforms the state-of-the-art in identification performance with less cost.


Algorithms , Gestures , Humans , Pattern Recognition, Automated/methods , Fingers , Motion
20.
Math Biosci Eng ; 21(3): 3594-3617, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38549297

A Multiscale-Motion Embedding Pseudo-3D (MME-P3D) gesture recognition algorithm has been proposed to tackle the issues of excessive parameters and high computational complexity encountered by existing gesture recognition algorithms deployed in mobile and embedded devices. The algorithm initially takes into account the characteristics of gesture motion information, integrating the channel attention (CE) mechanism into the pseudo-3D (P3D) module, thereby constructing a P3D-C feature extraction network that can efficiently extract spatio-temporal feature information while reducing the complexity of the algorithmic model. To further enhance the understanding and learning of the global gesture movement's dynamic information, a Multiscale Motion Embedding (MME) mechanism is subsequently designed. The experimental findings reveal that the MME-P3D model achieves recognition accuracies reaching up to 91.12% and 83.06% on the self-constructed conference gesture dataset and the publicly available Chalearn 2013 dataset, respectively. In comparison with the conventional 3D convolutional neural network, the MME-P3D model demonstrates a significant advantage in terms of parameter count and computational requirements, which are reduced by as much as 82% and 83%, respectively. This effectively addresses the limitations of the original algorithms, making them more suitable for deployment on embedded and mobile devices and providing a more effective means for the practical application of hand gesture recognition technology.


Endrin/analogs & derivatives , Gestures , Pattern Recognition, Automated , Algorithms , Neural Networks, Computer
...