Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.051
1.
Clinics (Sao Paulo) ; 79: 100367, 2024.
Article En | MEDLINE | ID: mdl-38692010

OBJECTIVE: This study investigated the relationship between PDZK1 expression and Dynamic Contrast-Enhanced MRI (DCE-MRI) perfusion parameters in High-Grade Glioma (HGG). METHODS: Preoperative DCE-MRI scanning was performed on 80 patients with HGG to obtain DCE perfusion transfer coefficient (Ktrans), vascular plasma volume fraction (vp), extracellular volume fraction (ve), and reverse transfer constant (kep). PDZK1 in HGG patients was detected, and its correlation with DCE-MRI perfusion parameters was assessed by the Pearson method. An analysis of Cox regression was performed to determine the risk factors affecting survival, while Kaplan-Meier and log-rank tests to evaluate PDZK1's prognostic significance, and ROC curve analysis to assess its diagnostic value. RESULTS: PDZK1 was upregulated in HGG patients and predicted poor overall survival and progression-free survival. Moreover, PDZK1 expression distinguished grade III from grade IV HGG. PDZK1 expression was positively correlated with Ktrans 90, and ve_90, and negatively correlated with kep_max, and kep_90. CONCLUSION: PDZK1 is upregulated in HGG, predicts poor survival, and differentiates tumor grading in HGG patients. PDZK1 expression is correlated with DCE-MRI perfusion parameters.


Brain Neoplasms , Contrast Media , Glioma , Magnetic Resonance Imaging , Neoplasm Grading , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/blood supply , Glioma/diagnostic imaging , Glioma/pathology , Glioma/blood supply , Kaplan-Meier Estimate , Magnetic Resonance Imaging/methods , Prognosis , ROC Curve
2.
J Control Release ; 369: 128-145, 2024 May.
Article En | MEDLINE | ID: mdl-38522817

BACKGROUND: Numerous attempts have been devoted to designing anti-angiogenic agents as a strategy to slow tumor growth and progression. Clinical applications of conventional anti-angiogenic agents face some challenges, e.g., off-target effects for TKIs and also low solid tumor penetration for mAbs. Furthermore, although anti-angiogenic therapy provides a normalization window for better chemo-RT response, in long-term treatments, tumor hypoxia as a result of total removal of VEGF-A by mAbs from the TME or complete blockade of TK receptors induces over-activation of compensatory angiogenic pathways, causing escape. Herein, we investigate the efficacy of si-DOX-DC-EVs to reduce glioma angiogenesis and invasiveness. METHODS: Mature DCs were generated from PBMC and EVs were isolated from the DCs culture media. siRNA and Doxorubicin were loaded into EVs by EP and incubation. Afterward, the uptake of DC-EVs was assessed by flow cytometry, and the subcellular localization of EVs was tested by confocal imaging. Tube formation assay was performed to assess the efficacy of si-DOX-DC-EVs to reduce tumor angiogenesis which was analyzed by DHM. Morphometric analysis of apoptotic cells was performed by DHM and confocal imaging and further, ELISA was performed for hypoxia-related and angiogenic cytokines. The impact of our theranostic system "si-DOX-DC-MVs" on the formation of vascular mimics, colonies, and invasion of C6 cells was checked in vitro. Afterward, orthotropic rat models of glioma were generated and the optimal administration route was selected by in vivo fluorescent analysis. Then, the microvessel density, vimentin expression, and accumulation of immune cells in tumoral tissues were assessed by IHC. Finally, necropsy and autopsy analyses were performed to check the safety of our theranostic agent. RESULTS: DC-EVs loaded with si-DOX-DC-EVs were successfully uptaken by cells with different subcellular trafficking for MVs and exosomes, reduced tumor angiogenesis in DHM analysis, and induced apoptosis in tumoral cells. Moreover, using DHM, we performed a detailed label-free analysis of tip cells which suggested that the tip cells in si-DC-MV treatments lost their geometrical migration capacity to form tube-like structures. Furthermore, the ELISAs performed highlighted that there is a mild overactivation of compensatory Tie2/Ang2 pathway after VEGF-A blockade which confers with severe hypoxia and sustains normal angiogenesis which is the optimal goal of anti-angiogenesis therapy for cancer to avoid resistance.The results of our VM analyses indicated that si-DOX-DC-MVs completely inhibited VM process. Moreover, the invasion, migration, and colony formation of the C6 cells treated with si-DOX-MVs were the least among all treatments. IN was the optimal route of administration. The MVD analyses indicated that si-DOX-DC-MVs reduced the number of tumoral microvessels and normalized vessel morphology. Intense CD8+ T cells were observed near the tumoral vessels in the si-DOX-DC-MVs group and with minimal activation of MT (low Vimentin expression). Necropsy and toxicology results proved that the theranostic system proposed is safe. CONCLUSIONS: DC-EVs loaded with VEGF-A siRNA and Doxorubicin were more potent than BV alone as a multi-disciplinary strategy that combats glioma growth by cytotoxic impacts of DOX and inhibits angiogenesis by VEGF-A siRNAs with excess immunologic benefits from DC-EVs. This next-generation anti-angiogenic agent normalizes tumor vessel density rather than extensively eliminating tumor vessels causing hypoxia and mesenchymal transition.


Dendritic Cells , Doxorubicin , Extracellular Vesicles , Glioma , Neovascularization, Pathologic , RNA, Small Interfering , Vascular Endothelial Growth Factor A , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Glioma/drug therapy , Glioma/therapy , Glioma/pathology , Glioma/blood supply , Animals , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/genetics , Dendritic Cells/drug effects , Cell Line, Tumor , Humans , RNA, Small Interfering/administration & dosage , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/administration & dosage , Apoptosis/drug effects , Rats , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Angiogenesis
3.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Article En | MEDLINE | ID: mdl-38544393

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Glioma , Glutamate-Ammonia Ligase , Magnetic Resonance Imaging , Neovascularization, Pathologic , Animals , Glioma/diagnostic imaging , Glioma/blood supply , Glioma/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Rats , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Male , Cell Line, Tumor
5.
Adv Sci (Weinh) ; 9(21): e2201436, 2022 07.
Article En | MEDLINE | ID: mdl-35619544

The perivascular niche (PVN) is a glioblastoma tumor microenvironment (TME) that serves as a safe haven for glioma stem cells (GSCs), and acts as a reservoir that inevitably leads to tumor recurrence. Understanding cellular interactions in the PVN that drive GSC treatment resistance and stemness is crucial to develop lasting therapies for glioblastoma. The limitations of in vivo models and in vitro assays have led to critical knowledge gaps regarding the influence of various cell types in the PVN on GSCs behavior. This study developed an organotypic triculture microfluidic model as a means to recapitulate the PVN and study its impact on GSCs. This triculture platform, comprised of endothelial cells (ECs), astrocytes, and GSCs, is used to investigate GSC invasion, proliferation and stemness. Both ECs and astrocytes significantly increased invasiveness of GSCs. This study futher identified 15 ligand-receptor pairs using single-cell RNAseq with putative chemotactic mechanisms of GSCs, where the receptor is up-regulated in GSCs and the diffusible ligand is expressed in either astrocytes or ECs. Notably, the ligand-receptor pair SAA1-FPR1 is demonstrated to be involved in chemotactic invasion of GSCs toward PVN. The novel triculture platform presented herein can be used for therapeutic development and discovery of molecular mechanisms driving GSC biology.


Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/blood supply , Glioma/metabolism , Glioma/pathology , Humans , Ligands , Microfluidics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor Microenvironment
6.
Angiogenesis ; 25(3): 355-371, 2022 08.
Article En | MEDLINE | ID: mdl-35112158

Glioblastoma stem cells (GSCs) reside close to blood vessels (BVs) but vascular cues contributing to GSC stemness and the nature of GSC-BVs cross talk are not fully understood. Here, we dissected vascular cues influencing GSC gene expression and function to perfusion-based vascular cues, as well as to those requiring direct GSC-endothelial cell (EC) contacts. In light of our previous finding that perivascular tumor cells are metabolically different from tumor cells residing further downstream, cancer cells residing within a narrow, < 60 µm wide perivascular niche were isolated and confirmed to possess a superior tumor-initiation potential compared with those residing further downstream. To circumvent reliance on marker expression, perivascular GSCs were isolated from the respective locales based on their relative state of quiescence. Combined use of these procedures uncovered a large number of previously unrecognized differentially expressed GSC genes. We show that the unique metabolic milieu of the perivascular niche dominated by the highly restricted zone of mTOR activity is conducive for acquisition of GSC properties, primarily in the regulation of genes implicated in cell cycle control. A complementary role of vascular cues including those requiring direct glioma/EC contacts was revealed using glioma/EC co-cultures. Outstanding in the group of glioma cells impacted by nearby ECs were multiple genes responsible for maintaining GSCs in an undifferentiated state, a large fraction of which also relied on Notch-mediated signaling. Glioma-EC communication was found to be bidirectional, evidenced by extensive Notch-mediated EC reprogramming by contacting tumor cells, primarily metabolic EC reprogramming.


Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/pathology , Cell Line, Tumor , Cues , Glioblastoma/pathology , Glioma/blood supply , Glioma/genetics , Humans , Neoplastic Stem Cells/pathology
7.
Sci Rep ; 12(1): 2121, 2022 02 08.
Article En | MEDLINE | ID: mdl-35136119

The aim of the study was to evaluate the role of pseudocontinuous arterial spin labeling perfusion (pCASL-perfusion) in preoperative assessment of cerebral glioma grades. The study group consisted of 253 patients, aged 7-78 years with supratentorial gliomas (65 low-grade gliomas (LGG), 188 high-grade gliomas (HGG)). We used 3D pCASL-perfusion for each patient in order to calculate the tumor blood flow (TBF). We obtained maximal tumor blood flow (maxTBF) in small regions of interest (30 ± 10 mm2) and then normalized absolute maximum tumor blood flow (nTBF) to that of the contralateral normal-appearing white matter of the centrum semiovale. MaxTBF and nTBF values significantly differed between HGG and LGG groups (p < 0.001), as well as between patient groups separated by the grades (grade II vs. grade III) (p < 0.001). Moreover, we performed ROC-analysis which demonstrated high sensitivity and specificity in differentiating between HGG and LGG. We found significant differences for maxTBF and nTBF between grade III and IV gliomas, however, ROC-analysis showed low sensitivity and specificity. We did not observe a significant difference in TBF for astrocytomas and oligodendrogliomas. Our study demonstrates that 3D pCASL-perfusion as an effective diagnostic tool for preoperative differentiation of glioma grades.


Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Angiography/statistics & numerical data , Perfusion Imaging/statistics & numerical data , Adolescent , Adult , Aged , Brain Neoplasms/blood supply , Child , Female , Glioma/blood supply , Humans , Male , Middle Aged , Neoplasm Grading , Retrospective Studies , Young Adult
8.
Sci Rep ; 12(1): 652, 2022 01 13.
Article En | MEDLINE | ID: mdl-35027580

Glutamate carboxypeptidase II (GCP), also known as prostate specific membrane antigen (PSMA) has been found to be expressed in glioma vasculature in in-vitro studies. GCP expression can be traced with the use of [68Ga]Ga-PSMA-11 PET/CT used routinely for prostate cancer imaging. The aim of this paper was to analyze GCP expression in the recurrent glial tumors in vivo. 34 patients (pts.) aged 44.5 ± 10.3 years with suspicion of recurrence of histologically confirmed glioma grade III (6 pts.) and grade IV (28 pts.) were included in the study. All patients underwent contrast-enhanced MR and [68Ga]Ga-PSMA-11 PET/CT. No radiopharmaceutical-related adverse events were noted. PET/CT was positive in all the areas suspected for recurrence at MR in all the patients. The recurrence was confirmed by histopathological examinations or follow-up imaging in all cases. The images showed a very low background activity of the normal brain. Median maximal standard uptake value (SUVmax) of the tumors was 6.5 (range 0.9-15.6) and mean standard uptake value (SUVmean) was 3.5 (range 0.9-7.5). Target-to-background (TBR) ratios varied between 15 and 1400 with a median of 152. Target-to-liver background ratios (TLR) ranged from 0.2 to 2.6, the median TLR was 1.3. No significant difference of the measured parameters was found between the subgroups according to the glioma grade. High GCP expression in the recurrent glioma was demonstrated in-vivo with the use of [68Ga]Ga-PSMA-11 PET/CT. As the treatment options in recurrent glioma are limited, this observation may open new therapeutic perspectives with the use of radiolabeled agents targeting the GCP.


Gene Expression , Glioma/diagnostic imaging , Glioma/metabolism , Glutamate Carboxypeptidase II/genetics , Glutamate Carboxypeptidase II/metabolism , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography/methods , Adult , Female , Glioma/blood supply , Glioma/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged
9.
MAGMA ; 35(1): 17-27, 2022 Feb.
Article En | MEDLINE | ID: mdl-34910266

OBJECTIVE: To evaluate the feasibility of intravoxel incoherent motion (IVIM) in assessing blood-brain barrier (BBB) integrity and microvasculature in tumoral tissue of glioma patients. METHODS: Images from 8 high-grade and 4 low-grade glioma patients were acquired on a 3 T MRI scanner. Acquisition protocol included pre- and post-contrast T1- and T2-weighted imaging, FLAIR, dynamic susceptibility contrast (DSC), and susceptibility-weighted imaging (SWI). In addition, IVIM was acquired with 15 b-values and fitted under the non-negative least square (NNLS) model to output the diffusion (D) and pseudo-diffusion (D*) coefficients, perfusion fraction (f), and f times D* (fD*) maps. RESULTS: IVIM perfusion-related maps were sensitive to (1) blood flow and perfusion alterations within the microvasculature of brain tumors, in agreement with intra-tumoral susceptibility signal (ITSS); (2) enhancing areas of BBB breakdown in agreement with DSC maps as well as areas of BBB abnormality that was not detected on DSC maps; (3) enhancing perfusion changes within edemas; (4) detecting early foci of increased perfusion within low-grade gliomas. CONCLUSION: The results suggest IVIM may be a promising approach to delineate tumor extension and progression in size, and to predict histological grade, which are clinically relevant information that characterize tumors and guide therapeutic decisions in patients with glioma.


Blood-Brain Barrier , Glioma , Microvessels , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Diffusion Magnetic Resonance Imaging/methods , Feasibility Studies , Glioma/blood supply , Glioma/diagnostic imaging , Glioma/pathology , Glioma/physiopathology , Humans , Microcirculation , Microvessels/diagnostic imaging , Microvessels/pathology , Motion
10.
Cells ; 10(12)2021 12 20.
Article En | MEDLINE | ID: mdl-34944101

Chondroitin sulfate (CS) is a major component of the extracellular matrix found to be abnormally accumulated in several types of cancer tissues. Previous studies have indicated that CS synthases and modification enzymes are frequently elevated in human gliomas and are associated with poor prognosis. However, the underlying mechanisms of CS in cancer progression and approaches for interrupting its functions in cancer cells remain largely unexplored. Here, we have found that CS was significantly enriched surrounding the vasculature in a subset of glioma tissues, which was akin to the perivascular niche for cancer-initiating cells. Silencing or overexpression of the major CS synthase, chondroitin sulfate synthase 1 (CHSY1), significantly regulated the glioma cell invasive phenotypes and modulated integrin expression. Furthermore, we identified CD44 as a crucial chondroitin sulfate proteoglycan (CSPG) that was modified by CHSY1 on glioma cells, and the suppression of CS formation on CD44 by silencing the CHSY1-inhibited interaction between CD44 and integrin ß1 on the adhesion complex. Moreover, we tested the CS-specific binding peptide, resulting in the suppression of glioma cell mobility in a fashion similar to that observed upon the silencing of CHSY1. In addition, the peptide demonstrated significant affinity to CD44, promoted CD44 degradation, and suppressed integrin ß1 expression in glioma cells. Overall, this study proposes a potential regulatory loop between CS, CD44, and integrin ß1 in glioma cells, and highlights the importance of CS in CD44 stability. Furthermore, the targeting of CS by specific binding peptides has potential as a novel therapeutic strategy for glioma.


Chondroitin Sulfates/metabolism , Glioma/metabolism , Glioma/pathology , Hyaluronan Receptors/metabolism , Integrin beta1/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Glioma/blood supply , Glioma/genetics , Glucuronosyltransferase/metabolism , Humans , Mice, Inbred C57BL , Multifunctional Enzymes/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Neoplasm Grading , Neoplasm Invasiveness , Peptides/metabolism , Phenotype , Proteolysis
11.
Cell Rep ; 36(5): 109480, 2021 08 03.
Article En | MEDLINE | ID: mdl-34348160

Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers. We show that neutrophils infiltrate early during tumor progression primarily in the mesenchymal GBM model. Depleting neutrophils in vivo at the onset of disease accelerates tumor growth and reduces the median overall survival time of mice. We show that, as a tumor progresses, bone marrow-derived neutrophils are skewed toward a phenotype associated with pro-tumorigenic processes. Our findings suggest that GBM can remotely regulate systemic myeloid differentiation in the bone marrow to generate neutrophils pre-committed to a tumor-supportive phenotype. This work reveals plasticity in the systemic immune host microenvironment, suggesting an additional point of intervention in GBM treatment.


Bone Marrow/pathology , Brain Neoplasms/pathology , Carcinogenesis/pathology , Glioma/pathology , Neutrophils/pathology , Tumor Microenvironment , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cytotoxicity, Immunologic , Disease Models, Animal , Disease Progression , Female , Glioma/blood supply , Glioma/drug therapy , Humans , Immunosuppression Therapy , Integrases/metabolism , Mice, Inbred C57BL , Mutation/genetics , Neoplasm Staging , Neovascularization, Pathologic/pathology , Survival Analysis
12.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article En | MEDLINE | ID: mdl-34200145

Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood-brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.


Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inhibitors/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neovascularization, Pathologic/drug therapy , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Glioma/blood supply , Glioma/pathology , Humans , Neovascularization, Pathologic/pathology
13.
Cell Death Dis ; 12(6): 615, 2021 06 15.
Article En | MEDLINE | ID: mdl-34131109

Glioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-ß1 gene, upregulated TGF-ß1 expression, and ultimately activated the TGF-ß/smad pathway. Silencing TGF-ß1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-ß/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


Brain Neoplasms , Glioma , Homeodomain Proteins/physiology , Neoplastic Stem Cells/physiology , Neovascularization, Pathologic/genetics , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cells, Cultured , Chick Embryo , Gene Expression Regulation, Neoplastic , Glioma/blood supply , Glioma/genetics , Glioma/pathology , HEK293 Cells , Homeodomain Proteins/genetics , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/metabolism , Signal Transduction/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation/genetics
14.
Br J Radiol ; 94(1125): 20201450, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34106749

OBJECTIVE: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. METHODS: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000-31/12/2019. Studies measuring blood flow in adult Grade II-IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. RESULTS: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). CONCLUSION: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. ADVANCES IN KNOWLEDGE: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.


Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Cerebrovascular Circulation , Glioma/blood supply , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Brain/blood supply , Brain/pathology , Brain Neoplasms/pathology , Glioma/pathology , Humans , Neoplasm Grading
15.
Br J Radiol ; 94(1121): 20201321, 2021 May 01.
Article En | MEDLINE | ID: mdl-33876653

OBJECTIVE: This meta-analysis was carried out for assessing the accuracy of intravoxel incoherent motion (IVIM) parameters true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) in differentiating low-grade gliomas (LGGs) from high-grade gliomas (HGGs). METHODS: Literatures concerning IVIM in the grading of brain gliomas published prior to October 20, 2020, searched in the Embase, PubMed, and Cochrane library. Use the quality assessment of diagnostic accuracy studies 2 (QUADAS 2) to evaluate the quality of studies. We estimated the pooled sensitivity, specificity, and the area under the summary ROC (SROC) curve to identification the accuracy of IVIM parameters D, D*, and f evaluation in grading gliomas. RESULTS: Totally, 6 articles including 252 brain gliomas conform to the inclusion criteria. The pooled sensitivity of parameters D, D*, and f derived from IVIM were 0.85 (95%Cl, 0.76-0.91), 0.78 (95%Cl, 0.71-0.85), and 0.89 (95%Cl, 0.76-0.96), respectively. The pooled specificity were 0.78 (95%Cl, 0.60-0.90), 0.68 (95%Cl, 0.56-0.79), and 0.88 (95%Cl, 0.76-0.94), respectively. Meanwhile, the AUC of SROC curve were 0.89 (95%Cl, 0.86-0.92) , 0.81 (95%Cl, 0.77-0.84), and 0.94 (95%Cl, 0.92-0.96), respectively. CONCLUSION: This meta-analysis suggested that IVIM parameters D, D*, and f have moderate or high diagnosis value accuracy in differentiating HGGs from LGGs, and the parameter f has greater sensitivity and specificity. Standardized methodology is warranted to guide the use of this method for clinical decision-making. However, more clinical studies are needed to prove our view. ADVANCES IN KNOWLEDGE: IVIM parameter f showed greater sensitivity and specificity, as well as excellent performance than parameter D* and D.


Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Microcirculation , Area Under Curve , Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Confidence Intervals , Diffusion Magnetic Resonance Imaging , Glioma/blood supply , Glioma/pathology , Humans , Neoplasm Grading , Odds Ratio , Publication Bias , Sensitivity and Specificity
16.
NMR Biomed ; 34(7): e4516, 2021 07.
Article En | MEDLINE | ID: mdl-33817893

The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.


Bevacizumab/therapeutic use , Glioma/blood supply , Glioma/drug therapy , Animals , Bevacizumab/pharmacology , Cell Line, Tumor , Female , Glioma/diagnostic imaging , Humans , Kinetics , Magnetic Resonance Imaging , Models, Biological , Rats , Tissue Distribution
17.
Aging (Albany NY) ; 13(4): 5055-5068, 2021 02 01.
Article En | MEDLINE | ID: mdl-33535172

Vasculogenic mimicry (VM), the formation of an alternative microvascular circulation independent of VEGF-driven angiogenesis, is reluctant to anti-angiogenesis therapy for glioma patients. However, treatments targeting VM are lacking due to the poor understanding of the molecular mechanism involved in VM formation. By analysing the TCGA database, microRNA-29a-3p (miR-29a-3p) was found to be highly expressed in normal brain tissue compared with glioma. An in vitro study revealed an inhibitory role for miR-29a-3p in glioma cell migration and VM formation, and further study confirmed that ROBO1 is a direct target of miR-29a-3p. Based on this, we engineered human mesenchymal stem cells (MSCs) to produce miR-29a-3p-overexpressing exosomes. Treatment with these exosomes attenuated migration and VM formation in glioma cells. Moreover, the anti-glioma role of miR-29a-3p and miR-29a-3p-overexpressing exosomes were confirmed in vivo. Overall, the present study demonstrates that MSCs can be used to produce miR-29a-3p-overexpressing exosomes, which have great potential for anti-VM therapy and may act as supplements to anti-angiogenetic therapy in the clinic.


Exosomes/metabolism , Glioma/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Gene Knockdown Techniques , Glioma/blood supply , Glioma/metabolism , Humans , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplasm Transplantation , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Roundabout Proteins
18.
Cancer Res ; 81(8): 2142-2156, 2021 04 15.
Article En | MEDLINE | ID: mdl-33593822

The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood-brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR. SIGNIFICANCE: This study identifies the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2142/F1.large.jpg.


Brain Neoplasms/blood supply , Cell Transdifferentiation , Cellular Microenvironment , Glioma/blood supply , Mutation , Pericytes/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Blood Vessels/metabolism , Blood Vessels/pathology , Blood-Brain Barrier/metabolism , Bone Marrow , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Chromosomes, Human, X , ErbB Receptors/genetics , Glioma/immunology , Glioma/pathology , Humans , Immunity, Cellular , Isocitrate Dehydrogenase/genetics , Mice , Pericytes/drug effects , Pericytes/metabolism , Piperidines/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , SOX9 Transcription Factor , Sunitinib/pharmacology , Tumor Hypoxia , Tumor Microenvironment
19.
J Biomed Mater Res A ; 109(6): 915-925, 2021 06.
Article En | MEDLINE | ID: mdl-32779363

Glioblastoma is the most frequently diagnosed primary malignant brain tumor with unfavourable prognosis and high mortality. One of its key features is the extensive abnormal vascular network. Up to now, the mechanism of angiogenesis and the origin of tumor vascularization remain controversial. It is essential to establish an ideal preclinical tumor model to elucidate the mechanism of tumor vascularization, and the role of tumor cells in this process. In this study, both U118 cell and GSC23 cell exhibited good printability and cell proliferation. Compared with 3D-U118, 3D-GSC23 had a greater ability to form cell spheroids, to secrete vascular endothelial growth factor (VEGFA), and to form tubule-like structures in vitro. More importantly, 3D-glioma stem cells (GSC)23 cells had a greater power to transdifferentiate into functional endothelial cells, and blood vessels composed of tumor cells with an abnormal endothelial phenotype was observed in vivo. In summary, 3D bioprinted hydrogel scaffold provided a suitable tumor microenvironment (TME) for glioma cells and GSCs. This bioprinted model supported a novel TME for the research of glioma cells, especially GSCs in glioma vascularization and therapeutic targeting of tumor angiogenesis.


Brain Neoplasms/blood supply , Glioma/blood supply , Neovascularization, Pathologic/pathology , Printing, Three-Dimensional , Tumor Microenvironment , Cell Differentiation , Cell Line, Tumor , Endothelial Cells , Humans , Hydrogels , Microtubules/chemistry , Models, Anatomic , Regional Blood Flow , Tissue Scaffolds , Vascular Endothelial Growth Factor A/metabolism
20.
Methods ; 185: 94-104, 2021 01.
Article En | MEDLINE | ID: mdl-31981608

This paper develops a three-dimensional in silico hybrid model of cancer, which describes the multi-variate phenotypic behaviour of tumour and host cells. The model encompasses the role of cell migration and adhesion, the influence of the extracellular matrix, the effects of oxygen and nutrient availability, and the signalling triggered by chemical cues and growth factors. The proposed in silico hybrid modelling framework combines successfully the advantages of continuum-based and discrete methods, namely the finite element and agent-based method respectively. The framework is thus used to realistically model cancer mechano-biology in a multiscale fashion while maintaining the resolution power of each method in a computationally cost-effective manner. The model is tailored to simulate glioma progression, and is subsequently used to interrogate the balance between the host cells and small sized gliomas, while the go-or-grow phenotype characteristic in glioblastomas is also investigated. Also, cell-cell and cell-matrix interactions are examined with respect to their effect in (macroscopic) tumour growth, brain tissue perfusion and tumour necrosis. Finally, we use the in silico framework to assess differences between low-grade and high-grade glioma growth, demonstrating significant differences in the distribution of cancer as well as host cells, in accordance with reported experimental findings.


Computer Simulation , Glioma/pathology , Models, Biological , Neovascularization, Pathologic , Disease Progression , Glioma/blood supply , Humans , Necrosis , Neoplasm Invasiveness
...