Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
1.
Sci Rep ; 14(1): 14372, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909099

RESUMEN

Deliberate open burning of crop residues emits greenhouse gases and toxic pollutants into the atmosphere. This study investigates the environmental impacts (global warming potential, GWP) and economic impacts (net cash flow) of nine agricultural residue management schemes, including open burning, fertilizer production, and biochar production for corn residue, rice straw, and sugarcane leaves. The environmental assessment shows that, except the open burning schemes, fossil fuel consumption is the main contributor of the GWP impact. The fertilizer and biochar schemes reduce the GWP impact including black carbon by 1.88-1.96 and 2.46-3.22 times compared to open burning. The biochar schemes have the lowest GWP (- 1833.19 to - 1473.21 kg CO2-eq/ton). The economic assessment outcomes reveal that the biochar schemes have the highest net cash flow (222.72-889.31 US$2022/ton or 1258.15-13409.16 US$2022/ha). The expenditures of open burning are practically zero, while the biochar schemes are the most costly to operate. The most preferable agricultural residue management type is the biochar production, given the lowest GWP impact and the highest net cash flow. To discourage open burning, the government should tailor the government assistance programs to the needs of the farmers and make the financial assistance more accessible.


Asunto(s)
Agricultura , Productos Agrícolas , Productos Agrícolas/economía , Productos Agrícolas/crecimiento & desarrollo , Agricultura/economía , Agricultura/métodos , Carbón Orgánico/economía , Calentamiento Global/prevención & control , Calentamiento Global/economía , Fertilizantes/análisis , Zea mays , Oryza/crecimiento & desarrollo , Quema de Residuos al Aire Libre
6.
Nature ; 630(8016): 421-428, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811724

RESUMEN

Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.


Asunto(s)
Producción de Cultivos , Granjas , Calentamiento Global , Óxido Nitroso , Microbiología del Suelo , Suelo , Proteínas Bacterianas/metabolismo , Biocombustibles/provisión & distribución , Flavobacteriaceae/citología , Flavobacteriaceae/crecimiento & desarrollo , Flavobacteriaceae/metabolismo , Calentamiento Global/prevención & control , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Óxido Nitroso/análisis , Suelo/química , Producción de Cultivos/métodos , Producción de Cultivos/tendencias , Europa (Continente)
7.
Environ Sci Pollut Res Int ; 31(26): 38448-38464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806983

RESUMEN

Carbon emissions are important factors causing global warming, which requires global efforts to deal with. In this paper, we investigate the mechanism of financial innovation on reducing carbon emissions in China by constructing a financial innovation development index with factors of green finance as well as fintech development. Empirical results show that financial innovation contributes to reduce carbon intensity by promoting energy structure transition as well as public fiscal expenditure on energy conservation and environmental protection. Moreover, heterogeneity exists in the effect of financial innovation on carbon emission reduction. Financial innovation has a significant role in reducing carbon intensity in eastern regions, but has a relatively small influence on central and western regions. Furthermore, financial innovation has a lag effect on reducing carbon intensity.


Asunto(s)
Carbono , Carbono/química , China , Calentamiento Global/prevención & control , Conservación de los Recursos Energéticos
17.
Medicine (Baltimore) ; 103(9): e37256, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428851

RESUMEN

Environmental concerns, especially global warming, have prompted efforts to reduce greenhouse gas emissions. Healthcare systems, including anesthesia practices, contribute to these emissions. Inhalation anesthetics have a significant environmental impact, with desflurane being the most concerning because of its high global warming potential. This study aimed to educate anesthesiologists on the environmental impact of inhalation anesthetics and assess changes in awareness and practice patterns, specifically reducing desflurane use. This study included data from patients who underwent surgery under general anesthesia 1 month before and after education on the effects of inhalation anesthetics on global warming. The primary endpoint was a change in inhalational anesthetic use. Secondary endpoints included changes in carbon dioxide equivalent (CO2e) emissions, driving equivalent, and medical costs. After the education, desflurane use decreased by 50%, whereas sevoflurane use increased by 50%. This shift resulted in a reduction in the overall amount of inhalational anesthetics used. The total CO2e and driving-equivalent values decreased significantly. The cost per anesthesia case decreased, albeit to a lesser extent than expected. Education on the environmental impact of inhalation anesthetics has successfully altered anesthesiologists' practice patterns, leading to reduced desflurane usage. This change has resulted in decreased CO2e emissions and has had a positive effect on mitigating global warming. However, further research is required to assess the long-term impact of such education and the variability in practice patterns across different institutions.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Humanos , Desflurano , Estudios Retrospectivos , Calentamiento Global/prevención & control , Huella de Carbono , Quirófanos
18.
Laryngoscope ; 134(7): 3206-3214, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38379176

RESUMEN

OBJECTIVE: To quantify the environmental impact of standard direct laryngoscopy surgery and model the environmental benefit of three feasible alternative scenarios that meet safe decontamination reprocessing requirements. STUDY DESIGN: This is a life cycle assessment (LCA) modeling study. SETTING: Yale-New Haven Hospital (YNHH), a 1541-bed tertiary medical center in New Haven, Connecticut, USA. METHODS: We performed cradle-to-grave LCA of DLS at Yale New Haven Hospital in 2022, including global warming potential (GWP), water consumption, and fine particulate matter formation. Three alternative scenarios were modeled: disinfecting surgical tools using high-level disinfection rather than steam sterilization, substituting non-sterile for sterile gloves and gowns; and reducing surgical towel and drape sizes by 30%. RESULTS: Changes in disinfection practices would decrease procedure GWP by 11% in each environmental impact category. Substituting non-sterile gowns and gloves reduced GWP by 15%, with nominal changes to water consumption. Linen size reduction resulted in 28% less procedure-related water consumption. Together, a nearly 30% reduction across all environmental impact categories could be achieved. CONCLUSIONS: Not exceeding minimum Center for Disease Control (CDC) decontamination standards for reusable devices and optimizing non-sterile consumable materials could dramatically reduce healthcare-associated emissions without compromising safety, thereby minimizing the negative consequences of hospital operations to environmental and human health. Findings extend to other non-sterile surgical procedures. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3206-3214, 2024.


Asunto(s)
Laringoscopía , Humanos , Laringoscopía/métodos , Laringoscopía/efectos adversos , Desinfección/métodos , Desinfección/normas , Connecticut , Calentamiento Global/prevención & control , Descontaminación/métodos , Contaminación Ambiental/prevención & control , Material Particulado/análisis
19.
Nature ; 626(7999): 555-564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356065

RESUMEN

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Asunto(s)
Bosques , Calentamiento Global , Árboles , Sequías/estadística & datos numéricos , Retroalimentación , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Árboles/crecimiento & desarrollo , Incendios Forestales/estadística & datos numéricos , Incertidumbre , Restauración y Remediación Ambiental/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...