Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.877
1.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38755012

A hallmark of Parkinson's disease is the appearance of correlated oscillatory discharge throughout the cortico-basal ganglia (BG) circuits. In the primate globus pallidus (GP), where the discharge of GP neurons is normally uncorrelated, pairs of GP neurons exhibit oscillatory spike correlations with a broad distribution of pairwise phase delays in experimental parkinsonism. The transition to oscillatory correlations is thought to indicate the collapse of the normally segregated information channels traversing the BG. The large phase delays are thought to reflect pathological changes in synaptic connectivity in the BG. Here we study the structure and phase delays of spike correlations measured from neurons in the mouse external GP (GPe) subjected to identical 1-100 Hz sinusoidal drive but recorded in separate experiments. First, we found that spectral modes of a GPe neuron's empirical instantaneous phase response curve (iPRC) elucidate at what phases of the oscillatory drive the GPe neuron locks when it is entrained and the distribution of phases at which it spikes when it is not. Then, we show that in this case the pairwise spike cross-correlation equals the cross-correlation function of these spike phase distributions. Finally, we show that the distribution of GPe phase delays arises from the diversity of iPRCs and is broadened when the neurons become entrained. Modeling GPe networks with realistic intranuclear connectivity demonstrates that the connectivity decorrelates GPe neurons without affecting phase delays. Thus, common oscillatory input gives rise to GPe correlations whose structure and pairwise phase delays reflect their intrinsic properties captured by their iPRCs.


Action Potentials , Globus Pallidus , Neurons , Animals , Globus Pallidus/physiology , Neurons/physiology , Action Potentials/physiology , Mice , Mice, Inbred C57BL , Male , Electric Stimulation , Models, Neurological
4.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Article En | MEDLINE | ID: mdl-38608373

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Basal Ganglia , Deep Brain Stimulation , Evoked Potentials , Parkinson Disease , Deep Brain Stimulation/methods , Humans , Basal Ganglia/physiology , Basal Ganglia/physiopathology , Evoked Potentials/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Animals , Globus Pallidus/physiology , Subthalamic Nucleus/physiology
5.
J Neurophysiol ; 131(5): 914-936, 2024 May 01.
Article En | MEDLINE | ID: mdl-38596834

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.


Inhibitory Postsynaptic Potentials , Neurons , Optogenetics , Animals , Mice , Neurons/physiology , Inhibitory Postsynaptic Potentials/physiology , Corpus Striatum/physiology , Corpus Striatum/cytology , Globus Pallidus/physiology , Globus Pallidus/cytology , Action Potentials/physiology , Male , Mice, Inbred C57BL , Female , Neural Pathways/physiology , Synapses/physiology
6.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38484735

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Basal Ganglia , Zebrafish , Animals , Zebrafish/genetics , Basal Ganglia/physiology , Corpus Striatum , Globus Pallidus/physiology , Animals, Genetically Modified , Mammals , Neural Pathways/physiology
8.
J Neurosci Methods ; 4012024 01 01.
Article En | MEDLINE | ID: mdl-38486714

Background: This work presents a toolbox that implements methodology for automated classification of diverse neural responses to optogenetic stimulation or other changes in conditions, based on spike train recordings. New Method: The toolbox implements what we call the Spike Train Response Classification algorithm (STReaC), which compares measurements of activity during a baseline period with analogous measurements during a subsequent period to identify various responses that might result from an event such as introduction of a sustained stimulus. The analyzed response types span a variety of patterns involving distinct time courses of increased firing, or excitation, decreased firing, or inhibition, or combinations of these. Excitation (inhibition) is identified from a comparative analysis of the spike density function (interspike interval function) for the baseline period relative to the corresponding function for the response period. Results: The STReaC algorithm as implemented in this toolbox provides a user-friendly, tunable, objective methodology that can detect a variety of neuronal response types and associated subtleties. We demonstrate this with single-unit neural recordings of rodent substantia nigra pars reticulata (SNr) during optogenetic stimulation of the globus pallidus externa (GPe). Comparison with existing methods: In several examples, we illustrate how the toolbox classifies responses in situations in which traditional methods (spike counting and visual inspection) either fail to detect a response or provide a false positive. Conclusions: The STReaC toolbox provides a simple, efficient approach for classifying spike trains into a variety of response types defined relative to a period of baseline spiking.


Algorithms , Globus Pallidus , Globus Pallidus/physiology
9.
Eur J Neurosci ; 59(7): 1657-1680, 2024 Apr.
Article En | MEDLINE | ID: mdl-38414108

The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate ß-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.


Dopamine , Subthalamic Nucleus , Animals , Haplorhini , Basal Ganglia/physiology , Subthalamic Nucleus/physiology , Globus Pallidus/physiology
12.
J Clin Neurosci ; 120: 76-81, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211444

BACKGROUND: When deep brain stimulation (DBS) infections are identified, they are often too advanced to treat without complete hardware removal. New objective markers to promptly identify DBS infections are needed. We present a patient with GPi (globus pallidus interna) DBS for dystonia, where the electrode impedance unexpectedly increased 3-months post-operatively, followed by serologic and hematologic markers of inflammation at 6-months, prompting explantation surgery. We recreated these conditions in a laboratory environment to analyze the pattern of changing of electrical impedance across the contacts of a DBS lead following Staphylococcus biofilm formation. METHODS: A stainless-steel culture chamber containing 1 % brain heart infusion agar was used. A DBS electrode was dipped in peptone water containing a strain of S. aureus and subsequently introduced into the chamber. The apparatus was incubated at 37 °C for 6 days. Impedance was measured at 24hr intervals. A control experiment without S. Aureus inoculation was used to determine changes in impedance over a period of 6-days. RESULTS: The mean monopolar impedance on day-1 was 751.8 ± 23.8 Ω and on day-3 was 1004.8 ± 68.7 Ω, a 33.7 % rise (p = 0.007). A faint biofilm formation could be seen around the DBS lead by day-2 and florid growth by day-3. After addition of the linezolid solution, a 15.9 % decrease in monopolar impedance was observed from day 3-6 (p = 0.003). CONCLUSION: This study gives insight into impedance trends following a hardware infection in DBS. Increased impedance outside expected norms may be valuable for early prediction of infection. Furthermore, timely management using antibiotics might reduce the frequency of infection-related explant surgeries.


Deep Brain Stimulation , Dystonic Disorders , Humans , Electric Impedance , Staphylococcus aureus , Electrodes , Globus Pallidus/physiology , Treatment Outcome
13.
J Neurol Neurosurg Psychiatry ; 95(4): 300-308, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-37758453

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS: Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS: The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS: GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Torticollis , Humans , Torticollis/therapy , Activation, Metabolic , Deep Brain Stimulation/methods , Subthalamic Nucleus/diagnostic imaging , Globus Pallidus/diagnostic imaging , Globus Pallidus/physiology , Treatment Outcome , Parkinson Disease/therapy
14.
Neuromodulation ; 27(3): 538-543, 2024 Apr.
Article En | MEDLINE | ID: mdl-38085189

OBJECTIVE: This study aimed to evaluate the effect of deep brain stimulation (DBS) on anticholinergic burden in Parkinson's disease (PD) and the association of anticholinergic burden with cognition. MATERIALS AND METHODS: A retrospective chart review in patients with PD who underwent bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi) DBS from 2010 to 2020 reviewed medications with anticholinergic burden at baseline, six months, and one year (N = 216) after surgery. The cumulative anticholinergic burden at each visit was calculated using the Anticholinergic Risk Scale (ARS). RESULTS: ARS scores were significantly lower for patients six months and one year after surgery than at baseline (z = 6.58, p < 0.0001; z = 6.99, p < 0.0001). Change in ARS scores at both six months and one year were driven by down-titration of PD medications (z = 9.35, p < 0.0001; z = 8.61, p < 0.0001), rather than changes in pain, psychiatric, or urinary medications with anticholinergic effects. There was no significant difference in change in ARS scores at one year between targets (t = 0.41, p = 0.68). In addition, there was no significant association between anticholinergic burden and cognitive performance. CONCLUSION: GPi and STN DBS are associated with decreased anticholinergic burden due to PD medications in the first year after surgery.


Deep Brain Stimulation , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/psychology , Cholinergic Antagonists/adverse effects , Retrospective Studies , Deep Brain Stimulation/adverse effects , Globus Pallidus/physiology , Treatment Outcome
16.
J Neuropsychol ; 18 Suppl 1: 8-18, 2024 Mar.
Article En | MEDLINE | ID: mdl-37309888

Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a recognized treatment for medication-refractory dystonia. Problems in executive functions and social cognition can be part of dystonia phenotypes. The impact of pallidal DBS on cognition appears limited, but not all cognitive domains have been investigated yet. In the present study, we compare cognition before and after GPi DBS. Seventeen patients with dystonia of various aetiology completed pre- and post-DBS assessment (mean age 51 years; range 20-70 years). Neuropsychological assessment covered intelligence, verbal memory, attention and processing speed, executive functioning, social cognition, language and a depression questionnaire. Pre-DBS scores were compared with a healthy control group matched for age, gender and education, or with normative data. Patients were of average intelligence but performed significantly poorer than healthy peers on tests for planning and for information processing speed. Otherwise, they were cognitively unimpaired, including social cognition. DBS did not change the baseline neuropsychological scores. We confirmed previous reports of executive dysfunctions in adult dystonia patients with no significant influence of DBS on cognitive functioning in these patients. Pre-DBS neuropsychological assessments appear useful as they support clinicians in counselling their patients. Decisions about post-DBS neuropsychological evaluations should be made on a case-by-case basis.


Deep Brain Stimulation , Dystonia , Adult , Humans , Middle Aged , Dystonia/therapy , Dystonia/psychology , Neuropsychological Tests , Executive Function , Globus Pallidus/physiology , Treatment Outcome
17.
J Neurol Neurosurg Psychiatry ; 95(2): 167-170, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37438098

BACKGROUND: The loss of the ability to swim following deep brain stimulation (DBS), although rare, poses a worrisome risk of drowning. It is unclear what anatomic substrate and neural circuitry underlie this phenomenon. We report a case of cervical dystonia with lost ability to swim and dance during active stimulation of globus pallidus internus. We investigated the anatomical underpinning of this phenomenon using unique functional and structural imaging analysis. METHODS: Tesla (3T) functional MRI (fMRI) of the patient was used during active DBS and compared with a cohort of four matched patients without this side effect. Structural connectivity mapping was used to identify brain network engagement by stimulation. RESULTS: fMRI during stimulation revealed significant (Pbonferroni<0.0001) stimulation-evoked responses (DBS ON

Deep Brain Stimulation , Globus Pallidus , Humans , Globus Pallidus/diagnostic imaging , Globus Pallidus/physiology , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Treatment Outcome , Magnetic Resonance Imaging
18.
Neuromodulation ; 27(3): 440-446, 2024 Apr.
Article En | MEDLINE | ID: mdl-37999699

OBJECTIVES: Guanine nucleotide-binding protein alpha-activating activity polypeptide O (GNAO1) syndrome, a rare congenital monogenetic disorder, is characterized by a neurodevelopmental syndrome and the presence of dystonia. Dystonia can be very pronounced and even lead to a life-threatening status dystonicus. In a small number of pharmaco-refractory cases, deep brain stimulation (DBS) has been attempted to reduce dystonia. In this study, we summarize the current literature on outcome, safety, and outcome predictors of DBS for GNAO1-associated dystonia. MATERIALS AND METHODS: We conducted a systematic review and meta-analysis on individual patient data. We included 18 studies describing 28 unique patients. RESULTS: The mean age of onset of symptoms was 2.4 years (SD 3.8); 16 of 28 patients were male, and dystonia was nearly always generalized (20/22 patients). Symptoms were present before DBS for a median duration of 19.5 months, although highly variable, occurring between 3 and 168 months. The exact phenotype, genotype, and radiologic abnormalities varied and seemed to be of little importance in terms of DBS outcome. All studies described an improvement in dystonia. Our meta-analysis focused on pallidal DBS and found an absolute and relative improvement in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) of 32.5 points (37.9%; motor part; p = 0.001) and 5.8 points (21.5%; disability part; p = 0.043) at last follow-up compared with preoperative state; 80% of patients were considered responders (BFMDRS-M reduction by ≥25%). Although worsening over time does occur, an improvement was still observed in patients after >10 years. All reported cases of status dystonicus resolved after DBS surgery. Skin erosion and infection were observed in 18% of patients. CONCLUSION: Pallidal DBS can be efficacious and safe in GNAO1-associated dystonia.


Deep Brain Stimulation , Dystonia , Dystonic Disorders , Heredodegenerative Disorders, Nervous System , Child, Preschool , Female , Humans , Male , Dystonia/genetics , Dystonia/therapy , Dystonic Disorders/genetics , Dystonic Disorders/therapy , Globus Pallidus/physiology , GTP-Binding Protein alpha Subunits, Gi-Go , Treatment Outcome , Infant, Newborn , Infant , Child
19.
J Neurosci ; 44(9)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38123981

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Parkinson Disease , Subthalamic Nucleus , Rats , Animals , Basal Ganglia/physiology , Globus Pallidus/physiology , Neurons/physiology , Beta Rhythm/physiology
...