Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 138: 1158-1169, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28772236

RESUMEN

Glucagon has plenty of effects via a specific glucagon receptor(GCGR) like elevating the blood glucose, improving fatty acids metabolism, energy expenditure and increasing lipolysis in adipose tissue. The most important role of glucagon is to regulate the blood glucose, but the emergent possibilities of hyperglycaemia is exist. Glucagon could also slightly activate glucagon-like peptide-1 receptor(GLP-1R), which lead to blood glucose lowering effect. This study aims to erase the likelihood of hyperglycaemia and to remain the inherent catabolic effects through improving GLP-1R activation and deteriorating GCGR activation so as to lower the bodyweight and show diabetes-protective effects. Firstly, twelve cysteine modified GLP-1/GCGR dual agonists were synthesized (1-12). Then, the GLP-1R/GCGR mediated activation and biological activity in normal ICR mice were comprehensively performed. Compounds substituted by cysteine at positions 22, 23 and 25 in glucagon were observed to be better regulators of the body weight and blood glucose. To prolong the half-lives of derivatives, various fatty side chain maleimides were modified to optimal glucagon analogues. Laurate maleimide conjugate 4d was the most potent. Administration of 1000 nmol/kg 4d once every two days for a month normalized adiposity and glucose tolerance in diet-induced obese (DIO) mice. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were observed. These studies suggest that compound 4d behaves well in lowering body weight and maintaining energy expenditure without a chance of hyperglycaemia, 4d has strong clinical potential as an efficient GLP-1/GCGR agonist in the prevention and treatment of obesity and dyslipidemia.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Péptido 1 Similar al Glucagón/agonistas , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Receptores de Glucagón/agonistas , Animales , Peso Corporal/efectos de los fármacos , Glucagón/síntesis química , Glucagón/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Obesos
2.
J Med Chem ; 59(17): 8061-7, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27509198

RESUMEN

Glucagon (Gcg) 1 serves a seminal physiological role in buffering against hypoglycemia, but its poor biophysical properties severely complicate its medicinal use. We report a series of novel glucagon analogues of enhanced aqueous solubility and stability at neutral pH, anchored by Gcg[Aib16]. Incorporation of 3- and 4-pyridyl-alanine (3-Pal and 4-Pal) enhanced aqueous solubility of glucagon while maintaining biological properties. Relative to native hormone, analogue 9 (Gcg[3-Pal6,10,13, Aib16]) demonstrated superior biophysical character, better suitability for medicinal purposes, and comparable pharmacology against insulin-induced hypoglycemia in rats and pigs. Our data indicate that Pal is a versatile surrogate to natural aromatic amino acids and can be employed as an alternative or supplement with isoelectric adjustment to refine the biophysical character of peptide drug candidates.


Asunto(s)
Alanina/análogos & derivados , Glucagón/análogos & derivados , Glucagón/química , Hipoglucemia/tratamiento farmacológico , Piridinas/química , Alanina/química , Animales , AMP Cíclico/biosíntesis , Estabilidad de Medicamentos , Glucagón/síntesis química , Glucagón/farmacología , Células HEK293 , Humanos , Masculino , Ratas , Técnicas de Síntesis en Fase Sólida , Solubilidad , Porcinos
3.
J Diabetes Sci Technol ; 9(1): 24-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25550410

RESUMEN

Despite a vigorous research effort, to date, the development of systems that achieve glucagon stability in aqueous formulations (without reconstitution) has failed to produce any clinical candidates. We have developed a novel, nonaqueous glucagon formulation based on a biocompatible pharmaceutical solvent, dimethyl sulfoxide, which demonstrates excellent physical and chemical stability at relatively high concentrations and at high temperatures. This article reports the development of a novel, biocompatible, nonaqueous native human glucagon formulation for potential use in subcutaneous infusion pump systems. Data are presented that demonstrate physical and chemical stability under presumed storage conditions (>2 years at room temperature) as well as "in use" stability and compatibility in an Insulet's OmniPod(®) infusion pump. Also presented are results of a skin irritation study in a rabbit model and pharmacokinetics/pharmacodynamics data following pump administration of glucagon in a diabetic swine model. This nonaqueous glucagon formulation is suitable for further clinical development in pump systems.


Asunto(s)
Glucagón/administración & dosificación , Glucagón/síntesis química , Bombas de Infusión , Animales , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Glucagón/química , Masculino , Conejos , Porcinos
4.
J Diabetes Sci Technol ; 4(6): 1322-31, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21129326

RESUMEN

BACKGROUND: Glucagon is a life-saving medication used in the treatment of hypoglycemia. It possesses poor solubility in aqueous buffers at or near physiological pH values. At low and high pH, at which the peptide can be formulated to concentrations of a milligram or more per milliliter, the chemical integrity of the hormone is limited, as evidenced by the formation of multiple degradation-related peptides. Consequently, the commercial preparation is provided as a lyophilized solid with an acidic diluent and directions for rendering it soluble at the time of use. Any unused material is recommended for disposal immediately after initial use. METHODS: A set of glucagon analogs was prepared by solid-phase peptide synthesis to explore the identification of a glucagon analog with enhanced solubility and chemical stability at physiological pH. The physical properties of the peptide analogs were studied by solubility determination, high-performance chromatography, and mass spectral analysis. The biochemical properties were determined in engineered human embryonic kidney cell line 293 (HEK293) cells that overexpressed either the human glucagon or glucagon-like peptide-1 (GLP-1) receptors linked to a luciferase reporter gene. RESULTS: We observed the previously characterized formation of glucagon degradation products upon incubation of the peptide in dilute acid for extended periods or elevated temperature. Lowering the isoelectric point of the hormone through the substitution of asparagine-28 with aspartic acid significantly increased the solubility at physiological pH. Similarly, the C-terminal extension (Cex) of the hormone with an exendin-based, 10-residue, C-terminal sequence yielded a peptide of dramatically enhanced solubility. These two glucagon analogs, D28 and Cex, maintained high potency and selectivity for the glucagon receptor relative to GLP-1 receptor. CONCLUSIONS: Glucagon presents unique structural challenges to the identification of an analog of high biological activity and selectivity that also possesses sufficient aqueous solubility and stability such that it might be developed as a ready-to-use medicine. The glucagon analogs D28 and Cex demonstrated all of the chemical, physical, and biochemical properties supportive of further study as potential clinical candidates for treatment of hypoglycemia.


Asunto(s)
Glucagón/química , Secuencia de Aminoácidos , Asparagina , Ácido Aspártico , Línea Celular , Química Farmacéutica , Cromatografía Líquida de Alta Presión , AMP Cíclico/metabolismo , Estabilidad de Medicamentos , Genes Reporteros , Glucagón/análogos & derivados , Glucagón/síntesis química , Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón , Humanos , Concentración de Iones de Hidrógeno , Hipoglucemia/tratamiento farmacológico , Punto Isoeléctrico , Datos de Secuencia Molecular , Receptores de Glucagón/efectos de los fármacos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Transfección
5.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 63(Pt 7): 599-601, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17620721

RESUMEN

Glucagon and glucagon-like peptide 1 (GLP-1) are drugs or drug candidates for the treatment of metabolic diseases such as diabetes and obesity. The native hormones have pharmacological deficiencies such as short half-life and poor solubility. A novel glucagon receptor agonist named glucagon-Cex has been designed, synthesized and crystallized. This peptide was highly soluble under physiological conditions and crystallized readily. The crystal diffracted X-rays to 2.2 A resolution and the diffraction was consistent with space group P23, with unit-cell parameters a = b = c = 48.20 A, alpha = beta = gamma = 90.0 degrees. The crystals were suitable for a full structural determination to reveal the conformational differences between glucagon-Cex and the native hormone.


Asunto(s)
Glucagón/síntesis química , Glucagón/uso terapéutico , Cristalización , Cristalografía por Rayos X , Glucagón/análogos & derivados , Obesidad/tratamiento farmacológico , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/uso terapéutico
6.
Mini Rev Med Chem ; 5(5): 469-77, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15892688

RESUMEN

Diabetes Mellitus (DM) is a highly prevalent chronic disease. Recent years have witnessed development of many new oral drugs; novel insulin analogs and their delivery systems for the treatment of patients with either type-1 or type-2 DM. The impetus for developing new antidiabetic drugs comes from the unmet need of pharmacological tools that allow diabetic patients to achieve recommended glucose control targets by precise, safe and effective ways. The number of people afflicted with DM worldwide has increased considerably in recent years and is projected to increase dramatically over the next decades. In the recent times, design and synthesis of bioactive peptides and peptidomimetics has undergone a paradigm shift. Non-proteinogenic amino acids, peptides and peptidomimetics are emerging as novel drug candidates for the treatment of various diseases and/or disorders. This review mainly discusses the advancements in the usage of unnatural amino acids, peptides and peptidomimetics as potential therapeutic agents for the treatment of DM.


Asunto(s)
Aminoácidos/química , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Imitación Molecular , Péptidos/química , Aminoácidos/uso terapéutico , Polipéptido Inhibidor Gástrico/síntesis química , Polipéptido Inhibidor Gástrico/uso terapéutico , Glucagón/síntesis química , Glucagón/uso terapéutico , Péptido 1 Similar al Glucagón , Humanos , Hipoglucemiantes/farmacología , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/uso terapéutico , Péptidos/uso terapéutico , Precursores de Proteínas/síntesis química , Precursores de Proteínas/uso terapéutico
7.
Eur J Med Chem ; 39(6): 473-80, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15183905

RESUMEN

A series of GLP-1-[7-36]-NH(2) (tGLP-1) and GLP-1-[7-37] analogs modified in position 7, 8, 9 and 36, have been designed and evaluated on murine GLP-1 receptors expressed in RIN T3 cells for both their affinity and activity. Ten of the synthesized peptides were found full agonists with activities superior or at least equal to that of the native hormone. Five of them were investigated for their plasmatic stability and the most stable, [a(8)-desR(36)]GLP-1-[7-37]- NH(2) (Compound 8), evaluated in vivo in a glucose tolerance test which confirmed a clearly longer activity than that of the native hormone. We also performed circular dichroism study and propose a hypothetical structural model explaining the most part of observed activities of GLP-1 analogs on RIN T3 cells.


Asunto(s)
AMP Cíclico/biosíntesis , Hormonas Gastrointestinales/síntesis química , Glucagón/síntesis química , Fragmentos de Péptidos/síntesis química , Precursores de Proteínas/síntesis química , Receptores de Glucagón/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Dicroismo Circular , AMP Cíclico/química , Hormonas Gastrointestinales/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Prueba de Tolerancia a la Glucosa , Concentración 50 Inhibidora , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Conformación Proteica , Precursores de Proteínas/metabolismo , Ratas , Relación Estructura-Actividad
8.
J Endocrinol ; 180(3): 379-88, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15012592

RESUMEN

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.


Asunto(s)
Hipoglucemiantes/síntesis química , Fragmentos de Péptidos/metabolismo , Animales , Línea Celular Transformada , Cricetinae , AMP Cíclico/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Glucagón/análogos & derivados , Glucagón/síntesis química , Glucagón/metabolismo , Glucagón/uso terapéutico , Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Hipoglucemiantes/análisis , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Mesocricetus , Ratones , Ratones Obesos , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/uso terapéutico , Precursores de Proteínas/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados
9.
J Biol Chem ; 279(6): 3998-4006, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14610075

RESUMEN

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP; also known as gastric inhibitory polypeptide) are incretin hormones that reduce postprandial glycemic excursions via enhancing insulin release but are rapidly inactivated by enzymatic N-terminal truncation. As such, efforts have been made to improve their plasma stability by synthetic modification or by inhibition of the responsible protease, dipeptidyl peptidase (DP) IV. Here we report a parallel comparison of synthetic GIP and GLP-1 with their Ser2- and Ser(P)2-substituted analogs, examining receptor binding and activation, metabolic stability, and biological effects in vivo. Both incretins and their Ser2-substituted analogs showed similar EC50s (0.16-0.52 nm) and IC50s (4.3-8.1 nm) at their respective cloned receptors. Although both phosphoserine 2-modified (Ser(PO3H2); Ser(P)) peptides were able to stimulate maximal cAMP production and fully displace receptor-bound tracer, they showed significantly right-shifted concentration-response curves and binding affinities. Ser2-substituted analogs were moderately resistant to DP IV cleavage, whereas [Ser(P)2]GIP and [Ser(P)2] GLP-1 showed complete resistance to purified DP IV. It was shown that the Ser(P) forms were dephosphorylated in serum and thus in vivo act as precursor forms of Ser2-substituted analogs. When injected subcutaneously into conscious Wistar rats, all peptides reduced glycemic excursions (rank potency: [Ser(P)2]incretins > or = [Ser2] incretins > native hormones). Insulin determinations indicated that the reductions in postprandial glycemia were at least in part insulin-mediated. Thus it has been shown that despite having low in vitro bioactivity using receptor-transfected cells, in vivo potency of [Ser(P)2] incretins was comparable with or greater than that of native or [Ser2]peptides. Hence, Ser(P)2-modified incretins present as novel glucose-lowering agents.


Asunto(s)
Hormonas Gastrointestinales/síntesis química , Animales , Glucemia/metabolismo , Células CHO , Cricetinae , AMP Cíclico/metabolismo , Dipeptidil Peptidasa 4 , Estabilidad de Medicamentos , Polipéptido Inhibidor Gástrico/síntesis química , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/farmacología , Glucagón/síntesis química , Glucagón/metabolismo , Glucagón/farmacología , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Técnicas In Vitro , Masculino , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Fosfoserina/química , Precursores de Proteínas/síntesis química , Precursores de Proteínas/metabolismo , Precursores de Proteínas/farmacología , Ratas , Ratas Wistar , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Glucagón/metabolismo , Serina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
IDrugs ; 6(3): 251-8, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12789615

RESUMEN

Novo Nordisk A/S, under license from Scios Inc, is developing NN-2211, a stable analog of the naturally occurring peptide hormone glucagon-like peptide 1 (GLP-1), which stimulates insulin release in response to increases in blood sugar levels, for the potential treatment of type 2 diabetes.


Asunto(s)
Glucagón/análogos & derivados , Glucagón/uso terapéutico , Tecnología Farmacéutica/métodos , Animales , Ensayos Clínicos como Asunto/estadística & datos numéricos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/síntesis química , Glucagón/farmacología , Péptido 1 Similar al Glucagón/análogos & derivados , Humanos , Liraglutida , Tecnología Farmacéutica/legislación & jurisprudencia
11.
J Pept Res ; 58(2): 151-8, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11532074

RESUMEN

We examined the functional role of glycine at position 4 in the potent glucagon antagonist [desHis(1), Glu(9)]glucagon amide, by substituting the L- and D-enantiomers of alanine and leucine for Gly(4) in this antagonist. The methyl and isobutyl side-chain substituents were introduced to evaluate the preference shown by the glucagon receptor, if any, for the orientation of the N-terminal residues. The L-amino acids demonstrated only slightly better receptor recognition than the D-enantiomers. These results suggest that the Gly(4) residue in glucagon antagonists may be exposed to the outside of the receptor. The enhanced binding affinities of analogs 1 and 3 compared with the parent antagonist, [desHis(1), Glu(9)]glucagon amide, may have resulted from the strengthened hydrophobic patch in the N-terminal region and/or the increased propensity for a helical conformation due to the replacement of alanine and leucine for glycine. Thus, as a result of the increased receptor binding affinities, antagonist activities of analogs 1-4 were increased 10-fold compared with the parent antagonist, [desHis(1), Glu(9)]glucagon amide. These potent glucagon antagonists have among the highest pA(2) values of any glucagon analogs reported to date.


Asunto(s)
Glucagón/análogos & derivados , Glucagón/antagonistas & inhibidores , Glicina/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Unión Competitiva , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Relación Dosis-Respuesta a Droga , Glucagón/síntesis química , Glucagón/metabolismo , Glucagón/farmacología , Concentración 50 Inhibidora , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
12.
J Med Chem ; 44(19): 3109-16, 2001 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-11543679

RESUMEN

In search for the bioactive conformation of glucagon, "positional cyclization scanning" was used to determine secondary structures of glucagon required for maximal interaction with the glucagon receptor. Because glucagon is flexible in nature, its bioactive conformation is not known except for an amphiphilic helical conformation at the C-terminal region. To understand the conformational requirement for the N-terminal region that appears to be essential for signal transduction, a series of glucagon analogues conformationally constrained by disulfide or lactam bridges have been designed and synthesized. The conformational restrictions via disulfide bridges between cysteine i and cysteine i + 5, or lactam bridges between lysine i and glutamic acid i + 4, were applied to induce and stabilize certain corresponding secondary structures. The results from the binding assays showed that all the cyclic analogues with disulfide bridges bound to the receptor with significantly reduced binding affinities compared to their linear counterparts. On the contrary, glucagon analogues containing lactam bridges, in particular, c[Lys(5), Glu(9)]glucagon amide (10) and c[Lys(17), Glu(21)]glucagon amide (14), demonstrated more than 7-fold increased receptor binding affinities than native glucagon. These results suggest that the bioactive conformation of glucagon may adopt a helical conformation at the N-terminal region as well as the C-terminal region, which was not evident from earlier biophysical studies of glucagon.


Asunto(s)
Glucagón/análogos & derivados , Glucagón/química , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dicroismo Circular , Disulfuros/síntesis química , Disulfuros/química , Disulfuros/farmacología , Glucagón/síntesis química , Glucagón/farmacología , Técnicas In Vitro , Lactamas/síntesis química , Lactamas/química , Lactamas/farmacología , Hígado/ultraestructura , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Ensayo de Unión Radioligante , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
13.
Biochemistry ; 40(9): 2860-9, 2001 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11258897

RESUMEN

Studies support a role for glucagon-like peptide 1 (GLP-1) as a potential treatment for diabetes. However, since GLP-1 is rapidly degraded in the circulation by cleavage at Ala(2), its clinical application is limited. Hence, understanding the structure-activity of GLP-1 may lead to the development of more stable and potent analogues. In this study, we investigated GLP-1 analogues including those with N-, C-, and midchain modifications and a series of secretin-class chimeric peptides. Peptides were analyzed in CHO cells expressing the hGLP-1 receptor (R7 cells), and in vivo oral glucose tolerance tests (OGTTs) were performed after injection of the peptides in normal and diabetic (db/db) mice. [D-Ala(2)]GLP-1 and [Gly(2)]GLP-1 showed normal or relatively lower receptor binding and cAMP activation but exerted markedly enhanced abilities to reduce the glycemic response to an OGTT in vivo. Improved biological effectiveness of [D-Ala(2)]GLP-1 was also observed in diabetic db/db mice. Similarly, improved biological activity of acetyl- and hexenoic-His(1)-GLP-1, glucagon((1-5)-, glucagon((1-10))-, PACAP(1-5)-, VIP(1-5)-, and secretin((1-10))-GLP-1 was observed, despite normal or lower receptor binding and activation in vitro. [Ala(8/11/12/16)] substitutions also increased biological activity in vivo over wtGLP-1, while C-terminal truncation of 4-12 amino acids abolished receptor binding and biological activity. All other modified peptides examined showed normal or decreased activity in vitro and in vivo. These results indicate that specific N- and midchain modifications to GLP-1 can increase its potency in vivo. Specifically, linkage of acyl-chains to the alpha-amino group of His(1) and replacement of Ala(2) result in significantly increased biological effects of GLP-1 in vivo, likely due to decreased degradation rather than enhanced receptor interactions. Replacement of certain residues in the midchain of GLP-1 also augment biological activity.


Asunto(s)
Glucagón/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Unión Competitiva , Células CHO , Cricetinae , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Glucagón/administración & dosificación , Glucagón/síntesis química , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Prueba de Tolerancia a la Glucosa , Humanos , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/síntesis química , Precursores de Proteínas/administración & dosificación , Precursores de Proteínas/síntesis química , Ensayo de Unión Radioligante , Receptores de Glucagón/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad
14.
J Med Chem ; 43(9): 1714-22, 2000 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-10794689

RESUMEN

Glucagon was systematically modified by forming lactam bridges within the central region of the molecule to give conformationally constrained cyclic analogues. Six cyclic glucagon analogues have been designed and synthesized. They are c[Asp(9),Lys(12)][Lys(17,18), Glu(21)]glucagon-NH(2) (1), c[Asp(9),Lys(12)]glucagon-NH(2) (2), c[Lys(12),Asp(15)]glucagon-NH(2) (3), c[Asp(15), Lys(18)]glucagon-NH(2) (4), [Lys(17)-c[Lys(18), Glu(21)]glucagon-NH(2) (5), and c[Lys(12),Asp(21)]glucagon-NH(2) (6). The receptor binding potencies and receptor second messenger activities were determined by radio-receptor binding assays and adenylate cyclase assays, respectively, using rat liver plasma membranes. Most interestingly, analogues 1, 2, 3, and 4 were antagonists of glucagon stimulated adenylate cyclase activity, whereas analogues 5 and 6 were partial agonists in the functional assay. All of the cyclic analogues were found to have reduced binding potencies relative to glucagon. The structural features that might be responsible for these effects were studied using circular dichroism spectroscopy and molecular modeling. These results demonstrated the significant modulations of both receptor binding affinity and transduction (adenylate cyclase activity) that can accompany regional conformational constraints even in larger polypeptide ligands. These studies suggest that the entire molecular conformation, including the flexible middle portion, is important for molecular recognition and transduction at the hepatic glucagon receptor.


Asunto(s)
Fármacos Gastrointestinales/síntesis química , Glucagón/análogos & derivados , Secuencia de Aminoácidos , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Dicroismo Circular , Diseño de Fármacos , Glucagón/síntesis química , Técnicas In Vitro , Hígado/metabolismo , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa Bombardeada por Átomos Veloces
15.
Regul Pept ; 86(1-3): 103-11, 2000 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-10672909

RESUMEN

Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and improves glycemic control in type 2 diabetes. In serum the peptide is degraded by dipeptidyl peptidase IV (DPP IV). The resulting short biological half-time limits the therapeutic use of GLP-1. DPP IV requires an intact alpha-amino-group of the N-terminal histidine of GLP-1 in order to perform its enzymatic activity. Therefore, the following GLP- analogues with alterations in the N-terminal position 1 were synthesized: N-methylated- (N-me-GLP-1), alpha-methylated (alpha-me-GLP-1), desamidated- (desamino-GLP-1) and imidazole-lactic-acid substituted GLP-1 (imi-GLP-1). All GLP-1 analogues except alpha-me-GLP-1 were hardly degraded by DPP IV in vitro. The GLP-1 analogues showed receptor affinity and in vitro biological activity comparable to native GLP-1 in RINm5F cells. GLP-1 receptor affinity was highest for imi-GLP-1, followed by alpha-me-GLP-1 and N-me-GLP-1. Only desamino-GLP-1 showed a 15-fold loss of receptor affinity compared to native GLP-1. All analogues stimulated intracellular cAMP production in RINm5F cells in concentrations comparable to GLP-1. N-terminal modifications might therefore be useful in the development of long-acting GLP-1 analogues for type 2 diabetes therapy.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Glucagón/análogos & derivados , Glucagón/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Animales , Unión Competitiva , Cromatografía Líquida de Alta Presión , AMP Cíclico/metabolismo , Dipeptidil Peptidasa 4/química , Glucagón/síntesis química , Péptido 1 Similar al Glucagón , Insulinoma , Estructura Molecular , Ratas , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal/metabolismo , Células Tumorales Cultivadas
16.
J Pharm Sci ; 87(2): 183-9, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9519151

RESUMEN

Physicochemical characterization of dry, excipient-free recombinant glucagon-like peptide-1 (rGLP-1) indicates the conformation and purity of the bulk peptide is dependent on the purification scheme and the in-process storage and handling. The recombinant peptide preparations were highly pure and consistent with the expected primary structure and bioactivity. However, variations in solubility were observed for preparations processed by different methods. The differences in solubility were shown to be due to conformational differences induced during purification. A processing scheme was identified to produce rGLP-1 in its native, soluble form, which exhibits FT-IR spectra, consistent with glucagon-like peptide-1 synthesized by solid-state peptide synthesis. rGLP-1 was also found to undergo base-catalyzed amino acid racemization. Racemization can impact the yield and impurity profile of bulk rGLP-1, since the peptide is exposed to alkali during its purification. A combination of enzymatic digestion using leucine aminopeptidase (which cleaves N-terminal L-amino acids >> D-amino acids) and matrix-assisted laser desorption ionization mass spectrometry was used to identify racemization as a degradation pathway. The racemization rate increased with increasing temperature and base concentration, but decreased with increasing peptide concentration. The racemized peptides were shown to be less bioactive than rGLP-1.


Asunto(s)
Glucagón/química , Fragmentos de Péptidos/química , Conformación Proteica , Precursores de Proteínas/química , Proteínas Recombinantes/química , Precipitación Química , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Excipientes , Glucagón/síntesis química , Péptido 1 Similar al Glucagón , Concentración de Iones de Hidrógeno , Cinética , Fragmentos de Péptidos/síntesis química , Precursores de Proteínas/síntesis química , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
17.
J Pept Res ; 49(4): 293-9, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9176812

RESUMEN

We have designed and synthesized eight compounds 2-9 which incorporate neutral, hydrophobic amino acid residues in positions 9, 11 and 16 of the glucagon molecule: (2) [desHis1, Val9. Ile11,16] glucagon amide, (3) [desHis1, Val9,11,16] glucagon amide, (4) [desHis1, Val9, Leu11,16]glucagon amide, (5) [desHis1, Nle9, Ile11,16]glucagon amide, (6) [desHis1, Nle9, Val11,16] glucagon amide, (7) [desHis1,-Nle9, Leu11,16] glucagon amide, (8) [desHis1, Val9, Leu11,16, Lys17,18, Glu21] glucagon amide and (9) [desHis1, Nle9, Leu11,16, Lys17,18, Glu21] glucagon amide. The effect of neutral, hydrophobic residues at positions 9, 11 and 16 led to good binding to the glucagon receptor. Compared to glucagon (IC50 = 1.5 nM), analogues 2-9 were found to have IC50 values of 6.0, 6.0, 11.0, 9.0, 2.5, 2.8, 6.5 and 7.0 nM, respectively. When these compounds were tested for their ability to block adenylate cyclase (AC) activity, they were found to be antagonists having no stimulation of adenyl cyclase, with pA2 values of 6.15, 6.20, 6.30, 7.25, 6.10, 7.30, 6.25 and 7.25, respectively.


Asunto(s)
Inhibidores de Adenilato Ciclasa , Glucagón/análogos & derivados , Glucagón/química , Secuencia de Aminoácidos , Animales , Membrana Celular/enzimología , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucagón/síntesis química , Glucagón/farmacología , Indicadores y Reactivos , Cinética , Hígado/enzimología , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
18.
Biochemistry ; 33(22): 6884-7, 1994 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-8204623

RESUMEN

The discovery of aspartic acid at position 9 in glucagon to be a critical residue for transduction has spurred renewed efforts to identify other strategic residues in the peptide sequence that dictate either receptor binding or biological activity. It also became apparent from further studies that Asp9 operates in conjunction with His1 in the activation mechanism that follows binding to the glucagon receptor. Indeed, it was later demonstrated that the protonatable histidine imidazole is important for transduction. It is likely that the interaction of a positively charged histidine 1 with a negatively charged aspartic acid 9 might be part of the triggering step at the molecular level. Two other aspartic acid residues in glucagon are capable of assuming a similar role, namely that of contributing to an electrostatic attraction with histidine via a negative carboxylate. These studies were conducted to investigate the role of aspartic acid 15 and 21 in glucagon action. Evidence reported here, gathered from 31 replacement analogs, supports the idea that in the absence of the requisite carboxyl group at position 9, histidine utilizes Asp21 or Asp15 as a compensatory site. Asp15 was also found to be indispensable for binding and may serve to tether the hormone to the receptor protein at the binding site. It is also demonstrated that these new findings promote the design of better glucagon antagonists.


Asunto(s)
Ácido Aspártico/fisiología , Glucagón/química , Glucagón/fisiología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Diseño de Fármacos , Glucagón/análogos & derivados , Glucagón/síntesis química , Glucagón/farmacología , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Relación Estructura-Actividad
19.
Int J Pept Protein Res ; 42(1): 68-77, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8396562

RESUMEN

The synthesis and biological activities of seven new glucagon analogues are reported. The design of compounds 2-5 is based on potent antagonists recently reported from this laboratory, where we have focused on modifications in the N-terminal region. In this report we have concentrated specifically on modifications to histidine-1. In addition we have prepared two cyclic compounds 7 and 8, related to a linear in vivo antagonist [Glu9]glucagon, reported by Merrifield (Unson et al. (1987) Proc. Natl. Acad. Sci. USA 84, 4083-4087). The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue (S)-5,6,7,8-tetrahydro-5-oxoimidazo(1,5-c)pyrimidine-7-carboxylic acid (Toc), desaminohistidine (dHis) and 3-(4-nitrobenzyl)histidine. The structures of the new compounds are as follows. [Toc1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (2); [Toc1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon amide (3); [3-(4-nitrobenzyl)His1,D-Phe4,Tyr5,Arg12,Lys17,18,G lu21]glucagon (4); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (5); [dHis1,Glu9]glucagon (6); (desHis1)[Glu9,Lys12]glucagon amide (7); (desHis1)-[Glu9,Lys12,Asp15]glucagon amide (8). The binding potencies of the linear analogues, as expressed a percentage of glucagon binding, are 2.6 (2), 0.13 (3), 0.8 (4), 0.8 (5), 2.2 (6). Both cyclic analogues 7 and 8 show biphasic binding curves. The IC50 values for 7 at the high and low affinity sites are 1.5 and 167 nM, respectively (IC50 of glucagon = 1.3 nM). The IC50 values for 8 at the high and low affinity sites are 4.7 and 3451 nM, respectively. The cyclic analogues are characterized by fast atom bombardment mass spectrometry of endoproteinase ASP-N digests. The specificity of the enzyme used in these studies enables differentiation of isomers of the cyclic glucagon analogues which differ only in the position of cyclic amide bond. Analogues 2, 3 and 5-8 are glucagon receptor antagonists with respect to the glucagon receptor coupled to the adenylate cyclase (AC) system. Analogue 4 is a partial agonist (5.7% compared to glucagon) of AC. Introduction of unusual amino acids which do not contain a primary alpha-amino group such as Toc at the N-terminus is expected to increase in vivo metabolic stability by protecting against degradation by aminopeptidases.


Asunto(s)
Glucagón/análogos & derivados , Glucagón/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Glucagón/síntesis química , Técnicas In Vitro , Cinética , Hígado/metabolismo , Masculino , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/efectos de los fármacos , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Glucagón , Espectrometría de Masa Bombardeada por Átomos Veloces , Relación Estructura-Actividad
20.
Peptides ; 10(6): 1171-7, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2560175

RESUMEN

Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9]glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 10(6) higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (less than 0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes.


Asunto(s)
Glucagón/análogos & derivados , Glucagón/antagonistas & inhibidores , Adenilil Ciclasas/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucagón/síntesis química , Glucagón/metabolismo , Glucagón/farmacología , Glucógeno/metabolismo , Inositol/metabolismo , Hígado/metabolismo , Masculino , Conejos , Ratas , Ratas Endogámicas , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Glucagón , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA