Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.007
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732122

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Chondrocytes , Glucosamine , Homeostasis , Kruppel-Like Factor 4 , Reactive Oxygen Species , Silybin , Glucosamine/pharmacology , Glucosamine/metabolism , Humans , Silybin/pharmacology , Glycosylation/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Kruppel-Like Factor 4/metabolism , Cell Line , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cartilage/metabolism , Cartilage/drug effects , Oxidative Stress/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy
2.
Microb Pathog ; 191: 106657, 2024 Jun.
Article En | MEDLINE | ID: mdl-38649100

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Biofilms , Cysteine , Glucosamine , Nitric Oxide , Staphylococcus aureus , Biofilms/growth & development , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Cysteine/analogs & derivatives , Cysteine/metabolism , Nitric Oxide/metabolism , Sodium Nitrite/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/physiology , Mycobacterium smegmatis/metabolism , Mutation , Humans , Oxidoreductases/metabolism , Oxidoreductases/genetics , Sulfhydryl Compounds/metabolism , Oxidative Stress
3.
J Agric Food Chem ; 72(1): 783-793, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38141024

N-Acetylglucosamine deacetylase from Cyclobacterium marinum (CmCBDA) is a highly effective and selective biocatalyst for the production of d-glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). However, the underlying catalytic mechanism remains elusive. Here, we show that CmCBDA is a metalloenzyme with a preference for Ni2+ over Mn2+. Crystal structures of CmCBDA in complex with Ni2+ and Mn2+ revealed slight remodeling of the CmCBDA active site by the metal ions. We also demonstrate that CmCBDA exists as a mixture of homodimers and monomers in solution, and dimerization is indispensable for catalytic activity. A mutagenesis analysis also indicated that the active site residues Asp22, His72, and His143 as well as the residues involved in dimerization, Pro52, Trp53, and Tyr55, are essential for catalytic activity. Furthermore, a mutation on the protein surface, Lys219Glu, resulted in a 2.3-fold improvement in the deacetylation activity toward GlcNAc. Mechanistic insights obtained here may facilitate the development of CmCBDA variants with higher activities.


Acetylglucosamine , Amidohydrolases , Acetylglucosamine/metabolism , Amidohydrolases/chemistry , Glucosamine/metabolism
4.
Biochim Biophys Acta Gen Subj ; 1868(3): 130549, 2024 Mar.
Article En | MEDLINE | ID: mdl-38158023

BACKGROUND: Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by ß - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity and the conformational switch from open to closed structures are still a mystery. METHODS: The GH-46 subclass III chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), which also catalyzes the hydrolysis of GlcN-GlcNAc bonds in addition to GlcN-GlcN, has had its chitotetraose [(GlcN)4]-complexed crystal structure solved at 1.35 Å resolution. RESULTS: The MH-K1 chitosanase's (GlcN)4-bound structure has numerous structural similarities to other GH-46 chitosanases in terms of substrate binding and catalytic processes. However, subsite -1, which is absolutely specific for GlcN, seems to characterize the structure of a subclass III chitosanase due to its distinctive length and angle of a flexible loop. According to a comparison of the (GlcN)4-bound and apo-form structures, the particular binding of a GlcN residue at subsite -2 through Asp77 causes the backbone helix to kink, which causes the upper- and lower-domains to approach closely when binding a substrate. CONCLUSIONS: Although GH-46 chitosanases vary in the finer details of the subsites defining cleavage specificity, they share similar structural characteristics in substrate-binding, catalytic processes, and potentially in conformational change. GENERAL SIGNIFICANCE: The precise binding of a GlcN residue to the -2 subsite is essential for the conformational shift that occurs in all GH-46 chitosanases, as shown by the crystal structures of the apo- and substrate-bound forms of MH-K1 chitosanase.


Bacillus , Chitosan , Oligosaccharides , Glycoside Hydrolases/metabolism , Glucosamine/metabolism
5.
BMC Musculoskelet Disord ; 24(1): 927, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38041088

BACKGROUND: Current research on autophagy is mainly focused on intervertebral disc tissues and cells, while there is few on human peripheral blood sample. therefore, this study constructed a diagnostic model to identify autophagy-related markers of intervertebral disc degeneration (IVDD). METHODS: GSE150408 and GSE124272 datasets were acquired from the Gene Expression Omnibus database, and differential expression analysis was performed. The IVDD-autophagy genes were obtained using Weighted Gene Coexpression Network Analysis, and a diagnostic model was constructed and validated, followed by Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Meanwhile, miRNA-gene and transcription factor-gene interaction networks were constructed. In addition, drug-gene interactions and target genes of methylprednisolone and glucosamine were analyzed. RESULTS: A total of 1,776 differentially expressed genes were identified between IVDD and control samples, and the composition of the four immune cell types was significantly different between the IVDD and control samples. The Meturquoise and Mebrown modules were significantly related to immune cells, with significant differences between the control and IVDD samples. A diagnostic model was constructed using five key IVDD-autophagy genes. The area under the curve values of the model in the training and validation datasets were 0.907 and 0.984, respectively. The enrichment scores of the two pathways were significantly different between the IVDD and healthy groups. Eight pathways in the IVDD and healthy groups had significant differences. A total of 16 miRNAs and 3 transcription factors were predicted to be of great value. In total, 84 significantly related drugs were screened for five key IVDD-autophagy genes in the diagnostic model, and three common autophagy-related target genes of methylprednisolone and glucosamine were predicted. CONCLUSION: This study constructs a reliable autophagy-related diagnostic model that is strongly related to the immune microenvironment of IVD. Autophagy-related genes, including PHF23, RAB24, STAT3, TOMM5, and DNAJB9, may participate in IVDD pathogenesis. In addition, methylprednisolone and glucosamine may exert therapeutic effects on IVDD by targeting CTSD, VEGFA, and BAX genes through apoptosis, as well as the sphingolipid and AGE-RAGE signaling pathways in diabetic complications.


Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Transcription Factors , Autophagy/genetics , Methylprednisolone , Glucosamine/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , HSP40 Heat-Shock Proteins/metabolism , Homeodomain Proteins/metabolism
6.
Appl Environ Microbiol ; 89(12): e0167423, 2023 12 21.
Article En | MEDLINE | ID: mdl-37982622

IMPORTANCE: Central metabolism plays a key role in the control of growth and antibiotic production in streptomycetes. Specifically, aminosugars act as signaling molecules that affect development and antibiotic production, via metabolic interference with the global repressor DasR. While aminosugar metabolism directly connects to other major metabolic routes such as glycolysis and cell wall synthesis, several important aspects of their metabolism are yet unresolved. Accumulation of N-acetylglucosamine 6-phosphate or glucosamine 6-phosphate is lethal to many bacteria, a yet unresolved phenomenon referred to as "aminosugar sensitivity." We made use of this concept by selecting for suppressors in genes related to glucosamine toxicity in nagB mutants, which showed that the gene pair of rok-family regulatory gene rokL6 and major facilitator superfamily transporter gene sco1448 forms a cryptic rescue mechanism. Inactivation of rokL6 resulted in the expression of sco1448, which then prevents the toxicity of amino sugar-derived metabolites in Streptomyces. The systems biology of RokL6 and its transcriptional control of sco1448 shed new light on aminosugar metabolism in streptomycetes and on the response of bacteria to aminosugar toxicity.


Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Glucosamine/metabolism , Streptomyces/genetics , Amino Sugars/metabolism , Anti-Bacterial Agents , Genes, Regulator , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
7.
Int J Mol Sci ; 24(19)2023 Oct 08.
Article En | MEDLINE | ID: mdl-37834442

This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1ß (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1ß. The transfection with miRNA specific inhibitors significantly counteracted the IL-1ß activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.


MicroRNAs , Humans , MicroRNAs/metabolism , Glucosamine/pharmacology , Glucosamine/metabolism , Celecoxib/pharmacology , Celecoxib/metabolism , Reactive Oxygen Species/metabolism , Chondrocytes/metabolism , Cells, Cultured , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Apoptosis
8.
Int J Biol Macromol ; 253(Pt 1): 126528, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37633562

In this study, we fabricate squeezable cryogel microbeads as injectable scaffolds for minimum invasive delivery of chondrocytes for cartilage tissue engineering applications. The microbeads with different glucosamine concentrations were prepared by combining the water-in-oil emulsion and cryogelation through crosslinking of gelatin with glutaraldehyde in the presence of glucosamine. The physicochemical characterization results show the successful preparation of cryogel microbeads with uniform shape and size, high porosity, large pore size, high water uptake capacity, and good injectability. In vitro analysis indicates proliferation, migration, and differentiated phenotype of rabbit chondrocytes in the cryogel scaffolds. The seeded chondrocytes in the cryogel scaffold can be delivered by injecting through an 18G needle to fully retain the cell viability. Furthermore, the incorporation of glucosamine in the cryogel promoted the differentiated phenotype of chondrocytes in a dose-dependent manner, from cartilage-specific gene expression and protein production. The in vivo study by injecting the cryogel microbeads into the subcutaneous pockets of nude mice indicates good retention ability as well as good biocompatibility and suitable biodegradability of the cryogel scaffold. Furthermore, the injected chondrocyte/cryogel microbead constructs can form ectopic functional neocartilage tissues following subcutaneous implantation in 21 days, as evidenced by histological and immunohistochemical analysis.


Cartilage, Articular , Tissue Engineering , Animals , Mice , Rabbits , Tissue Engineering/methods , Chondrocytes/metabolism , Cryogels/chemistry , Tissue Scaffolds/chemistry , Microspheres , Gelatin/chemistry , Glucosamine/metabolism , Mice, Nude , Water/metabolism
9.
Biochem J ; 480(15): 1147-1164, 2023 06 18.
Article En | MEDLINE | ID: mdl-37498748

Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.


Peptidoglycan , UDPglucose-Hexose-1-Phosphate Uridylyltransferase , Glucosamine/metabolism , Phosphates , Uridine Diphosphate
10.
Poult Sci ; 102(10): 102916, 2023 Oct.
Article En | MEDLINE | ID: mdl-37499613

This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.


Cartilage, Articular , Glycosaminoglycans , Animals , Glycosaminoglycans/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/pharmacology , Chickens , Collagen Type II/metabolism , Collagen Type II/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Proteoglycans/genetics , Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/pharmacology , Glucosamine/metabolism , Glucosamine/pharmacology , Minerals/metabolism , Sulfates/metabolism
11.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 46-52, 2023 Apr 30.
Article En | MEDLINE | ID: mdl-37329549

Hyperglycemia, insulin resistance, and endothelium dysfunction are related to platelet hyperactivity in type 2 diabetes mellitus (T2D) patients. Glucosamine (GlcN) has inhibitory effects on platelets of animals and healthy donors, but this role in platelets from T2D patients is unknown. The aim of this study was to evaluate the GlcN in vitro effects on platelet aggregation in T2D patients and healthy donors. Donors´ and T2D patients' samples were analyzed through flow cytometry, Western blot, and platelet aggregometry. Platelet aggregation was induced using ADP and thrombin, with or without GlcN, N-Acetyl-glucosamine, galactose, or fucose. GlcN inhibited ADP and thrombin-induced platelet aggregation, while the other carbohydrates did not. GlcN suppressed the second wave of ADP-induced platelet aggregation. No differences in the percent of inhibition of ADP-induced platelet aggregation by GlcN were found between donors and T2D patients, but this effect was significantly higher in healthy donors using thrombin as an agonist. In addition, GlcN increased protein O-GlcNAcylation (O-GlcNAc) in the platelets from T2D patients but not in healthy donors. In conclusion, GlcN inhibited the platelet aggregation induced by ADP and thrombin for both study groups and increased O-GlcNAc in platelets from T2D patients. Further studies are required to evaluate the possible use of GlcN as an antiplatelet agent.


Diabetes Mellitus, Type 2 , Platelet Aggregation , Animals , Glucosamine/pharmacology , Glucosamine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Thrombin/metabolism , Thrombin/pharmacology , Blood Platelets/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/metabolism
12.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37373540

Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 µg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.


Chondrocytes , Glucosamine , Humans , Glucosamine/pharmacology , Glucosamine/metabolism , NF-KappaB Inhibitor alpha/metabolism , Chondrocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Stem Cells , Cell Differentiation , Inflammation/drug therapy , Inflammation/metabolism , Chondrogenesis , Cells, Cultured
13.
Article En | MEDLINE | ID: mdl-36960941

A series of 1,2,3-triazolyl nucleoside analogues bearing N-acetyl-D-glucosamine residue was synthesized by the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of N1-ω-alkynyl derivatives of uracil, 6-methyluracil, thymine and 3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-ß-D-glucopyranosyl azide. Antiviral assays revealed the lead compound 3f which showed both the same activity against the influenza virus A H1N1 (IC50=70.7 µM) as the antiviral drug Rimantadine in control (IC50=77 µM) and good activity against Coxsackievirus B3 (IC50=13.9 µM) which was one and a half times higher than the activity of the antiviral drug Pleconaril in control (IC50=21.6 µM). According to molecular docking simulations, the antiviral activity of the lead compound 3f against Coxsackie B3 virus can be explained by its binding to a key fragment of the capsid surface of this virus.


Influenza A Virus, H1N1 Subtype , Nucleosides , Antiviral Agents , Glucosamine/metabolism , Acetylglucosamine , Molecular Docking Simulation , Azides
14.
Sci Rep ; 13(1): 2800, 2023 02 16.
Article En | MEDLINE | ID: mdl-36797306

Acinetobacter baumannii is a nosocomial pathogen that can be resistant to antibiotics by rapidly modulating its anti-drug mechanisms. The multidrug-resistant A. baumannii has been considered one of the most threatening pathogens to our society. Biofilm formation and persistent cells within the biofilm matrix are recognized as intractable problems, especially in hospital-acquired infections. Poly-ß-1,6-N-acetyl-glucosamine (PNAG) is one of the important building blocks in A. baumannii's biofilm. Here, we discover a protein phosphoryl-regulation on PNAG deacetylase, AbPgaB1, in which residue Ser411 was phosphorylated. The phosphoryl-regulation on AbPgaB1 modulates the product turnover rate in which deacetylated PNAG is produced and reflected in biofilm production. We further uncovered the PgaB deficient A. baumannii strain shows the lowest level of biofilm production but has a high minimal inhibition concentration to antibiotic colistin and tetracycline. Based on bactericidal post-antibiotic effects and time-dependent killing assays with antibacterial drugs, we claim that the PgaB-deficient A. baumannii converts to colistin-tolerant cells. This study utilizes a biofilm-independent colistin-tolerant model of A. baumannii to further investigate its characteristics and mechanisms to better understand clinical outcomes.


Acinetobacter baumannii , Colistin , Colistin/pharmacology , Colistin/metabolism , Glucosamine/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Biofilms , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
15.
J Adv Res ; 47: 123-135, 2023 05.
Article En | MEDLINE | ID: mdl-35953031

INTRODUCTION: Fetal-originated osteoarthritis is relative to poor cartilage quality and may exhibit transgenerational genetic effects. Previous findings revealed prenatal dexamethasone exposure (PDE) induced poor cartilage quality in offspring. OBJECTIVES: This study focused on further exploring molecular mechanism, heritability, and early intervention of fetal-originated osteoarthritis. METHODS: Pregnant rats (F0) were segregated into control and PDE groups depending upon whether dexamethasone was administered on gestational days (GDs) 9-20. Some female offspring were bred with healthy males during postnatal week (PW) 8 to attain the F2 and F3 generations. The F3-generation rats were administrated with glucosamine intragastrically at PW12 for 6 weeks. The knee cartilages of male and female rats at different time points were harvested to assay their morphologies and functions. Furthermore, primary chondrocytes from the F3-generation rats were isolated to confirm the mechanism and intervention target of glucosamine. RESULTS: Compared with the control, female and male rats in each generation of PDE group showed thinner cartilage thicknesses; shallower and uneven staining; fewer chondrocytes; higher Osteoarthritis Research Society International scores; and lower mRNA and protein expression of SP1, TGFßR1, Smad2, SOX9, ACAN and COL2A1. After F3-generation rats were treated with glucosamine, all of the above changes could be reversed. In primary chondrocytes isolated from the F3-generation rats of PDE group, glucosamine promoted SP1 expression and binding to TGFßR1 promoter to increase the expression of TGFßR1, p-Smad2, SOX9, ACAN and COL2A1, but these were prevented by SB431542 (a potent and selective inhibitor of TGFßR1). CONCLUSIONS: PDE induced chondrodysplasia in offspring and stably inherited in F3-generation rats, which was related to decreased expression of SP1/TGFßR1/Smad2/SOX9 pathway to reduce the cartilage matrix synthesis, without major sex-based variations. Glucosamine could alleviate the poor genetic cartilage quality in offspring induced by PDE by up-regulating SP1/TGFßR1 signaling, which was prevented by a TGFßR1 inhibitor. This study elucidated the molecular mechanism and therapeutic target (TGFßR1) of genetic chondrodysplasia caused by PDE, which provides a research basis for precisely treating fetal-originated osteoarthritis.


Cartilage, Articular , Osteoarthritis , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Male , Female , Animals , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Rats, Wistar , Cartilage, Articular/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Dexamethasone/adverse effects , Dexamethasone/metabolism , Glucosamine/adverse effects , Glucosamine/metabolism , Transforming Growth Factors/adverse effects , Transforming Growth Factors/metabolism
16.
Crit Rev Biotechnol ; 43(1): 100-120, 2023 Feb.
Article En | MEDLINE | ID: mdl-34923890

Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.


Chitosan , Glucosamine , Glucosamine/metabolism , Chitin , Escherichia coli/metabolism , Fungi/metabolism
17.
J Immunol ; 209(9): 1674-1690, 2022 11 01.
Article En | MEDLINE | ID: mdl-36150727

Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors' Mϕs in response to differential polarization and M1 repolarizer ß-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1ß/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1ß/TNF-α to above M1-Mϕ's levels, anti-inflammatory IL-10 to above M2a-Mϕ's levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1ß/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , beta-Glucans , Carcinoma, Non-Small-Cell Lung/metabolism , Glucosamine/metabolism , Glucose/metabolism , Glutamine/metabolism , Humans , Interleukin-10 , Lung Neoplasms/metabolism , Macrophages , NAD/metabolism , Phagocytosis , Tryptophan/metabolism , Tumor Necrosis Factor-alpha/metabolism , Uridine Diphosphate/metabolism , Uridine Triphosphate/metabolism , beta-Glucans/metabolism
18.
PLoS One ; 17(9): e0274076, 2022.
Article En | MEDLINE | ID: mdl-36112613

Genetic and environmental manipulations, such as dietary restriction, can improve both health span and lifespan in a wide range of organisms, including humans. Changes in nutrient intake trigger often overlapping metabolic pathways that can generate distinct or even opposite outputs depending on several factors, such as when dietary restriction occurs in the lifecycle of the organism or the nature of the changes in nutrients. Due to the complexity of metabolic pathways and the diversity in outputs, the underlying mechanisms regulating diet-associated pro-longevity are not yet well understood. Adult reproductive diapause (ARD) in the model organism Caenorhabditis elegans is a dietary restriction model that is associated with lengthened lifespan and reproductive potential. To explore the metabolic pathways regulating ARD in greater depth, we performed a candidate-based genetic screen analyzing select nutrient-sensing pathways to determine their contribution to the regulation of ARD. Focusing on the three phases of ARD (initiation, maintenance, and recovery), we found that ARD initiation is regulated by fatty acid metabolism, sirtuins, AMPK, and the O-linked N-acetyl glucosamine (O-GlcNAc) pathway. Although ARD maintenance was not significantly influenced by the nutrient sensors in our screen, we found that ARD recovery was modulated by energy sensing, stress response, insulin-like signaling, and the TOR pathway. Further investigation of downstream targets of NHR-49 suggest the transcription factor influences ARD initiation through the fatty acid ß-oxidation pathway. Consistent with these findings, our analysis revealed a change in levels of neutral lipids associated with ARD entry defects. Our findings identify conserved genetic pathways required for ARD entry and recovery and uncover genetic interactions that provide insight into the role of OGT and OGA.


Diapause , Nutrients , Signal Transduction , AMP-Activated Protein Kinases/metabolism , Animals , Caenorhabditis elegans/metabolism , Diapause/genetics , Diapause/physiology , Fatty Acids/metabolism , Glucosamine/metabolism , Humans , Insulins/metabolism , Lipids/chemistry , Nutrients/metabolism , Nutrients/pharmacology , Reproduction/genetics , Reproduction/physiology , Signal Transduction/genetics , Sirtuins/genetics , Sirtuins/metabolism , Transcription Factors/metabolism
19.
J Infect Dis ; 226(8): 1470-1479, 2022 10 17.
Article En | MEDLINE | ID: mdl-35556124

BACKGROUND: Cerebral malaria (CM) is a rare, but severe and frequently fatal outcome of infection with Plasmodium falciparum. Pathogenetic mechanisms include endothelial activation and sequestration of parasitized erythrocytes in the cerebral microvessels. Increased concentrations of glycosaminoglycans in urine and plasma of malaria patients have been described, suggesting involvement of endothelial glycocalyx. METHODS: We used lectin histochemistry on postmortem samples to compare the distribution of multiple sugar epitopes on cerebral capillaries in children who died from CM and from nonmalarial comas. RESULTS: N-acetyl glucosamine residues detected by tomato lectin are generally reduced in children with CM compared to controls. We used the vascular expression of intercellular adhesion molecule 1 and mannose residues on brain capillaries of CM as evidence of local vascular inflammation, and both were expressed more highly in CM patients than controls. Sialic acid residues were found to be significantly reduced in patients with CM. By contrast, the levels of other sugar epitopes regularly detected on the cerebral vasculature were unchanged, and this suggests specific remodeling of cerebral microvessels in CM patients. CONCLUSIONS: Our findings support and expand upon earlier reports of disruptions of the endothelial glycocalyx in children with severe malaria.


Malaria, Cerebral , Malaria, Falciparum , Brain/pathology , Capillaries/pathology , Child , Epitopes/metabolism , Erythrocytes/metabolism , Glucosamine/metabolism , Glycocalyx/metabolism , Glycosaminoglycans/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Lectins , Malaria, Cerebral/metabolism , Mannose/metabolism , N-Acetylneuraminic Acid/metabolism , Plasmodium falciparum/physiology
20.
Gene ; 830: 146465, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35427733

OBJECTIVE: This study aimed to investigate the effect of aerobic exercise combined with glucosamine (OTL) on the apoptosis of chondrocytes of rabbit knee osteoarthritis (KOA) by affecting the expression of TRPV5. METHODS: After the KOA white rabbit model was established, aerobic training and OTL treatment were performed, then the model joints were evaluated by Mankin, HE staining was used to observe the pathological changes of articular cartilage, TUNEL and immunohistochemistry were used to detect chondrocyte apoptosis. Knee chondrocytes were isolated and identified by Alcian Blue and type II collagen fiber staining. The cells were treated with iodoacetic acid (MIA) to simulate osteoarthritis in vitro, and then the effect of TRPV5 on apoptosis was detected by flow cytometry, in addition, apoptosis-related proteins and TRPV5 were detected by western blotting and qRT-PCR. RESULTS: Both aerobic exercise and OTL treatment could significantly reduce the Mankin score of KOA model, and could effectively inhibit chondrocyte apoptosis in the KOA model, and inhibit the expression of caspase 3 and caspase 9 in the KOA model. TRPV5 expression was significantly increased in the model, while both aerobic exercise and OTL could reverse its expression. The low-expression of TRPV5 significantly reversed the role of MIA in promoting apoptosis and apoptosis-related proteins of knee chondrocytes, while overexpressing TRPV5 promoted MIA-induced apoptosis and apoptosis-related proteins. CONCLUSION: Aerobic exercise combined with glucosamine hydrochloride capsules inhibited the apoptosis of chondrocytes in rabbit KOA by affecting the expression of TRPV5.


Cartilage, Articular , Osteoarthritis, Knee , Animals , Apoptosis , Capsules/metabolism , Capsules/pharmacology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Glucosamine/metabolism , Glucosamine/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Rabbits
...