Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30.274
1.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709349

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Glucose , Kidney Tubules, Proximal , Oxidative Stress , Reactive Oxygen Species , Scopoletin , Humans , Epithelial-Mesenchymal Transition/drug effects , Glucose/metabolism , Glucose/pharmacology , Glucose/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Scopoletin/pharmacology , Cell Line , Reactive Oxygen Species/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Fibrosis , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects
2.
Endocrinol Diabetes Metab ; 7(3): e00482, 2024 May.
Article En | MEDLINE | ID: mdl-38556697

BACKGROUND: Stevioside (SV) with minimal calories is widely used as a natural sweetener in beverages due to its high sweetness and safety. However, the effects of SV on glucose uptake and the pyruvate dehydrogenase kinase isoenzyme (PDK4) as an important protein in the regulation of glucose metabolism, remain largely unexplored. In this study, we used C2C12 skeletal muscle cells that was induced by palmitic acid (PA) to assess the effects and mechanisms of SV on glucose uptake and PDK4. METHODS: The glucose uptake of C2C12 cells was determined by 2-NBDG; expression of the Pdk4 gene was measured by quantitative real-time PCR; and expression of the proteins PDK4, p-AMPK, TBC1D1 and GLUT4 was assessed by Western blotting. RESULTS: In PA-induced C2C12 myotubes, SV could significantly promote cellular glucose uptake by decreasing PDK4 levels and increasing p-AMPK and TBC1D1 levels. SV could promote the translocation of GLUT4 from the cytoplasm to the cell membrane in cells. Moreover, in Pdk4-overexpressing C2C12 myotubes, SV decreased the level of PDK4 and increased the levels of p-AMPK and TBC1D1. CONCLUSION: SV was found to ameliorate PA-induced abnormal glucose uptake via the PDK4/AMPK/TBC1D1 pathway in C2C12 myotubes. Although these results warranted further investigation for validation, they may provide some evidence of SV as a safe natural sweetener for its use in sugar-free beverages to prevent and control T2DM.


AMP-Activated Protein Kinases , Diterpenes, Kaurane , Glucosides , Palmitic Acid , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Muscle, Skeletal/metabolism , Glucose/metabolism , Glucose/pharmacology , Muscle Fibers, Skeletal/metabolism , Sweetening Agents/pharmacology , Sweetening Agents/metabolism
3.
Cryo Letters ; 45(2): 134-138, 2024.
Article En | MEDLINE | ID: mdl-38557992

BACKGROUND: Examining semen cryopreservation in Calomys laucha offers valuable insights for reproductive research and species conservation. OBJECTIVE: To determine the most effective sugar for the cryopreservation of C. laucha semen. MATERIALS AND METHODS: Using 36 epididymides from C. laucha, semen samples were diluted in a 3% skimmed milk medium supplemented with one of four sugars (glucose, fructose, lactose, or sucrose) at a concentration of 0.3 M. These mixtures underwent a conditioning phase at 37 degree C for 10 min, cooled to -80 degree C for another 10 min, and were subsequently stored in liquid nitrogen. RESULTS: Upon thawing, samples treated with lactose and glucose solutions show superior sperm motility, achieving 8.2% and 10.0% respectively, in contrast to the fructose (2.0%) and sucrose (4.1%) mixtures. Furthermore, samples preserved in glucose registered the highest sperm penetration rates, reaching 44.9%. CONCLUSION: Our findings suggest that a cryopreservation medium containing 0.3 M glucose can contribute to the safeguarding C. laucha rodent semen. https://doi.org/10.54680/fr24210110612.


Semen Preservation , Semen , Animals , Male , Cryopreservation , Lactose , Rodentia , Sperm Motility , Glucose/pharmacology , Fructose , Sucrose/pharmacology , Spermatozoa , Cryoprotective Agents
4.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38602847

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Kidney Diseases , MicroRNAs , Neoplasms , Prediabetic State , Sodium-Glucose Transporter 2 Inhibitors , Male , Female , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Prediabetic State/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Kidney , Glucose/pharmacology , MicroRNAs/pharmacology , Sodium
5.
Cell Signal ; 119: 111188, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657846

The telomere-associated protein TIN2 localizes to both telomeres and mitochondria. Nevertheless, the impact of TIN2 on retinal pigment epithelial (RPE) cells in diabetic retinopathy (DR) remains unclear. This research aims to examine the role of TIN2 in the senescence of RPE and its potential as a therapeutic target. Western blotting and immunofluorescence staining were utilized to identify TIN2 expression and mitophagy. RT-qPCR was employed to identify senescent associated secretory phenotype (SASP) in ARPE-19 cells infected with TIN2 overexpression. To examine mitochondria and the cellular senescence of RPE, TEM, SA-ß-gal staining, and cell cycle analysis were used. The impact of TIN2 was examined using OCT and immunohistochemistry in mice. DHE staining and ZO-1 immunofluorescence were applied to detect RPE oxidative stress and tight junctions. Our research revealed that increased mitochondria-localized TIN2 aggravated the cellular senescence of RPE cells both in vivo and in vitro under hyperglycemia. TIN2 overexpression stimulated the mTOR signaling pathway in ARPE-19 cells and exacerbated the inhibition of mitophagy levels under high glucose, which can be remedied through the mTOR inhibitor, rapamycin. Knockdown of TIN2 significantly reduced senescence and mitochondrial oxidative stress in ARPE-19 cells under high glucose and restored retinal thickness and RPE cell tight junctions in DR mice. Our study indicates that increased mitochondria-localized TIN2 induced cellular senescence in RPE via compromised mitophagy and activated mTOR signaling. These results propose that targeting TIN2 could potentially serve as a therapeutic strategy in the treatment of DR.


Cellular Senescence , Glucose , Mitochondria , Mitophagy , Retinal Pigment Epithelium , TOR Serine-Threonine Kinases , Mitophagy/drug effects , Animals , Retinal Pigment Epithelium/metabolism , Humans , Mice , Glucose/pharmacology , Mitochondria/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line , Signal Transduction , Oxidative Stress , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Male
6.
J Cell Biochem ; 125(5): e30563, 2024 May.
Article En | MEDLINE | ID: mdl-38591551

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Endothelial Cells , Glucose , Heme Oxygenase-1 , Myocytes, Smooth Muscle , Reactive Oxygen Species , Stress, Mechanical , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Glucose/metabolism , Glucose/pharmacology , Myocytes, Smooth Muscle/metabolism , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Cell Proliferation , Coculture Techniques , Enzyme Activation , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Intercellular Adhesion Molecule-1/metabolism
7.
Islets ; 16(1): 2344622, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38652652

Chronically elevated levels of glucose are deleterious to pancreatic ß cells and contribute to ß cell dysfunction, which is characterized by decreased insulin production and a loss of ß cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of ß cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in ß cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of ß cell identity.


Down-Regulation , Glucose , Insulin-Secreting Cells , Insulin , Repressor Proteins , Animals , Rats , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glucose/metabolism , Glucose/pharmacology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/genetics , Maf Transcription Factors, Large/metabolism , Oxidative Stress/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
8.
Exp Cell Res ; 438(1): 114031, 2024 May 01.
Article En | MEDLINE | ID: mdl-38616032

Diabetes is closely associated with vascular calcification (VC). Exorbitant glucose concentration activates pro-calcific effects in vascular smooth muscle cells (VSMCs). This study enrolled 159 elderly patients with type 2 diabetes and divided them into three groups, T1, T2 and T3, according to brachial-ankle pulse wave velocity(BaPWV). There were statistically significant differences in the waist circumference, waist hip ratio, systolic blood pressure, 12,13-diHOME (a lipokin) concentration among T1, T2 and T3. 12,13-diHOME levels were positively correlated to high density lipoprotein cholesterol and total cholesterol, but negatively correlated to with waist circumference, waist hip ratio, systolic blood pressure and baPWV. Studies in vitro showed that 12,13-diHOME effectively inhibits calcification in VSMCs under high glucose conditions. Notably, 12,13-diHOME suppressed the up-regulation of carnitine O-palmitoyltransferase 1 (CPT1A) and CPT1A-induced succinylation of HMGB1. The succinylation of HMGB1 at the K90 promoted the protein stability and induced the enrichment of HMGB1 in cytoplasm, which induced the calcification in VSMCs. Together, 12,13-diHOME attenuates high glucose-induced calcification in VSMCs through repressing CPT1A-mediated HMGB1 succinylation.


Carnitine O-Palmitoyltransferase , Glucose , HMGB1 Protein , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , HMGB1 Protein/metabolism , Glucose/metabolism , Glucose/pharmacology , Male , Aged , Vascular Calcification/metabolism , Vascular Calcification/pathology , Female , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Cells, Cultured
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650130

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Apoptosis , Cell Survival , DNA Damage , DNA, Mitochondrial , Glucose , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Glucose/toxicity , Glucose/pharmacology , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Apoptosis/drug effects , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adenosine Triphosphate/metabolism , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Acid Anhydride Hydrolases/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Comet Assay , Animals
10.
Biomolecules ; 14(3)2024 Mar 10.
Article En | MEDLINE | ID: mdl-38540749

Hyperglycemia in pregnancy (HIP) is linked to fetoplacental endothelial dysfunction, which might be a result of hyperglycemia. Hyperglycemia is associated with cell senescence; however, the role and mechanism of high glucose and cell senescence in HIP endothelial cell failure are largely unknown. Our study discovered that human umbilical vein endothelial cells (HUVECs) obtained from HIP pregnant women exhibit excessive senescence, with significantly elevated expression of senescence markers senescence-associated beta-galactosidase (SA-ß-gal), p16, p21, and p53. Subsequently, we found that exposing primary HUVECs and cell lines to high glucose resulted in an increase in the synthesis of these senescence indicators, similar to what had been observed in pregnant women with HIP. A replicate senescence model and stress-induced premature senescence (SIPS) model showed higher amounts of vascular damage indicators, including von Willebrand factor (vWF), chemotactic C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM-1), along with the anti-apoptotic protein BCL2. However, lower expressions of the pro-apoptotic component BAX, in addition to defective proliferation and tubulogenesis, were seen. Further studies indicated that hyperglycemia can not only induce these alterations in HUVECs but also exacerbate the aforementioned changes in both aging HUVECs. The experiments outlined above have also been validated in pregnant women with HIP. Collectively, these data suggest that exposure to high glucose accelerates cell senescence-mediated vein endothelial cell dysfunction, including excessive inflammation, cell adhesion, impaired angiogenesis, and cell proliferation possibly contributing to pregnancy complications and adverse pregnancy outcomes.


Cellular Senescence , Hyperglycemia , Humans , Female , Pregnancy , Human Umbilical Vein Endothelial Cells , Aging , Glucose/pharmacology
11.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38542084

Unbalanced blood glucose levels may cause inflammation within the central nervous system (CNS). This effect can be reversed by the action of a natural neuroprotective compound, resveratrol (RSV). The study aimed to investigate the anti-inflammatory effect of RSV on astrocyte cytokine profiles within an in vitro model of the blood-brain barrier (BBB) under varying glucose concentrations (2.2, 5.0, and 25.0 mmol/L), corresponding to hypo-, normo-, and hyperglycemia. The model included co-cultures of astrocytes (brain compartment, BC) and endothelial cells (microvascular compartment, MC), separated by 0.4 µm wide pores. Subsequent exposure to 0.2 µM LPS in the brain compartment (BC) and 50 µM RSV in the microvascular compartment (MC) of each well was carried out. Cytokine levels (IL-1 α, IL-1 ß, IL-2, IL-4, IL-6, IL-8) in the BC were assessed using a Multi-Analyte ELISArray Kit before and after the addition of LPS and RSV. Statistical analysis was performed to determine significance levels. The results demonstrated that RSV reduced the concentration of all studied cytokines in the BC, regardless of glucose levels, with the most substantial decrease observed under normoglycemic conditions. Additionally, the concentration of RSV in the BC was highest under normoglycemic conditions compared to hypo- and hyperglycemia. These findings confirm that administration of RSV in the MC exerts anti-inflammatory effects within the BC, particularly under normoglycemia-simulating conditions. Further in vivo studies, including animal and human research, are warranted to elucidate the bioavailability of RSV within the central nervous system (CNS).


Blood-Brain Barrier , Hyperglycemia , Animals , Humans , Resveratrol/pharmacology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Lipopolysaccharides/toxicity , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Glucose/pharmacology , Hyperglycemia/drug therapy
12.
Planta Med ; 90(5): 388-396, 2024 May.
Article En | MEDLINE | ID: mdl-38490239

Diabetes mellitus, linked with insulin resistance and hyperglycaemia, is a leading cause of mortality. Glucose uptake through glucose transporter type 4, especially in skeletal muscle, is crucial for maintaining euglycaemia and is a key pathway targeted by antidiabetic medication. Abrus precatorius is a medicinal plant with demonstrated antihyperglycaemic activity in animal models, but its mechanisms are unclear.This study evaluated the effect of a 50% ethanolic (v/v) A. precatorius leaf extract on (1) insulin-stimulated glucose uptake and (2) related gene expression in differentiated C2C12 myotubes using rosiglitazone as a positive control, and (3) generated a comprehensive phytochemical profile of A. precatorius leaf extract using liquid chromatography-high resolution mass spectrometry to elucidate its antidiabetic compounds. A. precatorius leaf extract significantly increased insulin-stimulated glucose uptake, and insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression; however, it had no effect on glucose transporter type 4 gene expression. At 250 µg/mL A. precatorius leaf extract, the increase in glucose uptake was significantly higher than 1 µM rosiglitazone. Fifty-five phytochemicals (primarily polyphenols, triterpenoids, saponins, and alkaloids) were putatively identified, including 24 that have not previously been reported from A. precatorius leaves. Abrusin, precatorin I, glycyrrhizin, hemiphloin, isohemiphloin, hispidulin 4'-O-ß-D-glucopyranoside, homoplantaginin, and cirsimaritin were putatively identified as known major compounds previously reported from A. precatorius leaf extract. A. precatorius leaves contain antidiabetic phytochemicals and enhance insulin-stimulated glucose uptake in myotubes via the protein kinase B/phosphoinositide 3-kinase pathway by regulating insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression. Therefore, A. precatorius leaves may improve skeletal muscle insulin sensitivity and hyperglycaemia. Additionally, it is a valuable source of bioactive phytochemicals with potential therapeutic use for diabetes.


Abrus , Diabetes Mellitus , Hyperglycemia , Insulin Resistance , Animals , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Abrus/chemistry , Insulin Receptor Substrate Proteins/metabolism , Rosiglitazone/metabolism , Rosiglitazone/pharmacology , Glucose Transporter Type 4 , Phosphatidylinositol 3-Kinases , Muscle, Skeletal/metabolism , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Glucose/pharmacology
13.
Circ Res ; 134(8): 954-969, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38501247

BACKGROUND: Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS: A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS: Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS: Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.


Brain Ischemia , Ischemic Stroke , Stroke , Rats , Humans , Animals , Tissue Plasminogen Activator , Matrix Metalloproteinase 9/metabolism , Ischemic Stroke/drug therapy , Endothelial Cells/metabolism , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/pathology , Hemorrhage , Edema/drug therapy , Edema/pathology , Glucose/pharmacology , Infarction/drug therapy , Hypoxia
14.
Arch Microbiol ; 206(4): 195, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38546876

Rhodosporidium toruloides is a novel cell factory used to synthesis carotenoids, biosurfactants, and biofuel feedstocks. However, research on R. toruloides has generally centred on the manufacture of biochemicals, while analyses of its longevity have received scant attention. Understanding of R. toruloides longevity under different nutrient conditions could help to improve its biotechnological significance and metabolite production. Glucosylglycerol (GG) and proline are osmoprotectants that could revert the harmful effects of environmental stress. This study examined how GG and proline affect R. toruloides strain longevity under glucose nutrimental stress. Herein, we provide evidence that GG and proline enhance cell performance and viability. These compatible solutes neutralises the pro-ageing effects of high glucose (10% glucose) on the yeast cell and reverse its cellular stress. GG exhibits the greatest impact on lifespan extension at 100 mM, whereas proline exerts effect at 2 mM. Our data reveal that these compounds significantly affect the culture medium osmolarity. Moreso, GG and proline decreased ROS production and mitohormetic lifespan regulation, respectively. The data indicates that these solutes (proline and GG) support the longevity of R. toruloides at a pro-ageing high glucose culture condition.


Glucose , Longevity , Rhodotorula , Glucose/pharmacology , Glucose/metabolism , Glucosides/pharmacology
15.
Article En | MEDLINE | ID: mdl-38431089

The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and ß-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.


Antioxidants , Litchi , Animals , Antioxidants/metabolism , Zebrafish/metabolism , Litchi/metabolism , Flour , Oxidative Stress , Diet , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Carbohydrates/pharmacology , Glucose/pharmacology
16.
Biochem Pharmacol ; 223: 116140, 2024 May.
Article En | MEDLINE | ID: mdl-38513740

Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.


Benzhydryl Compounds , Carcinoma, Squamous Cell , Glucosides , Mouth Neoplasms , Ovarian Neoplasms , Female , Humans , Paclitaxel/pharmacology , Canagliflozin/pharmacology , Mitosis , Apoptosis , Ovarian Neoplasms/genetics , Glucose/pharmacology , Aneuploidy
17.
Curr Med Sci ; 44(2): 346-354, 2024 Apr.
Article En | MEDLINE | ID: mdl-38517672

OBJECTIVE: While the reduction of transient receptor potential channel subfamily M member 5 (TRPM5) has been reported in islet cells from type 2 diabetic (T2D) mouse models, its role in lipotoxicity-induced pancreatic ß-cell dysfunction remains unclear. This study aims to study its role. METHODS: Pancreas slices were prepared from mice subjected to a high-fat-diet (HFD) at different time points, and TRPM5 expression in the pancreatic ß cells was examined using immunofluorescence staining. Glucose-stimulated insulin secretion (GSIS) defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate (Palm). Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm, and the TRPM5 expression was detected using qRT-PCR and Western blotting. Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown. The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5 (Ad-Trpm5). RESULTS: HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets. Palm reduced TRPM5 protein expression in a time- and dose-dependent manner in MIN6 cells. Palm also inhibited TRPM5 expression in primary mouse islets. Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis. Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique to ß cells. CONCLUSION: Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreatic ß cells both in vivo and in vitro and, in turn, drives ß-cell dysfunction.


Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Glucose/pharmacology , Glucose/metabolism , Insulin Secretion
18.
Cell Signal ; 118: 111137, 2024 Jun.
Article En | MEDLINE | ID: mdl-38467242

BACKGROUND: Glucose is a fundamental substance for numerous cancers, including glioma. However, its influence on tumor cells regulatory mechanisms remains uncertain. SIRT1 is a regulator of deacetylation and a key player in the progression of malignant tumors. The objective of this study was to examine the role of glucose and SIRT1 in glioma. METHODS: This study investigated the association of SIRT1 expression with clinicopathological features and prognosis in glioma patients using the TCGA database. The Western blotting technique was used to identify the expression of SIRT1 protein in glioma cells. The study also examined the impact of differing glucose concentrations on the biological functions of glioma cells. The study investigated the expression of SIRT1 and HMGB1 signaling pathways in glioma. Additionally, resilience experiments were conducted utilizing SRT1720. RESULTS: SIRT1 is a gene that suppresses tumors and is low expressed in gliomas. Low expression of this gene is strongly linked to a poor prognosis in patients with glioma. High concentrations of glucose can promote the proliferation, migration, and invasion of glioma cells, while also inhibiting apoptosis. The findings of this mechanistic study provide evidence that glucose can down-regulate SIRT1 expression, leading to increased levels of acetylated HMGB1. This in turn promotes the ex-nuclear activation of HMGB1 and associated signaling pathways, ultimately driving glioma malignancy. CONCLUSION: Glucose has the ability to regulate the HMGB1 associated signaling pathway through SIRT1, thus promoting glioma progression. This holds significant research value.


Glioma , HMGB1 Protein , Humans , Glioma/genetics , Glucose/pharmacology , HMGB1 Protein/metabolism , Signal Transduction , Sirtuin 1/metabolism
19.
Am J Physiol Endocrinol Metab ; 326(4): E537-E544, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38477876

There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.


Islets of Langerhans , Quaternary Ammonium Compounds , Taste , Mice , Animals , Glucagon/pharmacology , Insulin/pharmacology , Glucose/pharmacology , Glucagon-Like Peptide 1/pharmacology , Somatostatin/pharmacology , Adenosine Triphosphate/pharmacology
20.
ACS Biomater Sci Eng ; 10(4): 2552-2566, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38450650

The wound-healing effect of insulin is well studied and reported. However, prolonged topical application of insulin without compromising its biological activity is still a challenge. In this study, the effect of topically delivered insulin on promoting wound healing in diabetic animals was evaluated. Alginate diamine PEG-g-poly(PEGMA) (ADPM2S2) was the material used for the topical delivery of insulin. ADPM2S2 hydrogels release insulin and strontium ions, and they synergistically act to regulate different phases of wound healing. Insulin was released from the ADPM2S2 hydrogel for a period of 48 h, maintaining its structural stability and biological activity. In vitro studies were performed under high-glucose conditions to evaluate the wound-healing potential of insulin. Insulin-loaded ADPM2S2 hydrogels showed significant improvement in cell migration, proliferation, and collagen deposition, compared to control cells under high-glucose conditions. Immunostaining studies in L929 cells showed a reduction in phospho Akt expression under high-glucose conditions, and in the presence of insulin, the expression increased. The gene expression studies revealed that insulin plays an important role in regulating the inflammatory phase and macrophage polarization, which favors accelerated wound closure. In vivo experiments in diabetic rat excision wounds treated with insulin-loaded ADPM2S2 showed 95% wound closure within 14 days compared with 82% in control groups. Thus, both the in vitro and in vivo results signify the therapeutic potential of topically delivered insulin in wound management under high-glucose conditions.


Diabetes Mellitus, Experimental , Insulin , Rats , Animals , Insulin/pharmacology , Insulin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hydrogels/chemistry , Alginates/pharmacology , Alginates/chemistry , Alginates/therapeutic use , Wound Healing/physiology , Glucose/pharmacology , Glucose/therapeutic use
...