Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.361
Filtrar
1.
Biol Pharm Bull ; 47(9): 1477-1483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231687

RESUMEN

Salmon milt extract (SME) is rich in nucleotides, especially deoxyribonucleoside monophosphates (dNMPs), which has the potential to exert anti-obesity effects. Sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) are responsible for absorbing sugar from the small intestine. The purpose of this study was to examine the effects of SME on the functions of SGLT1 and GLUT2 and elucidate the mechanisms underlying the inhibition of glucose absorption by SME. We investigated the effect of SME on the expression and function of intestinal glucose transporters, using differentiated Caco-2 cells. SME treatment decreased the expression SGLT1 and GLUT2 mRNA and protein in Caco-2 cells. [14C]-Labelled methyl-α-D-glucopyranoside and [3H]-labelled 2-deoxy-D-glucose (DG) uptake into Caco-2 cells was significantly reduced by SME treatment. Similarly, the dNMP mixture containing the four mononucleotides 2'-deoxyadenosine 5'-monophosphate (dAMP), 2'-deoxyguanosine 5'-monophosphate (dGMP), 2'-deoxycytidine 5'-monophosphate (dCMP), and 2'-deoxythymidine 5'-monophosphate (dTMP) decreased SGLT1 and GLUT2 expression. dNMP mixture-induced reduction in the mRNA expression of these transporters was suppressed when exposed to the mixture without dTMP. Furthermore, dNMP mixture-induced alterations in the expression of hepatocyte nuclear factor (HNF)-1α and HNF1ß, which have been characterized as modulators of both transporters also showed a similar trend. dTMP treatment alone decreased GLUT2 expression, resulting in reduced [3H] DG uptake by Caco-2 cells. SME decreased the expression of HNF1α, HNF1ß, and its targets SGLT1 and GLUT2, resulting in reduced glucose uptake by Caco-2 cells. In addition, our results revealed that dTMP plays an important role in suppressing the expression of intestinal glucose transporters.


Asunto(s)
Regulación hacia Abajo , Transportador de Glucosa de Tipo 2 , Glucosa , Transportador 1 de Sodio-Glucosa , Humanos , Células CACO-2 , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Glucosa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Animales , Salmón , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética
2.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39106294

RESUMEN

Nuclear receptor action is mediated in part by the nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). NCOR1 and SMRT regulate metabolic pathways that govern body mass, insulin sensitivity, and energy expenditure, representing an understudied area in the realm of metabolic health and disease. Previously, we found that NCOR1 and SMRT are essential for maintaining metabolic homeostasis and their knockout (KO) leads to rapid weight loss and hypoglycemia, which is not survivable. Because of a potential defect in glucose absorption, we sought to determine the role of NCOR1 and SMRT specifically in intestinal epithelial cells (IECs). We used a postnatal strategy to disrupt NCOR1 and SMRT throughout IECs in adult mice. These mice were characterized metabolically and underwent metabolic phenotyping, body composition analysis, and glucose tolerance testing. Jejunal IECs were isolated and profiled by bulk RNA sequencing. We found that the postnatal KO of NCOR1 and SMRT from IECs leads to rapid weight loss and hypoglycemia with a significant reduction in survival. This was accompanied by alterations in glucose metabolism and activation of fatty acid oxidation in IECs. Metabolic phenotyping confirmed a reduction in body mass driven by a loss of body fat without altered food intake. This appeared to be mediated by a reduction of key intestinal carbohydrate transporters, including SGLT1, GLUT2, and GLUT5. Intestinal NCOR1 and SMRT act in tandem to regulate glucose levels and body weight. This in part may be mediated by regulation of intestinal carbohydrate transporters.


Asunto(s)
Mucosa Intestinal , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Animales , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Ratones , Mucosa Intestinal/metabolismo , Glucosa/metabolismo , Masculino , Metabolismo de los Hidratos de Carbono/genética , Ratones Endogámicos C57BL , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transporte Biológico , Femenino , Metabolismo Energético , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética
3.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125908

RESUMEN

Multicenter international clinical trials demonstrated the clinical safety and efficacy by using stem cell educator therapy to treat type 1 diabetes (T1D) and other autoimmune diseases. Previous studies characterized the peripheral blood insulin-producing cells (PB-IPC) from healthy donors with high potential to give rise to insulin-producing cells. PB-IPC displayed the molecular marker glucose transporter 2 (GLUT2), contributing to the glucose transport and sensing. To improve the clinical efficacy of stem cell educator therapy in the restoration of islet ß-cell function, we explored the GLUT2 expression on PB-IPC in recent onset and longstanding T1D patients. In the Food and Drug Administration (FDA)-approved phase 2 clinical studies, patients received one treatment with the stem cell educator therapy. Peripheral blood mononuclear cells (PBMC) were isolated for flow cytometry analysis of PB-IPC and other immune markers before and after the treatment with stem cell educator therapy. Flow cytometry revealed that both recent onset and longstanding T1D patients displayed very low levels of GLUT2 on PB-IPC. After the treatment with stem cell educator therapy, the percentages of GLUT2+CD45RO+ PB-IPC were markedly increased in these T1D subjects. Notably, we found that T1D patients shared common clinical features with patients with other autoimmune and inflammation-associated diseases, such as displaying low or no expression of GLUT2 on PB-IPC at baseline and exhibiting a high profile of the inflammatory cytokine interleukin (IL)-1ß. Flow cytometry demonstrated that their GLUT2 expressions on PB-IPC were also markedly upregulated, and the levels of IL-1ß-positive cells were significantly downregulated after the treatment with stem cell educator therapy. Stem cell educator therapy could upregulate the GLUT2 expression on PB-IPC and restore their function in T1D patients, leading to the improvement of clinical outcomes. The clinical data advances current understanding about the molecular mechanisms underlying the stem cell educator therapy, which can be expanded to treat patients with other autoimmune and inflammation-associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Insulina , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangre , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Masculino , Femenino , Insulina/metabolismo , Adulto , Leucocitos Mononucleares/metabolismo , Persona de Mediana Edad , Trasplante de Células Madre
4.
Elife ; 122024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082939

RESUMEN

The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Slc2a2 (also known as Glut2) knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in the body's defense mechanisms against a threat - were the top candidates which were either upregulated or downregulated in renal Slc2a2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving the efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Glucosa , Glucosuria , Hipotálamo , Riñón , Ratones Noqueados , Animales , Ratones , Glucosa/metabolismo , Riñón/metabolismo , Glucosuria/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Hipotálamo/metabolismo , Masculino , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología
5.
Chem Biol Interact ; 400: 111165, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059605

RESUMEN

Acute kidney injury (AKI) is common and an independent risk factor for mortality in patients with paraquat (PQ) poisoning. Currently, no specific antidote is available. Synaptotagmin-1 (SYT1) has been identified as a key protein that facilitates PQ efflux in PQ-resistant A549 cells, thereby preventing PQ-induced lung injury. However, the protective effect of STY1 on PQ-induced AKI remains to be elucidated. This study exposed human kidney 2 (HK-2) cells overexpressing SYT1 to PQ. These cells exhibited significantly lower levels of growth inhibition, reactive oxygen species production, early apoptosis, and PQ accumulation compared to the parent HK-2 cells. Transcriptomic screening and Western blot analysis revealed that SYT1 overexpression significantly promoted the expression of glucose transporter 2 (GLUT2). Inhibition of GLUT2 completely abolished the protective effects of SYT1 overexpression in HK-2 cells and restored intracellular PQ concentrations. Further immunoprecipitation-shotgun and RNA interference experiments revealed that SYT1 binds to and stabilizes the protein SERPINE1 mRNA-binding protein 1 (SERBP1), enhancing the stability of GLUT2 mRNA and its protein levels. In summary, SYT1 antagonizes PQ intracellular accumulation and prevents nephrocyte toxicity by up-regulating SERBP1/GLUT2 expression. This study identifies a potential target for the treatment of PQ-induced AKI.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Paraquat , Sinaptotagmina I , Regulación hacia Arriba , Humanos , Paraquat/toxicidad , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología
6.
PLoS One ; 19(6): e0303934, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875221

RESUMEN

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Asunto(s)
Glucoquinasa , Transportador de Glucosa de Tipo 2 , Glucosa , Células Secretoras de Insulina , Factor de Crecimiento Nervioso , Animales , Masculino , Ratas , Células Cultivadas , Glucoquinasa/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Ratas Wistar
7.
Toxicol In Vitro ; 99: 105866, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844119

RESUMEN

Epidemiological studies have suggested a correlation between bisphenol A (BPA) and type 2 diabetes (T2DM). The effects of BPA on ß-cell dysfunction may reveal the risks from an in vitro perspective. We used the rat insulinoma (INS-1) cell lines (a type of ß-cells) to set up normal or damaged models (DM), which were exposed to various concentrations of BPA (0.001, 0.01, 0.1, 1, 10 and 100 µM). An increase in reactive oxygen species (ROS) and apoptosis, and a decrease in cell viability were observed in INS-1 cells exposed to high doses of BPA for 48 h. Interestingly, exposure to lower doses of BPA for 24 h resulted in increased ROS levels and apoptosis rates in INS-1 in the DM group, along with decreased cell viability, suggesting that BPA exerts toxicity to INS-1 cells, particularly to the DM group. Insulin levels and Glut2 expression, glucose consumption, intracellular Ca2+ and insulin secretion were increased in INS-1 cells after 48 h exposure to high dose of BPA. Stronger effects were observed in the DM group, even those exposed to low doses of BPA for 24 h. Moreover, BPA inhibited high glucose-stimulated insulin secretion in these cells. Our research suggests that low doses of BPA exacerbate the dysfunction caused by glucolipotoxicity, implying environmental BPA exposure poses a risk for individuals with prediabetes or T2DM.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Supervivencia Celular , Diabetes Mellitus Tipo 2 , Transportador de Glucosa de Tipo 2 , Glucosa , Insulina , Insulinoma , Fenoles , Especies Reactivas de Oxígeno , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Animales , Ratas , Diabetes Mellitus Tipo 2/inducido químicamente , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Insulinoma/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Insulina/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Calcio/metabolismo , Contaminantes Ambientales/toxicidad , Secreción de Insulina/efectos de los fármacos , Neoplasias Pancreáticas/inducido químicamente
8.
Pharm Res ; 41(6): 1201-1216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834905

RESUMEN

BACKGROUND: Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS: The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS: Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION: Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.


Asunto(s)
Alcoholes Bencílicos , Excipientes , Fructosa , Transportador de Glucosa de Tipo 2 , Glucosa , Glucósidos , Goma Arábiga , Absorción Intestinal , Lactosa , Ratas Sprague-Dawley , Transportador 1 de Sodio-Glucosa , Animales , Absorción Intestinal/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/administración & dosificación , Glucósidos/farmacocinética , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Masculino , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Ratas , Excipientes/química , Excipientes/farmacología , Glucosa/metabolismo , Lactosa/química , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/farmacocinética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Permeabilidad/efectos de los fármacos
9.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912736

RESUMEN

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Asunto(s)
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocondrias , Animales , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ratones , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Food Res Int ; 190: 114623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945577

RESUMEN

Undaria pinnatifida (UP) contains multiple bioactive substances, such as polyphenols, polysaccharides, and amino acids, which are associated with various biological properties. This study aimed to evaluate the antihyperglycemic effects of three extracts obtained from UP. UP was extracted under three different conditions: a low-temperature water extract at 50 °C (UPLW), a high-temperature water extract at 90 °C (UPHW), and a 70 % ethanol extract (UPE). Nontargeted chemical profiling using high-performance liquid chromatography-triple/time-of-flight mass spectrometry (HPLC-Triple TOF-MS/MS) was conducted on the three UP extracts. Subsequently, α-glucosidase inhibitory (AGI) activity, glucose uptake, and the mRNA expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated in Caco-2 cell monolayers. Furthermore, an oral carbohydrate tolerance test was performed on C57BL/6 mice. The mice were orally administered UP at 300 mg/kg body weight (B.W.), and the blood glucose level and area under the curve (AUC) were measured. Compared with glucose, UPLW, UPHW and UPE significantly inhibited both glucose uptake and the mRNA expression of SGLT1 and GLUT2 in Caco-2 cell monolayers. After glucose, maltose, and sucrose loading, the blood glucose levels and AUC of the UPLW group were significantly lower than those of the control group. These findings suggest that UPLW has antihyperglycemic effects by regulating glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia. Therefore, UPLW may have potential as a functional food ingredient for alleviating postprandial hyperglycemia.


Asunto(s)
Glucemia , Transportador de Glucosa de Tipo 2 , Hipoglucemiantes , Ratones Endogámicos C57BL , Extractos Vegetales , Transportador 1 de Sodio-Glucosa , Undaria , Animales , Hipoglucemiantes/farmacología , Undaria/química , Extractos Vegetales/farmacología , Humanos , Células CACO-2 , Masculino , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Ratones , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Algas Comestibles
11.
Sci Rep ; 14(1): 14220, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902332

RESUMEN

Glucose transporter-2 (GLUT2) monitors cellular glucose uptake. Astrocyte GLUT2 controls glucose counterregulatory hormone secretion. In vivo gene silencing and laser-catapult-microdissection tools were used here to investigate whether ventromedial hypothalamic nucleus (VMN) GLUT2 may regulate dorsomedial (VMNdm) and/or ventrolateral (VMNvl) γ-aminobutyric acid (GABA) neurotransmission to control this endocrine outflow in female rats. VMN GLUT2 gene knockdown suppressed or stimulated hypoglycemia-associated glutamate decarboxylase (GAD)1 and GAD2 mRNA expression in VMNdm versus VMNvl GABAergic neurons, respectively. GLUT2 siRNA pretreatment also modified co-expressed transmitter marker gene profiles in each cell population. VMNdm GABA neurons exhibited GLUT2 knockdown-sensitive up-regulated 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) transcripts during hypoglycemia. Hypoglycemic augmentation of VMNvl GABA neuron AMPKα2 was refractory to GLUT2 siRNA. GLUT2 siRNA blunted (VMNdm) or exacerbated (VMNvl) hypoglycemic stimulation of GABAergic neuron steroidogenic factor-1 (SF-1) mRNA. Results infer that VMNdm and VMNvl GABA neurons may exhibit divergent, GLUT2-dependent GABA neurotransmission patterns in the hypoglycemic female rat. Data also document differential GLUT2 regulation of VMNdm versus VMNvl GABA nerve cell SF-1 gene expression. Evidence for intensification of hypoglycemic hypercorticosteronemia and -glucagonemia by GLUT2 siRNA infers that VMN GLUT2 function imposes an inhibitory tone on these hormone profiles in this sex.


Asunto(s)
Neuronas GABAérgicas , Transportador de Glucosa de Tipo 2 , Hipoglucemia , Núcleo Hipotalámico Ventromedial , Animales , Femenino , Ratas , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Neuronas GABAérgicas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Hipoglucemia/metabolismo , Hipoglucemia/genética , Regulación de la Expresión Génica , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Ratas Sprague-Dawley , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
12.
Diabetes ; 73(8): 1336-1351, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775784

RESUMEN

Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human ß-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult ß-cells and is expressed to a greater extent in fetal ß-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of ß-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human ß-cells, and identify them as key components in establishing species-specific glycemic set points.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Humanos , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Animales , Ratones , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucemia/metabolismo , Glucosa/metabolismo , Secreción de Insulina/fisiología , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo
13.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731926

RESUMEN

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Glucosa , N-Metiltransferasa de Histona-Lisina , Secreción de Insulina , Células Secretoras de Insulina , Proteína de la Leucemia Mieloide-Linfoide , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Regulación de la Expresión Génica , Ratones Noqueados , Insulina/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Línea Celular , Masculino
14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38619320

RESUMEN

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Asunto(s)
Células Epiteliales , Glucosa , Intestino Delgado , Transportador 1 de Sodio-Glucosa , Tricotecenos , Animales , Tricotecenos/toxicidad , Porcinos , Glucosa/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Línea Celular , Intestino Delgado/efectos de los fármacos , Inflamación/inducido químicamente , Citocinas/metabolismo , Citocinas/genética , Transporte Biológico/efectos de los fármacos , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Apoptosis/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo
15.
Mol Biol Rep ; 50(8): 6963-6974, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358764

RESUMEN

The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in ß-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.


Asunto(s)
Glucosa , Islotes Pancreáticos , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hepatocitos/metabolismo , Transporte Biológico , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo
16.
Genet Test Mol Biomarkers ; 27(5): 149-156, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37257183

RESUMEN

Objectives: This study was designed to analyze the association between the SLC2A2 rs1499821 polymorphism and caries susceptibility in the Chinese Han, Zhuang, and Baikuyao populations. Materials and Methods: The present case-control study included 1067 12-year-old children: 481 with caries (142 Han, 166 Zhuang and 173 Baikuyao) and 586 who were caries-free (135 Han, 178 Zhuang and 273 Baikuyao). Questionnaires about diet and oral habits were obtained from all subjects. All of the children received dental examinations and DNA collection. The SLC2A2 rs1499821 SNP was genotyped using the SNPscan technique. Results: The rs1499821 T polymorphism was significantly associated with caries susceptibility in both the Han population and the combined populations of the three ethnic subgroups. SLC2A2 rs1499821 was associated with caries susceptibility in the dominant model in the Han (p = 0.045) population and the combined (p = 0.038) group. The CT+TT genotypes at rs1499821 were associated with a higher risk of caries in the Han (OR = 1.69, adjusted 95% CI: 1.01-2.81) and combined (OR = 1.33, adjusted 95% CI: 1.02-1.74) populations. In both Han (p = 0.009) and the combined populations (p = 0.004), there were statistically significant associations between the frequency of sweet food intake and dental caries. However, the rs1499821 polymorphisms did not associate with the frequency of sweet food intake in these ethnic subgroups. Conclusion: In the Han population, the SLC2A2 rs1499821 T allele and the frequency of sweet food intake may be regarded as risk factors for caries susceptibility. The SLC2A2 rs1499821 T allele had no association with the frequency of sweet food intake in any of the three ethnic groups.


Asunto(s)
Caries Dental , Transportador de Glucosa de Tipo 2 , Niño , Humanos , Pueblo Asiatico , China/epidemiología , Caries Dental/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Transportador de Glucosa de Tipo 2/genética , Polimorfismo de Nucleótido Simple
17.
Biomolecules ; 13(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979475

RESUMEN

OBJECTIVE: Glucose transporter 2 (GLUT2) is expressed in the pancreatic ß-cell, intestine, liver, and kidney in mice. Although GLUT2 is considered as a major regulator of insulin secretion, in vivo contribution of ß-cell Glut2 to glucose-stimulated insulin secretion and systemic glucose homeostasis is undefined. Therefore, the main objective of this study is to determine the role of ß-cell Glut2 in regulating insulin secretion and blood glucose levels in mice. METHODS: We produced mice in which we can knock down Glut2 at a desired time specifically in ß-cells (ß-Glut2 KD) by crossing Glut2LoxP/LoxP mice with Ins1CreERT2 mouse strain and using the Cre-Lox recombination technique. We measured fasting blood glucose levels, glucose tolerance, and glucose-stimulated insulin secretion in the ß-Glut2 KD mice. We used qRT-PCR and immunofluorescence to validate the deficiency of ß-cell Glut2 in ß-Glut2 KD mice. RESULTS: We report that both male and female ß-Glut2 KD mice have normal glucose-stimulated insulin secretion. Moreover, the ß-Glut2 KD mice exhibit normal fasting blood glucose levels and glucose tolerance. The ß-Glut2 KD mice have upregulated GLUT1 in islets. CONCLUSIONS: Our findings demonstrate that normal ß-cell Glut2 expression is not essential for regulating glucose-stimulated insulin secretion and systemic glucose homeostasis in mice. Therefore, the currently assumed role of ß-cell GLUT2 in regulating insulin secretion and blood glucose levels needs to be recalibrated. This will allow an opportunity to determine the contribution of other ß-cell glucose transporters or factors whose normal expression may be necessary for mediating glucose stimulated insulin secretion.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Animales , Femenino , Masculino , Ratones , Glucemia/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo
18.
Sci Rep ; 12(1): 17717, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271117

RESUMEN

Feeding behavior is a complex process that depends on the ability of the brain to integrate hormonal and nutritional signals, such as glucose. One glucosensing mechanism relies on the glucose transporter 2 (GLUT2) in the hypothalamus, especially in radial glia-like cells called tanycytes. Here, we analyzed whether a GLUT2-dependent glucosensing mechanism is required for the normal regulation of feeding behavior in GFAP-positive tanycytes. Genetic inactivation of Glut2 in GFAP-expressing tanycytes was performed using Cre/Lox technology. The efficiency of GFAP-tanycyte targeting was analyzed in the anteroposterior and dorsoventral axes by evaluating GFP fluorescence. Feeding behavior, hormonal levels, neuronal activity using c-Fos, and neuropeptide expression were also analyzed in the fasting-to-refeeding transition. In basal conditions, Glut2-inactivated mice had normal food intake and meal patterns. Implementation of a preceeding fasting period led to decreased total food intake and a delay in meal initiation during refeeding. Additionally, Glut2 inactivation increased the number of c-Fos-positive cells in the ventromedial nucleus in response to fasting and a deregulation of Pomc expression in the fasting-to-refeeding transition. Thus, a GLUT2-dependent glucose-sensing mechanism in GFAP-tanycytes is required to control food consumption and promote meal initiation after a fasting period.


Asunto(s)
Células Ependimogliales , Conducta Alimentaria , Transportador de Glucosa de Tipo 2 , Animales , Ratones , Células Ependimogliales/metabolismo , Ayuno , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo
19.
Hormones (Athens) ; 21(4): 625-640, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35843978

RESUMEN

PURPOSE: Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS: In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS: The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION: Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Enfermedades Metabólicas , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Embarazo , Ratas , Antioxidantes/metabolismo , Corticosterona , Transportador de Glucosa de Tipo 2/metabolismo , Insulina , Lactancia/metabolismo , Ratas Wistar
20.
Endocr Pract ; 28(6): 610-614, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35301125

RESUMEN

OBJECTIVE: Severe insulin resistance syndromes, such as lipodystrophy, lead to diabetes, which is challenging to control. This study explored the safety and efficacy of sodium-glucose cotransporter 2 inhibitors (SGLT2is) in a series of 12 patients with severe insulin resistance due to partial lipodystrophy. METHODS: A retrospective chart review of the safety (N = 22) and efficacy (N = 12) of SGLT2is in patients with partial lipodystrophy was conducted at our institution. The efficacy outcomes included hemoglobin A1C level, insulin dose, fasting plasma glucose level, C-peptide level, lipid profile, 24-hour urinary glucose excretion, estimated glomerular filtration rate, and blood pressure before and after 12 months of SGLT2i treatment. RESULTS: The hemoglobin A1C level decreased after SGLT2i treatment (at baseline: 9.2% ± 2.0% [77.0 ± 21.9 mmol/mol]; after 12 months: 8.4% ± 1.8% [68.0 ± 19.7 mmol/mol]; P = .028). Significant reductions were also noted in systolic (P = .011) and diastolic blood pressure (P = .013). There was a trend toward a decreased C-peptide level (P = .071). The fasting plasma glucose level, lipid level, and estimated glomerular filtration rate remained unchanged. The adverse effects included extremity pain, hypoglycemia, diabetic ketoacidosis (in a patient who was nonadherent to insulin), pancreatitis (in a patient with prior pancreatitis), and fungal infections. CONCLUSION: SGLT2is reduced the hemoglobin A1C level in patients with partial lipodystrophy, with a similar safety profile compared with that in patients with type 2 diabetes. After individual consideration of the risks and benefits of SGLT2is, these may be considered a part of the treatment armamentarium for these rare forms of diabetes, but larger trials are needed to confirm these findings.


Asunto(s)
Resistencia a la Insulina , Lipodistrofia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Glucemia , Péptido C/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transportador de Glucosa de Tipo 2/uso terapéutico , Hemoglobina Glucada/metabolismo , Humanos , Insulina/uso terapéutico , Lipodistrofia/complicaciones , Lipodistrofia/tratamiento farmacológico , Pancreatitis/inducido químicamente , Estudios Retrospectivos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA