Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.912
1.
BMC Neurol ; 24(1): 146, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693511

BACKGROUND: To date, no disease modifying therapies are available for Parkinson's disease (PD). Since PD is the second most prevalent neurodegenerative disorder, there is a high demand for such therapies. Both environmental and genetic risk factors play an important role in the etiology and progression of PD. The most common genetic risk factor for PD is a mutation in the GBA1(GBA)-gene, encoding the lysosomal enzyme glucocerebrosidase (GCase). The mucolytic ambroxol is a repurposed drug, which has shown the property to upregulate GCase activity in-vitro and in-vivo. Ambroxol therefore has the potency to become a disease modifying therapy in PD, which was the reason to design this randomized controlled trial with ambroxol in PD patients. METHODS: This trial is a single-center, double-blind, randomized, placebo-controlled study, including 80 PD patients with a GBA mutation, receiving either ambroxol 1800 mg/day or placebo for 48 weeks. The primary outcome measure is the Unified Parkinson's Disease Rating Scale motor subscore (part III) of the Movement Disorder Society (MDS-UPDRSIII) in the practically defined off-state at 60 weeks (after a 12-week washout period). Secondary outcomes include a 3,4-dihydroxy-6-18F-fluoro-I-phenylalanine ([18F]FDOPA) PET-scan of the brain, Magnetic Resonance Imaging (with resting state f-MRI and Diffusion Tensor Imaging), GCase activity, both intra- and extracellularly, sphingolipid profiles in plasma, Montreal Cognitive Assessment (MoCA), quality of life (QoL) measured by the Parkinson's Disease Questionnaire (PDQ-39) and the Non-Motor Symptom Scale (NMSS) questionnaire. DISCUSSION: Ambroxol up to 1200 mg/day has shown effects on human cerebrospinal fluid endpoints, which supports at least passage of the blood-brain-barrier. The dose titration in this trial up to 1800 mg/day will reveal if this dose level is safe and also effective in modifying the course of the disease. TRIAL REGISTRATION: NCT05830396. Registration date: March 20, 2023.


Ambroxol , Glucosylceramidase , Mutation , Parkinson Disease , Humans , Ambroxol/administration & dosage , Ambroxol/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Glucosylceramidase/genetics , Double-Blind Method , Male , Female , Aged , Middle Aged , Treatment Outcome , Expectorants/therapeutic use , Expectorants/administration & dosage , Adult
2.
Int J Biol Sci ; 20(6): 2111-2129, 2024.
Article En | MEDLINE | ID: mdl-38617529

Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme ß-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.


Gaucher Disease , Glucosylceramidase , Humans , Glucosylceramidase/genetics , Gaucher Disease/genetics , Gaucher Disease/therapy , RNA, Messenger/genetics , COVID-19 Vaccines , Quality of Life
3.
Orphanet J Rare Dis ; 19(1): 144, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575988

BACKGROUND: Osteoporosis and its primary complication, fragility fractures, contribute to substantial global morbidity and mortality. Gaucher disease (GD) is caused by glucocerebrosidase (GBA1) deficiency, leading to skeletal complications. This study aimed to investigate the impact of the GBA1 gene on osteoporosis progression in GD patients and the specific populations. METHODS: We selected 8115 patients with osteoporosis (T-score ≤ - 2.5) and 55,942 healthy individuals (T-score > - 1) from a clinical database (N = 95,223). Monocytes from GD patients were evaluated in relation to endoplasmic reticulum (ER) stress, inflammasome activation, and osteoclastogenesis. An in vitro model of GD patient's cells treated with adeno-associated virus 9 (AAV9)-GBA1 to assess GBA1 enzyme activity, chitotriosidase activity, ER stress, and osteoclast differentiation. Longitudinal dual-energy X-ray absorptiometry (DXA) data tracking bone density in patients with Gaucher disease (GD) undergoing enzyme replacement therapy (ERT) over an extended period. RESULTS: The GBA1 gene variant rs11264345 was significantly associated [P < 0.002, Odds Ratio (OR) = 1.06] with an increased risk of bone disease. Upregulation of Calnexin, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) and Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) was positively associated with osteoclastogenesis in patients with GD. In vitro AAV9-GBA1 treatment of GD patient cells led to enhanced GBA1 enzyme activity, reduced chitotriosidase activity, diminished ER stress, and decreased osteoclast differentiation. Long-term bone density data suggests that initiating ERT earlier in GD leads to greater improvements in bone density. CONCLUSIONS: Elevated ER stress and inflammasome activation are indicative of osteoporosis development, suggesting the need for clinical monitoring of patients with GD. Furthermore, disease-associated variant in the GBA1 gene may constitute a risk factor predisposing specific populations to osteoporosis.


Gaucher Disease , Osteoporosis , Humans , Bone Density/genetics , Gaucher Disease/drug therapy , Glucosylceramidase/therapeutic use , Inflammasomes , Osteoporosis/genetics , Osteoporosis/drug therapy
4.
J Pediatr Endocrinol Metab ; 37(5): 413-418, 2024 May 27.
Article En | MEDLINE | ID: mdl-38624096

OBJECTIVES: Gaucher disease (GD) is a lysosomal storage disease caused by glucocerebrosidase (GCase) enzyme deficiency. Gaucher cells transformed from the macrophages by progressive sphingolipid accumulation and infiltrate bone marrow, spleen, liver, and other organs. The accumulation of substrate causes inflammation, compromised cellular homeostasis, and disturbed autophagy. It has been hypothesized that this proinflammatory state of GD leads cytokines and chemokines release. As a result of inflammatory process, the cellular dysfunction caused by disruption of cellular signaling, organelle dysfunction, or autoimmune antibodies may affect endocrine profile of GD patients such as hormone levels, lipid profile, and bone mineral density status. METHODS: A total of 13 patients confirmed to have GD, 12 non-neuronopathic type and one subacute neuronopathic type, were enrolled in our study. RESULTS: The median treatment duration in the enzyme therapy was 13.33 years (9-26 years). At least one endocrinological abnormality was detected in blood tests of nine patients. Hyperinsulinism was the most common finding although fasting blood glucose levels HgbA1c levels were normal in all patients. Two patients had osteopenia, and osteoporosis was detected in two patients. Low HDL levels were detected in six patients, but HDL levels below 23 mg/dL associated with disease severity have been detected in two patients who have not receiving enzyme replacement therapy. None of patients had thyroidal dysfunction. CONCLUSIONS: This study had revealed endocrinological abnormalities in GD patients that have not led any severe morbidity in our patients. However, thyroid hormone abnormalities, insulin resistance, or lipid profile abnormalities may cause unpredictable comorbidities. Endocrinological assessment in GD patients in routine follow-up may prevent possible clinical manifestation in long term as well as can define efficacy of ERT on endocrine abnormalities.


Enzyme Replacement Therapy , Gaucher Disease , Glucosylceramidase , Humans , Gaucher Disease/drug therapy , Gaucher Disease/blood , Male , Female , Adult , Child , Adolescent , Young Adult , Glucosylceramidase/therapeutic use , Follow-Up Studies , Bone Density/drug effects , Endocrine System Diseases/etiology , Prognosis , Biomarkers/blood , Biomarkers/analysis
5.
Arch Pediatr ; 31(4): 277-278, 2024 May.
Article En | MEDLINE | ID: mdl-38485567

Gaucher disease (GD) is a lysosomal storage disorder caused by glucocerebrosidase (GBA) deficiency. There are three subcategories of GD: Type 1 is characterized by the absence of primary central nervous system involvement; type 2 is an acute neuropathic disorder; and type 3 is chronic neuropathic. The correlation between genotype and phenotype is sometimes difficult to establish. The F213I (c.754T>A p.Phe252Ile) mutation was reported to be a unique mutation in Asia. To our knowledge, this is the first time the c.754T>A p.(Phe252Ile) mutation (homozygous state) is reported in a Moroccan population and is associated with GD type 2 (two patients) and GD type 3 (one patient).


Gaucher Disease , Homozygote , Humans , Gaucher Disease/genetics , Gaucher Disease/diagnosis , Morocco , Male , Female , Mutation , Glucosylceramidase/genetics , Child, Preschool , Child , Infant
6.
Genes (Basel) ; 15(3)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38540341

Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.


Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Paraquat/toxicity , Dextran Sulfate , Parkinson Disease/genetics , Glucosylceramidase/genetics , Cognition
7.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38542193

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Depressive Disorder, Major , Glucosyltransferases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Depression , Depressive Disorder, Major/genetics , Gene Expression , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mutation , Parkinson Disease/metabolism , Up-Regulation
8.
Aging (Albany NY) ; 16(5): 4591-4608, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38428407

BACKGROUND: Excessive lipids accumulation and hepatocytes death are prominent characteristics of non-alcoholic fatty liver disease (NAFLD). Nonetheless, the precise pathophysiological mechanisms are not fully elucidated. METHODS: HepG2 cells stimulated with palmitic acids and rats fed with high-fat diet were used as models for NAFLD. The impact of Glucosylceramidase Beta 3 (GBA3) on fatty acid oxidation (FAO) was assessed using Seahorse metabolic analyzer. Lipid content was measured both in vitro and in vivo. To evaluate NAFLD progression, histological analysis was performed along with measurements of inflammatory factors and liver enzyme levels. Western blot and immunohistochemistry were employed to examine the activity levels of necroptosis. Flow cytometry and reactive oxygen species (ROS) staining were utilized to assess levels of oxidative stress. RESULTS: GBA3 promoted FAO and enhanced the mitochondrial membrane potential without affecting glycolysis. These reduced the lipid accumulation. Rats supplemented with GBA3 exhibited lower levels of inflammatory factors and liver enzymes, resulting in a slower progression of NAFLD. GBA3 overexpression reduced ROS and the ratio of cell apoptosis. Phosphorylation level was reduced in the essential mediator, MLKL, implicated in necroptosis. Mechanistically, as a transcriptional coactivator, GBA3 promoted the expression of Carnitine Palmitoyltransferase 2 (CPT2), which resulted in enhanced FAO. CONCLUSIONS: Increased FAO resulting from GBA3 reduced oxidative stress and the production of ROS, thereby inhibiting necroptosis and delaying the progression of NAFLD. Our research offers novel insights into the potential therapeutic applications of GBA3 and FAO in the management and treatment of NAFLD.


Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Glucosylceramidase , Lipid Metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Lipids
9.
Am J Case Rep ; 25: e943398, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38509666

BACKGROUND Gaucher disease is a rare autosomal recessive disorder characterized by mutations in the glucocerebrosidase gene, resulting in deficient enzyme activity and accumulation of glucocerebroside in macrophages, which leads to pathological changes in affected organs. The atypical clinical manifestations of Gaucher disease often contribute to delays in diagnosis and treatment. CASE REPORT We present the case of a 4-month-old female infant admitted to the Department of Pediatrics with progressive hepatosplenomegaly since birth. Concurrently, she had cytomegalovirus infection and sensory neurological hearing loss. Gaucher disease diagnosis was confirmed through whole-exome sequencing and validated by a glucocerebrosidase activity test, revealing the mutation site as c.1448T>C. This report outlines the differential diagnosis process for Gaucher disease in this infant before confirmation, contributing valuable insights for early diagnosis. CONCLUSIONS Our case underscores the challenge of diagnosing Gaucher disease due to its atypical presentation. The coexistence of cytomegalovirus infection complicates the clinical picture, emphasizing the need for careful differential diagnosis. Unfortunately, delayed diagnosis is all too common in rare diseases like Gaucher disease, even when the clinical presentation is seemingly typical. This highlights the need for increased awareness and education within the medical community to facilitate early recognition, which is essential for prompt intervention and improved outcomes. This report contributes valuable clinical and genetic information, aiming to enhance awareness and deepen the understanding of Gaucher disease in infants, particularly those with concurrent infections.


Cytomegalovirus Infections , Gaucher Disease , Infant , Humans , Child , Female , Glucosylceramidase/genetics , Gaucher Disease/complications , Gaucher Disease/diagnosis , Early Diagnosis , Mutation , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/diagnosis
10.
Ann Hematol ; 103(5): 1765-1774, 2024 May.
Article En | MEDLINE | ID: mdl-38509388

Gaucher disease (GD) is an autosomal recessive ailment resulting from glucocerebrosidase deficiency caused by a mutation in the GBA1 gene, leading to multi-organ problems in the liver, spleen, and bone marrow. In China, GD is extremely uncommon and has a lower incidence rate than worldwide. In this study, we report the case of an adult male with an enlarged spleen for 13 years who presented with abdominal distension, severe loss of appetite and weight, reduction of the three-line due to hypersplenism, frequent nosebleeds, and bloody stools. Regrettably, the unexpected discovery of splenic pathology suggestive of splenic Gaucher disease was only made after a splenectomy due to a lack of knowledge about rare disorders. Our patient's delayed diagnosis may have been due to the department where he was originally treated, but it highlights the need for multidisciplinary consultation in splenomegaly of unknown etiology. We then investigated the patient's clinical phenotypes and gene mutation features using genetically phenotypical analysis. The analysis of the GBA1 gene sequence indicated that the patient carried a compound heterozygous mutation consisting of two potentially disease-causing mutations: c.907C > A (p. Leu303Ile) and c.1448 T > C (p. Leu483Pro). While previous research has linked the p. Leu483Pro mutation site to neurologic GD phenotypes (GD2 and GD3), the patients in this investigation were identified as having non-neuronopathic GD1. The other mutation, p. Leu303Ile, is a new GD-related mutation not indexed in PubMed that enriches the GBA1 gene mutation spectrum. Biosignature analysis has shown that both mutations alter the protein's three-dimensional structure, which may be a pathogenic mechanism for GD1 in this patient.


Gaucher Disease , Splenic Diseases , Adult , Humans , Male , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/surgery , Splenectomy , Bone Marrow , Phenotype , Splenomegaly/genetics , Mutation , Glucosylceramidase/genetics
11.
Bioorg Chem ; 146: 107295, 2024 May.
Article En | MEDLINE | ID: mdl-38513326

A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as ß-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in ß-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.


Gaucher Disease , Imino Sugars , Humans , Gaucher Disease/drug therapy , Glucosylceramidase , Pyrrolidines/pharmacology , Enzyme Inhibitors/pharmacology
12.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454456

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Gaucher Disease , Parkinson Disease , Animals , Mice , alpha-Synuclein/metabolism , Animals, Genetically Modified/metabolism , Gaucher Disease/genetics , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Lipids , Mutation , Parkinson Disease/metabolism
13.
Parkinsonism Relat Disord ; 122: 106039, 2024 May.
Article En | MEDLINE | ID: mdl-38438297

There is an urgent need to identify drug targets for disease modification in Parkinson's Disease (PD). In this mini-review we highlight the reasons genetically-defined drug targets show great promise. Specifically, clinical trials targeting the glucocerebrosidase-1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) genes are underway. Two key knowledge gaps are 1. How should we modify the GBA1 and LRRK2 pathways? and 2. Which patient populations are most likely to benefit? The exact mechanisms by which mutations in these genes cause PD are not fully understood. Most drugs targeting the GBA1 pathway in clinical trials aim at increasing glucocerebrosidase enzymatic (GCase) activity and targeting the LRRK2 pathway, at reducing its kinase activity. Carriers of mutations in these genes are natural candidates for such interventions; however, there are some biomarker data, specifically for GBA1, to support studying such interventions in non-carriers, i.e., sporadic PD. In summary, we anticipate significant progress in our path towards precision medicine in PD in the coming years.


Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Glucosylceramidase/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Animals , Mutation
14.
Genes (Basel) ; 15(3)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38540423

Gaucher disease, an autosomal recessively inherited lysosomal storage disorder, results from biallelic mutations in the GBA1 gene resulting in deficient activity of the enzyme glucocerebrosidase. In Gaucher disease, the reduced levels and activity of glucocerebrosidase lead to a disparity in the rates of formation and breakdown of glucocerebroside and glucosylsphingosine, resulting in the accumulation of these lipid substrates in the lysosome. This gives rise to the development of Gaucher cells, engorged macrophages with a characteristic wrinkled tissue paper appearance. There are both non-neuronopathic (type 1) and neuronopathic (types 2 and 3) forms of Gaucher disease, associated with varying degrees of severity. The visceral and hematologic manifestations of Gaucher disease respond well to both enzyme replacement therapy and substrate reduction therapy. However, these therapies do not improve the neuronopathic manifestations, as they cannot cross the blood-brain barrier. There is now an established precedent for treating lysosomal storage disorders with gene therapy strategies, as many have the potential to cross into the brain. The range of the gene therapies being employed is broad, but this review aimed to discuss the progress, advances, and challenges in developing viral gene therapy as a treatment for Gaucher disease.


Gaucher Disease , Humans , Gaucher Disease/genetics , Gaucher Disease/therapy , Glucosylceramidase/genetics , Glucosylceramidase/therapeutic use , Brain/metabolism , Blood-Brain Barrier/metabolism , Macrophages/metabolism
15.
J Parkinsons Dis ; 14(3): 467-482, 2024.
Article En | MEDLINE | ID: mdl-38552119

The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.


Genetic Predisposition to Disease , Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , alpha-Synuclein , Humans , Parkinson Disease/genetics , Glucosylceramidase/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , alpha-Synuclein/genetics
16.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Article En | MEDLINE | ID: mdl-38334933

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Glucosylceramidase , Adult , Female , Humans , Male , Middle Aged , Glucosylceramidase/genetics , Italy , Mutation/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis
17.
J Parkinsons Dis ; 14(2): 335-346, 2024.
Article En | MEDLINE | ID: mdl-38306061

Background: Increased prevalence of cardiovascular autonomic failure might play a key role on Parkinson's disease (PD) progression of glucocerebrosidase gene (GBA)-mutated patients, determining a malignant phenotype of disease in these patients. Objective: To objectively characterize, for the first time, the cardiovascular autonomic profile of GBA-mutated patients compared to idiopathic PD patients by means of cardiovascular reflex tests (CRTs). Methods: This is a case-control (1 : 2) study on PD patients belonging to well-characterized prospective cohorts. For each PD patient carrying GBA variants, two idiopathic PD patients, matched for sex and disease duration at CRTs, were selected. Patients recruited in these cohorts underwent a complete clinical and instrumental evaluation including specific autonomic questionnaires, CRTs and extensive genetic analysis. Results: A total of 23 GBA-PD patients (19 males, disease duration 7.7 years) were included and matched with 46 non-mutated PD controls. GBA-mutated patients were younger than controls (59.9±8.1 vs. 64.3±7.2 years, p = 0.0257) and showed a more severe phenotype. Despite GBA-mutated patients reported more frequently symptoms suggestive of orthostatic hypotension (OH) than non-mutated patients (39.1% vs 6.5%, p = 0.001), the degree of cardiovascular autonomic dysfunction, when instrumentally assessed, did not differ between the two groups, showing the same prevalence of neurogenic OH, delayed OH and cardiovascular reflex impairment (pathological Valsalva maneuver). Conclusion: GBA-PD patients did not show different instrumental cardiovascular autonomic pattern than non-mutated PD. Our findings suggested that symptoms suggestive of OH should be promptly investigated by clinicians to confirm their nature and improve patient care and management.


Autonomic Nervous System Diseases , Hypotension, Orthostatic , Parkinson Disease , Humans , Male , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/etiology , Case-Control Studies , Glucosylceramidase/genetics , Mutation , Parkinson Disease/complications , Parkinson Disease/genetics , Prospective Studies
18.
Ann Clin Transl Neurol ; 11(4): 899-904, 2024 Apr.
Article En | MEDLINE | ID: mdl-38337113

OBJECTIVE: Mutations in the glucocerebrosidase (GBA1) gene and subthalamic nucleus deep brain stimulation (STN-DBS) are independently associated with cognitive dysfunction in persons with Parkinson's disease (PwP). We hypothesized that PwP with both GBA1 mutations and STN-DBS are at greater risk of cognitive dysfunction than PwP with only GBA1 mutations or STN-DBS, or neither. In this study, we determined the pattern of cognitive dysfunction in PwP based on GBA1 mutation status and STN-DBS treatment. METHODS: PwP who are GBA1 mutation carriers with or without DBS (GBA1+DBS+, GBA1+DBS-), and noncarriers with or without DBS (GBA1-DBS+, GBA1-DBS-) were included. Using the NIH Toolbox, cross-sectional differences in response inhibition, processing speed, and episodic memory were compared using analysis of variance with adjustment for relevant covariates. RESULTS: Data were available for 9 GBA1+DBS+, 14 GBA1+DBS-, 17 GBA1-DBS+, and 26 GBA1-DBS- PwP. In this cross-sectional study, after adjusting for covariates, we found that performance on the Flanker test (measure of response inhibition) was lower in GBA1+DBS+ PwP compared with GBA1-DBS+ PwP (P = 0.030). INTERPRETATION: PwP who carry GBA1 mutations and have STN-DBS have greater impaired response inhibition compared with PwP with STN-DBS but without GBA1 mutations. Longitudinal data, including preoperative scores, are required to definitively determine whether GBA1 mutation carriers respond differently to STN-DBS, particularly in the domain of response inhibition.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Parkinson Disease/genetics , Parkinson Disease/therapy , Cross-Sectional Studies , Glucosylceramidase/genetics
19.
ChemMedChem ; 19(7): e202300548, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38381042

Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.


Gaucher Disease , Glucosylceramidase , Humans , Glucosylceramidase/chemistry , Glucosylceramidase/metabolism , Glucosylceramides , Hydrolysis , Gaucher Disease/drug therapy
20.
FEBS Lett ; 598(4): 477-484, 2024 Feb.
Article En | MEDLINE | ID: mdl-38302739

Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.


Mitochondrial Diseases , Niemann-Pick Disease, Type C , Phosphoproteins , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Cholesterol/metabolism , Niemann-Pick C1 Protein/metabolism , Receptors, GABA/metabolism
...