Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.194
Filtrar
1.
Physiol Plant ; 176(4): e14427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005156

RESUMEN

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Asunto(s)
Fructanos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Pradera , Lolium , Hojas de la Planta , Proteínas de Plantas , Sacarosa , Lolium/enzimología , Lolium/genética , Lolium/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Fructanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo
2.
J Agric Food Chem ; 72(28): 15823-15831, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959519

RESUMEN

Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicosiltransferasas , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosilación , Edulcorantes/química , Edulcorantes/metabolismo , Stevia/química , Stevia/enzimología , Stevia/metabolismo , Stevia/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ingeniería de Proteínas , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Glicósidos
3.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999194

RESUMEN

Dextransucrases play a crucial role in the production of dextran from economical sucrose; therefore, there is a pressing demand to explore novel dextransucrases with better performance. This study characterized a dextransucrase enzyme, LmDexA, which was identified from the Leuconostoc mesenteroides NN710. This bacterium was isolated from the soil of growing dragon fruit in Guangxi province, China. We successfully constructed six different N-terminal truncated variants through sequential analysis. Additionally, a truncated variant, ΔN190LmDexA, was constructed by removing the 190 amino acids fragment from the N-terminal. This truncated variant was then successfully expressed heterologously in Escherichia coli and purified. The purified ΔN190LmDexA demonstrated optimal hydrolysis activity at a pH of 5.6 and a temperature of 30 °C. Its maximum specific activity was measured to be 126.13 U/mg, with a Km of 13.7 mM. Results demonstrated a significant improvement in the heterologous expression level and total enzyme activity of ΔN190LmDexA. ΔN190LmDexA exhibited both hydrolytic and transsaccharolytic enzymatic activities. When sucrose was used as the substrate, it primarily produced high-molecular-weight dextran (>400 kDa). However, upon the addition of maltose as a receptor, it resulted in the production of a significant amount of oligosaccharides. Our results can provide valuable information for enhancing the characteristics of recombinant dextransucrase and potentially converting sucrose into high-value-added dextran and oligosaccharides.


Asunto(s)
Clonación Molecular , Glucosiltransferasas , Leuconostoc mesenteroides , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Leuconostoc mesenteroides/enzimología , Leuconostoc mesenteroides/genética , Dextranos/química , Dextranos/biosíntesis , Dextranos/metabolismo , Hidrólisis , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Mutación , Especificidad por Sustrato , Sacarosa/metabolismo , Cinética , Temperatura
4.
Int J Biol Macromol ; 273(Pt 2): 133205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38885871

RESUMEN

Although myricetin (3,3',4',5,5',7-hexahydroxyflavone, MYR) has a high antioxidant capacity and health functions, its use as a functional food material is limited owing to its low stability and water solubility. Amylosucrase (ASase) is capable of biosynthesizing flavonol α-glycoside using flavonols as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus deserti (DdAS) efficiently biosynthesizes a novel MYR α-triglucoside (MYRαG3) using MYR as the acceptor molecule. Comparative homology analysis and computational simulation revealed that DdAS has a different active pocket for the transglycosylation reaction. DdAS produced MYRαG3 with a conversion efficiency of 67.4 % using 10 mM MYR and 50 mM sucrose as acceptor and donor molecules, respectively. The structure of MYRαG3 was identified as MYR 4'-O-4″,6″-tri-O-α-D-glucopyranoside using NMR and LC-MS. In silico analysis confirmed that DdAS has a distinct active pocket compared to other ASases. In addition, molecular docking simulations predicted the synthetic sequence of MYRαG3. Furthermore, MYRαG3 showed a similar DPPH radical scavenging activity of 49 %, comparable to MYR, but with significantly higher water solubility, which increased from 0.03 µg/mL to 511.5 mg/mL. In conclusion, this study demonstrated the efficient biosynthesis of a novel MYRαG3 using DdAS and highlighted the potential of MYRαG3 as a functional material.


Asunto(s)
Deinococcus , Flavonoides , Glucósidos , Glucosiltransferasas , Solubilidad , Deinococcus/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/biosíntesis , Glucósidos/química , Glucósidos/biosíntesis , Glucósidos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular
5.
Food Chem ; 455: 139917, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838622

RESUMEN

Crocus sativus L. is a both medicinal and food bulbous flower whose qualities are geographically characterized. However, identification involving different places of origin of such substances is currently limited to single-omics mediated content analysis. Integrated metabolomics and proteomics, 840 saffron samples from six countries (Spain, Greece, Iran, China, Japan, and India) were analyzed using the QuEChERS extraction method. A total of 77 differential metabolites and 14 differential proteins were identified. The limits of detection of the method were 1.33 to 8.33 µg kg-1, and the recoveries were 85.56% to 105.18%. Using homology modeling and molecular docking, the Gln84, Lys195, Val182 and Pro184 sites of Crocetin glucosyltransferase 2 were found to be the targets of crocetin binding. By multivariate statistical analysis (PCA and PLS-DA), different saffron samples were clearly distinguished. The results provided the basis for the selection and identification of high quality saffron from different producing areas.


Asunto(s)
Carotenoides , Crocus , Simulación del Acoplamiento Molecular , Vitamina A , Crocus/química , Crocus/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Vitamina A/análogos & derivados , Vitamina A/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Biotransformación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flores/química , Flores/metabolismo
6.
Int J Biol Macromol ; 273(Pt 2): 133241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897508

RESUMEN

Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1 (Combi-CLEAs-CM) were successfully developed to synthesis maltooligosaccharides (MOS). Yet, the poor cross-linking performance between chitosan (cross-linker) and enzymes resulting low activity recovery and catalytic efficiency. In this study, we proposed the functionalization of cross-linkers with the integration of computational analysis to study the influences of different functional group on cross-linkers in combi-CLEAs development. From in-silico analysis, O-carboxymethyl chitosan (OCMCS) with the highest binding affinity toward both enzymes was chosen and showed alignment with the experimental result, in which OCMCS was synthesized as cross-linker to develop improved activity recovery of Combi-CLEAs-CM-ocmcs (74 %). The thermal stability and deactivation energy (205.86 kJ/mol) of Combi-CLEAs-CM-ocmcs were found to be higher than Combi-CLEAs-CM (192.59 kJ/mol). The introduction of longer side chain of carboxymethyl group led to a more flexible structure of Combi-CLEAs-CM-ocmcs. This alteration significantly reduced the Km value of Combi-CLEAs-CM-ocmcs by about 3.64-fold and resulted in a greater Kcat/Km (3.63-fold higher) as compared to Combi-CLEAs-CM. Moreover, Combi-CLEAs-CM-ocmcs improved the reusability with retained >50 % of activity while Combi-CLEAs-CM only 36.18 % after five cycles. Finally, maximum MOS production (777.46 mg/g) was obtained by Combi-CLEAs-CM-ocmcs after optimization using response surface methodology.


Asunto(s)
Quitosano , Glucosiltransferasas , Oligosacáridos , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Oligosacáridos/química , Oligosacáridos/síntesis química , Quitosano/química , Quitosano/análogos & derivados , Reactivos de Enlaces Cruzados/química , Bacillus/enzimología , Agregado de Proteínas , Simulación del Acoplamiento Molecular , Estabilidad de Enzimas , Glicósido Hidrolasas
7.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1845-1855, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914495

RESUMEN

α-arbutin has important applications in cosmetics and medicine. However, the extraction yield from plant tissues is relatively low, which restricts its application value. In this study, we investigated the synthesis of α-arbutin using maltodextrin as the donor and hydroquinone as the acceptor, using a cyclodextrin glucosyltransferase (CGTase) from Anaerobranca gottschalkii. We performed site-saturated and site-directed mutagenesis on AgCGTase. The activity of the variant AgCGTase-F235G-N166H was 3.48 times higher than that of the wild type. Moreover, we achieved a conversion rate of 63% by optimizing the reaction pH, temperature, and hydroquinone addition amount. Overall, this study successfully constructed a strain with improved conversion rate for the synthetic production of α-arbutin and hydroquinone. These findings have significant implications for reducing the industrial production cost of α-arbutin and enhancing the conversion rate of the product.


Asunto(s)
Arbutina , Glucosiltransferasas , Hidroquinonas , Mutagénesis Sitio-Dirigida , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Arbutina/biosíntesis , Hidroquinonas/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/metabolismo
8.
Yeast ; 41(7): 448-457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874213

RESUMEN

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.


Asunto(s)
Pared Celular , Glucanos , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esporas Fúngicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Glucanos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de la Membrana
9.
Front Cell Infect Microbiol ; 14: 1392015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841113

RESUMEN

Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Modelos Animales de Enfermedad , Glucosiltransferasas , Pulmón , Factores de Virulencia , Animales , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/inmunología , Criptococosis/microbiología , Criptococosis/inmunología , Ratones , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Pulmón/microbiología , Pulmón/patología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Encéfalo/microbiología , Bazo/microbiología , Femenino , Ratones Endogámicos C57BL , Inmunidad Innata , Evasión Inmune , Eliminación de Gen
10.
Neuropathol Appl Neurobiol ; 50(3): e12995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923610

RESUMEN

AIMS: Polyglucosan storage disorders represent an emerging field within neurodegenerative and neuromuscular conditions, including Lafora disease (EPM2A, EPM2B), adult polyglucosan body disease (APBD, GBE1), polyglucosan body myopathies associated with RBCK1 deficiency (PGBM1, RBCK1) or glycogenin-1 deficiency (PGBM2, GYG1). While the storage material primarily comprises glycans, this study aimed to gain deeper insights into the protein components by proteomic profiling of the storage material in glycogenin-1 deficiency. METHODS: We employed molecular genetic analyses, quantitative mass spectrometry of laser micro-dissected polyglucosan bodies and muscle homogenate, immunohistochemistry and western blot analyses in muscle tissue from a 45-year-old patient with proximal muscle weakness from late teenage years due to polyglucosan storage myopathy. RESULTS: The muscle tissue exhibited a complete absence of glycogenin-1 due to a novel homozygous deep intronic variant in GYG1 (c.7+992T>G), introducing a pseudo-exon causing frameshift and a premature stop codon. Accumulated proteins in the polyglucosan bodies constituted components of glycogen metabolism, protein quality control pathways and desmin. Muscle fibres containing polyglucosan bodies frequently exhibited depletion of normal glycogen. CONCLUSIONS: The absence of glycogenin-1, a protein important for glycogen synthesis initiation, causes storage of polyglucosan that displays accumulation of several proteins, including those essential for glycogen synthesis, sequestosome 1/p62 and desmin, mirroring findings in RBCK1 deficiency. These results suggest shared pathogenic pathways across different diseases exhibiting polyglucosan storage. Such insights have implications for therapy in these rare yet devastating and presently untreatable disorders.


Asunto(s)
Glucanos , Enfermedad del Almacenamiento de Glucógeno , Músculo Esquelético , Proteómica , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Persona de Mediana Edad , Glucanos/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Masculino , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/genética , Glucosiltransferasas , Glicoproteínas , Enfermedades del Sistema Nervioso
11.
Plant Mol Biol ; 114(4): 76, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888655

RESUMEN

Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5G43R + S49T+S54P+S80A+Y88F. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Dedos de Zinc , Celulosa/metabolismo , Fenotipo , Multimerización de Proteína , Mutación , Secuencia de Aminoácidos
12.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1833-1844, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914494

RESUMEN

Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate ß-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme's catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme's catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).


Asunto(s)
Glucosiltransferasas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Especificidad por Sustrato , Escherichia coli/genética , Escherichia coli/metabolismo , Trichomonas vaginalis/enzimología , Trichomonas vaginalis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Fosfatos de Dolicol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/enzimología
13.
BMC Plant Biol ; 24(1): 588, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902602

RESUMEN

BACKGROUND: Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS: In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS: Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.


Asunto(s)
Glucosiltransferasas , Filogenia , Sapindus , Saponinas , Triterpenos , Saponinas/biosíntesis , Saponinas/metabolismo , Sapindus/genética , Sapindus/metabolismo , Triterpenos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791109

RESUMEN

Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Citocininas , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Oryza , Hojas de la Planta , Proteínas de Plantas , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
15.
Plant J ; 119(2): 982-997, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743909

RESUMEN

Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Fotosíntesis , Almidón/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Brasinoesteroides/metabolismo , Esteroides Heterocíclicos/farmacología , Esteroides Heterocíclicos/metabolismo
16.
J Agric Food Chem ; 72(19): 11041-11050, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700846

RESUMEN

The function of polysaccharides is intimately associated with their size, which is largely determined by the processivity of transferases responsible for their synthesis. A tunnel active center architecture has been recognized as a key factor that governs processivity of several glycoside hydrolases (GHs), e.g., cellulases and chitinases. Similar tunnel architecture is also observed in the Limosilactobacillus reuteri 121 GtfB (Lr121 GtfB) α-glucanotransferase from the GH70 family. The molecular element underpinning processivity of these transglucosylases remains underexplored. Here, we report the synthesis of the smallest (α1 → 4)-α-glucan interspersed with linear and branched (α1 → 6) linkages by a novel 4,6-α-glucanotransferase from L. reuteri N1 (LrN1 GtfB) with an open-clefted active center instead of the tunnel structure. Notably, the loop swapping engineering of LrN1 GtfB and Lr121 GtfB based on their crystal structures clarified the impact of the loop-mediated tunnel/cleft structure at the donor subsites -2 to -3 on processivity of these α-glucanotransferases, enabling the tailoring of both product sizes and substrate preferences. This study provides unprecedented insights into the processivity determinants and evolutionary diversification of GH70 α-glucanotransferases and offers a simple route for engineering starch-converting α-glucanotransferases to generate diverse α-glucans for different biotechnological applications.


Asunto(s)
Proteínas Bacterianas , Glucanos , Limosilactobacillus reuteri , Glucanos/química , Glucanos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/química , Dominio Catalítico , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ingeniería de Proteínas , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/química
17.
Clin Drug Investig ; 44(6): 387-398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698285

RESUMEN

BACKGROUND AND OBJECTIVE: Aberrant accumulation of glycosphingolipids (GSLs) in the lysosome leads to GSL storage diseases. Glucosylceramide synthase inhibitors (GCSi) have the potential to treat several GSL storage diseases by reducing the synthesis of the disease-causing GSLs. AL01211 is a potent oral GCSi under investigation for Type 1 Gaucher disease and Fabry disease. Here, we evaluate the pharmacokinetics, pharmacodynamics, safety, and tolerability of AL01211 in healthy Chinese volunteers. METHODS: AL01211 was tested in a Phase 1, single-center, randomized, double-blind, placebo-controlled study with single-dose (15 and 60 mg) and multiple-dose (30 mg) arms. RESULTS: Results of AL01211 demonstrated dose-dependent pharmacokinetics, rapid absorption (median time to maximum plasma concentration [tmax] 2.5-4 hours), relatively slow clearance rate (mean apparent total clearance from plasma [CL/F] 88.3-200 L/h) and the mean terminal half-life above 30 hours. Repeated once-daily oral administration of AL01211 for 14 days had an approximately 2-fold accumulation, reaching steady-state levels between 7 and 10 days, and led to a 73% reduction in plasma glucosylceramide (GL1) on Day 14. AL01211 was safe and well tolerated, with no identified serious adverse events. CONCLUSION: AL01211 showed a favorable pharmacokinetic, pharmacodynamics, safety, and tolerability profile in healthy Chinese volunteers. These data support the further clinical development of AL01211 as a therapy for GSL storage diseases. CLINICAL TRIAL REGISTRY: Clinical Trial Registry no. CTR20221202 ( http://www.chinadrugtrials.org.cn ) registered on 6 June 2022 and ChiCTR2200061431 ( http://www.chictr.org.cn ) registered on 24 June 2022.


Asunto(s)
Pueblo Asiatico , Glucosiltransferasas , Voluntarios Sanos , Humanos , Método Doble Ciego , Masculino , Adulto , Administración Oral , Adulto Joven , Femenino , Glucosiltransferasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , China , Persona de Mediana Edad , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Pueblos del Este de Asia
18.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791351

RESUMEN

Phytophthora infestans (Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target Plasmopara viticola cellulose synthase 2 (PvCesA2) to inhibit the growth of Phytophthora infestans (P. infestans). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.


Asunto(s)
Phytophthora infestans , Enfermedades de las Plantas , Solanum tuberosum , Phytophthora infestans/efectos de los fármacos , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Simulación de Dinámica Molecular , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Humanos
19.
Mycopathologia ; 189(3): 40, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704798

RESUMEN

Candida parapsilosis complex has recently received special attention due to naturally occurring FKS1 polymorphism associated with high minimal inhibitory concentrations for echinocandin and the increase of clonal outbreaks of strains resistant to commonly used antifungals such as fluconazole. Despite the previous fact, little is known about the genetic mechanism associated with echinocandin resistance. Therefore, the present study was designed to investigate the mechanism of acquired echinocandin resistance in C. parapsilosis complex strains. A total of 15 clinical C. parapsilosis complex isolates were sub-cultured for 30 days at a low concentration of micafungin at ½ the lowest MIC value of the tested isolates (0.12 µg/ml). After culturing, all the isolates were checked phenotypically for antifungal resistance and genotypically for echinocandin resistance by checking FKS1 gene hot spot one (HS1) and HS2 mutations. In vitro induction of echinocandin resistance confirmed the rapid development of resistance at low concentration micafungin, with no difference among C. parapsilosis, C. metapsilosis, and C. orthopsilosis in the resistance development. For the first time we identified different FKS1 HS1 and or HS2 mutations responsible for echinocandin resistance such as R658S and L1376F in C. parapsilosis, S656X, R658X, R658T, W1370X, X1371I, V1371X, and R1373X (corresponding to their location in C. parapsilosis) in C. metapsilosis, and L648F and R1366H in C. orthopsilosis. Our results are of significant concern, since the rapid development of resistance may occur clinically after short-term exposure to antifungals as recently described in other fungal species with the potential of untreatable infections.


Asunto(s)
Antifúngicos , Candida parapsilosis , Farmacorresistencia Fúngica , Equinocandinas , Glucosiltransferasas , Humanos , Antifúngicos/farmacología , Candida parapsilosis/genética , Candida parapsilosis/efectos de los fármacos , Candidiasis/microbiología , Farmacorresistencia Fúngica/genética , Equinocandinas/farmacología , Proteínas Fúngicas/genética , Glucosiltransferasas/genética , Micafungina/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mutación Missense
20.
Plant Physiol Biochem ; 212: 108725, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772164

RESUMEN

Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.


Asunto(s)
Biomasa , Dióxido de Carbono , Carbono , Nitrógeno , Fotosíntesis , Nitrógeno/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glucosiltransferasas/metabolismo , Fabaceae/metabolismo , Fabaceae/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...