Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.969
1.
Chemosphere ; 358: 142162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697568

This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.


Biomarkers , Climate Change , Larva , Paracentrotus , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Larva/drug effects , Larva/growth & development , Biomarkers/metabolism , Paracentrotus/drug effects , Glutathione Transferase/metabolism , Microplastics/toxicity , Acetylcholinesterase/metabolism , Oxidative Stress/drug effects , Seawater/chemistry , Glutathione Reductase/metabolism
2.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711406

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Antioxidants , Fungicides, Industrial , Glutathione , Rats, Wistar , Reactive Oxygen Species , Thiram , Animals , Male , Rats , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Fungicides, Industrial/toxicity , Thiram/toxicity , Antioxidants/pharmacology , Mouth/metabolism , Mouth/drug effects , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Glutathione Peroxidase/metabolism
3.
J Mol Model ; 30(6): 181, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780838

CONTEXT: Malaria remains a significant global health challenge with emerging resistance to current treatments. Plasmodium falciparum glutathione reductase (PfGR) plays a critical role in the defense mechanisms of malaria parasites against oxidative stress. In this study, we investigate the potential of targeting PfGR with conventional antimalarials and dual drugs combining aminoquinoline derivatives with GR inhibitors, which reveal promising interactions between PfGR and studied drugs. The naphthoquinone Atovaquone demonstrated particularly high affinity and potential dual-mode binding with the enzyme active site and cavity. Furthermore, dual drugs exhibit enhanced binding affinity, suggesting their efficacy in inhibiting PfGR, where the aliphatic ester bond (linker) is essential for effective binding with the enzyme's active site. Overall, this research provides important insights into the interactions between antimalarial agents and PfGR and encourages further exploration of its role in the mechanisms of action of antimalarials, including dual drugs, to enhance antiparasitic efficacy. METHODS: The drugs were tested as PfGR potential inhibitors via molecular docking on AutoDock 4, which was performed based on the preoptimized structures in HF/3-21G-PCM level of theory on ORCA 5. Drug-receptor systems with the most promising binding affinities were then studied with a molecular dynamic's simulation on AMBER 16. The molecular dynamics simulations were performed with a 100 ns NPT ensemble employing GAFF2 forcefield in the temperature of 310 K, integration time step of 2 fs, and non-bond cutoff distance of 6.0 Å.


Antimalarials , Glutathione Reductase , Molecular Docking Simulation , Molecular Dynamics Simulation , Plasmodium falciparum , Antimalarials/chemistry , Antimalarials/pharmacology , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/chemistry , Glutathione Reductase/metabolism , Protein Binding , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans
4.
Bull Exp Biol Med ; 176(5): 617-619, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730108

We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).


Apoptosis , Caspase 3 , Dexamethasone , Glutathione , HSP27 Heat-Shock Proteins , Oxidative Stress , Humans , Dexamethasone/pharmacology , Jurkat Cells , Apoptosis/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Glutathione/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Oxidative Stress/drug effects , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Hydroxyl Radical/metabolism
5.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597299

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Acetates , Antioxidants , Halomonas , Neuroprotective Agents , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Zebrafish/metabolism , Neuroprotective Agents/pharmacology , Okadaic Acid/metabolism , Okadaic Acid/pharmacology , Molecular Docking Simulation , Oxidative Stress , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Diketopiperazines/metabolism , Diketopiperazines/pharmacology , Glutathione Transferase/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 53-60, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678627

Cobalt protoporphyrin (CoPP) is a synthetic heme analog that has been observed to reduce food intake and promote sustained weight loss. While the precise mechanisms responsible for these effects remain elusive, earlier research has hinted at the potential involvement of nitric oxide synthase in the hypothalamus. This study aimed to delve into CoPP's impact on the activities of crucial antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) across seven distinct brain regions (hippocampus, hypothalamus, prefrontal cortex, motor cortex, striatum, midbrain, and cerebellum), as well as in the liver and kidneys. Female Wistar rats weighing 180 to 200 grams received a single subcutaneous dose of 25 µmol/kg CoPP. After six days, brain tissue was extracted to assess the activities of antioxidant enzymes and quantify malondialdehyde levels. Our findings confirm that CoPP administration triggers the characteristic effects of decreased food intake and reduced body weight. Moreover, it led to an increase in SOD activity in the hypothalamus, a pivotal brain region associated with food intake regulation. Notably, CoPP-treated rats exhibited elevated enzymatic activity of catalase, GR, and GST in the motor cortex without concurrent signs of heightened oxidative stress. These results underscore a strong connection between the antioxidant system and food intake regulation. They also emphasize the need for further investigation into the roles of antioxidant enzymes in modulating food intake and the ensuing weight loss, using CoPP as a valuable research tool.


Antioxidants , Hypothalamus , Motor Cortex , Protoporphyrins , Rats, Wistar , Superoxide Dismutase , Animals , Female , Hypothalamus/metabolism , Hypothalamus/drug effects , Hypothalamus/enzymology , Antioxidants/metabolism , Protoporphyrins/pharmacology , Motor Cortex/drug effects , Motor Cortex/metabolism , Motor Cortex/enzymology , Superoxide Dismutase/metabolism , Catalase/metabolism , Rats , Oxidative Stress/drug effects , Glutathione Peroxidase/metabolism , Eating/drug effects , Glutathione Transferase/metabolism , Body Weight/drug effects , Glutathione Reductase/metabolism , Malondialdehyde/metabolism
7.
ACS Infect Dis ; 10(5): 1753-1766, 2024 May 10.
Article En | MEDLINE | ID: mdl-38606463

The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.


Anti-Bacterial Agents , Glutathione Reductase , Gram-Negative Bacteria , Microbial Sensitivity Tests , Silver , Thioredoxin-Disulfide Reductase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/metabolism , Gram-Negative Bacteria/drug effects , Humans , Biofilms/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Thioredoxins , Gram-Positive Bacteria/drug effects , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
8.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Article En | MEDLINE | ID: mdl-38523449

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Antioxidants , Auricularia , Basidiomycota , Antioxidants/metabolism , Humidity , Fruit/metabolism , Catalase/metabolism , Ascorbic Acid , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Basidiomycota/metabolism , Lipid Peroxidation
9.
J Appl Microbiol ; 135(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38533661

AIMS: This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS: The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS: Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.


Hydrogen Peroxide , Hydroponics , Microalgae , Solanum lycopersicum , Water , Microalgae/growth & development , Microalgae/metabolism , Solanum lycopersicum/growth & development , Hydrogen Peroxide/metabolism , Water/metabolism , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Electrolysis , Superoxide Dismutase/metabolism , Glutathione Reductase/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Oxidation-Reduction
10.
Mar Environ Res ; 196: 106402, 2024 Apr.
Article En | MEDLINE | ID: mdl-38402778

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Octopodiformes , Animals , Octopodiformes/metabolism , Antioxidants , Oxidative Stress , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Glutathione/metabolism
11.
Mol Biotechnol ; 66(5): 1144-1153, 2024 May.
Article En | MEDLINE | ID: mdl-38184809

AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.


Eremothecium , Oxidative Stress , Reactive Oxygen Species , Riboflavin , Sirtuins , Riboflavin/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Eremothecium/genetics , Eremothecium/metabolism , Reactive Oxygen Species/metabolism , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , NAD/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Fungal , Glutathione Reductase/genetics , Glutathione Reductase/metabolism
12.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Article En | MEDLINE | ID: mdl-38237421

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Hydrogen Peroxide , Rose Bengal , Hydrogen Peroxide/metabolism , Ascorbic Acid/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Oxidative Stress , Glutathione/metabolism , Acclimatization , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
13.
Arch Pharm (Weinheim) ; 357(2): e2300497, 2024 Feb.
Article En | MEDLINE | ID: mdl-37972283

In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.


Flavones , Methotrexate , Thioredoxin-Disulfide Reductase , Rats , Animals , Methotrexate/pharmacology , Thioredoxin-Disulfide Reductase/metabolism , Glutathione Transferase/metabolism , Pentose Phosphate Pathway , Structure-Activity Relationship , Glutathione Reductase/metabolism , Body Weight
14.
Environ Toxicol Pharmacol ; 105: 104352, 2024 Jan.
Article En | MEDLINE | ID: mdl-38141841

This study aimed to investigate the effects of 24 and 72 h exposure to environmentally relevant concentrations of tebuconazole (TEB) (10, 100 and 500 µg/L) fungicide on the freshwater snail Lymnaea stagnalis. The focus was induction of oxidative stress, alteration of gene expressions and histopathological changes in the kidney and digestive gland. TEB treatment induced a time- and concentration-dependent increase in intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while the total antioxidant capacity (TAC) was decreased. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) also increased in a time- and concentration-dependent manner in both tissues. TEB exposure significantly increased the mRNA levels of CAT, GPx, GR, heat shock proteins HSP40 and HSP70. Histological analysis revealed nephrocyte degeneration and disrupted digestive cells. The study concludes that acute exposure to TEB induces oxidative stress, alters antioxidant defense mechanisms, and leads to histopathological changes in L. stagnalis.


Antioxidants , Lymnaea , Triazoles , Animals , Antioxidants/pharmacology , Oxidative Stress , Catalase/metabolism , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Kidney/metabolism
15.
Plant Signal Behav ; 18(1): 2285169, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-38015652

Cold stress seriously inhibits plant growth and development, geographical distribution, and yield stability of plants. Cold acclimation (CA) is an important strategy for modulating cold stress, but the mechanism by which CA induces plant resistance to cold stress is still not clear. The purpose of this study was to investigate the effect of CA treatment on the cold resistance of citrus seedlings under cold stress treatment, and to use seedlings without CA treatment as the control (NA). The results revealed that CA treatment increased the content of photosynthetic pigments under cold stress, whereas cold stress greatly reduced the value of gas exchange parameters. CA treatment also promoted the activity of Rubisco and FBPase, as well as led to an upregulation of the transcription levels of photosynthetic related genes (rbcL and rbcS),compared to the NA group without cold stress. In addition, cold stress profoundly reduced photochemical chemistry of photosystem II (PSII), especially the maximum quantum efficiency (Fv/Fm) in PSII. Conversely, CA treatment improved the chlorophyll a fluorescence parameters, thereby improving electron transfer efficiency. Moreover, under cold stress, CA treatment alleviated oxidative stress damage to cell membranes by inhibiting the concentration of H2O2 and MDA, enhancing the activities of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX) and glutathione reductase (GR), accompanied by an increase in the expression level of antioxidant enzyme genes (CuZnSOD1, CAT1, APX and GR). Additionally, CA also increased the contents of abscisic acid (ABA) and salicylic acid (SA) in plants under cold stress. Overall, we concluded that CA treatment suppressed the negative effects of cold stress by enhancing photosynthetic performance, antioxidant enzymes functions and plant hormones contents.


Antioxidants , Citrus , Antioxidants/metabolism , Seedlings/metabolism , Chlorophyll A/metabolism , Citrus/genetics , Citrus/metabolism , Hydrogen Peroxide/metabolism , Cold-Shock Response , Photosynthesis , Oxidative Stress , Glutathione Reductase/metabolism , Photosystem II Protein Complex/metabolism , Acclimatization , Chlorophyll/metabolism
16.
Nat Commun ; 14(1): 6937, 2023 10 31.
Article En | MEDLINE | ID: mdl-37907472

Genome-scale metabolic models are widely used to enhance our understanding of metabolic features of organisms, host-pathogen interactions and to identify therapeutics for diseases. Here we present iTMU798, the genome-scale metabolic model of the mouse whipworm Trichuris muris. The model demonstrates the metabolic features of T. muris and allows the prediction of metabolic steps essential for its survival. Specifically, that Thioredoxin Reductase (TrxR) enzyme is essential, a prediction we validate in vitro with the drug auranofin. Furthermore, our observation that the T. muris genome lacks gsr-1 encoding Glutathione Reductase (GR) but has GR activity that can be inhibited by auranofin indicates a mechanism for the reduction of glutathione by the TrxR enzyme in T. muris. In addition, iTMU798 predicts seven essential amino acids that cannot be synthesised by T. muris, a prediction we validate for the amino acid tryptophan. Overall, iTMU798 is as a powerful tool to study not only the T. muris metabolism but also other Trichuris spp. in understanding host parasite interactions and the rationale design of new intervention strategies.


Auranofin , Trichuris , Animals , Mice , Trichuris/genetics , Trichuris/metabolism , Glutathione , Glutathione Reductase/metabolism , Host-Pathogen Interactions
17.
Plant Physiol Biochem ; 205: 108192, 2023 Dec.
Article En | MEDLINE | ID: mdl-37995576

The endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are highly dependent on phytohormones such as salicylic acid (SA). In this study, the effect of SA supplementation and the lack of endogenous SA on glutathione metabolism were investigated under ER stress in wild-type (WT) and transgenic SA-deficient NahG tomato (Solanum lycopersicum L.) plants. The expression of the UPR marker gene SlBiP was dependent on SA levels and remained lower in NahG plants. Exogenous application of the chemical chaperone 4-phenylbutyrate (PBA) also reduced tunicamycin (Tm)-induced SlBiP transcript accumulation. At the same time, Tm-induced superoxide and hydrogen peroxide production were independent of SA, whereas the accumulation of reduced form of glutathione (GSH) and the oxidised glutathione (GSSG) was regulated by SA. Tm increased the activity of glutathione reductase (GR; EC 1.6.4.2) independently of SA, but the activities of dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione S-transferases (GSTs; EC 2.5.1.18) were increased by Tm in a SA-dependent manner. SlGR2, SlGGT and SlGSTT2 expression was activated in a SA-dependent way upon Tm. Although expression of SlGSH1, SlGSTF2, SlGSTU5 and SlGTT3 did not change upon Tm treatment in leaves, SlGR1 and SlDHAR2 transcription decreased. PBA significantly increased the expression of SlGR1, SlGR2, SlGSTT2, and SlGSTT3, which contributed to the amelioration of Tm-induced ER stress based on the changes in lipid peroxidation and cell viability. Malondialdehyde accumulation and electrolyte leakage were significantly higher in WT as compared to NahG tomato leaves under ER stress, further confirming the key role of SA in this process.


Solanum lycopersicum , Solanum lycopersicum/genetics , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Glutathione/metabolism , Oxidative Stress , Glutathione Disulfide/metabolism , Glutathione Reductase/metabolism , Endoplasmic Reticulum Stress
18.
J Bacteriol ; 205(10): e0020823, 2023 10 26.
Article En | MEDLINE | ID: mdl-37791755

Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.


Anti-Infective Agents , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Oxidants/metabolism , Anti-Infective Agents/metabolism
19.
J Med Life ; 16(7): 1032-1040, 2023 Jul.
Article En | MEDLINE | ID: mdl-37900077

The pathogenesis of kidney damage involves complicated interactions between vascular endothelial and tubular cell destruction. Evidence has shown that vitamin D may have anti-inflammatory effects in several models of kidney damage. In this study, we evaluated the effects of synthetic vitamin D on levofloxacin-induced renal injury in rats. Forty-two white Albino rats were divided into six groups, with each group comprising seven rats. Group I served as the control (negative control) and received intraperitoneal injections of normal saline (0.5 ml) once daily for twenty-one days. Group II and Group III were treated with a single intraperitoneal dose of Levofloxacin (50 mg/kg/day) and (100 mg/kg/day), respectively, for 14 days (positive control groups). Group IV served as an additional negative control and received oral administration of vitamin D3 (500 IU/rat/day) for twenty-one days. In Group V, rats were orally administered vitamin D3 (500 IU/rat/day) for twenty-one days, and intraperitoneal injections of Levofloxacin (50 mg/kg/day) were administered on day 8 for 14 days. Group VI received oral vitamin D3 supplementation (500 IU/rat/day) for twenty-one days, followed by intraperitoneal injections of Levofloxacin (100 mg/kg/day) on day 8 for fourteen days. Blood samples were collected to measure creatinine, urea, malondialdehyde, glutathione reductase, and superoxide dismutase levels. Compared to the positive control group, vitamin D supplementation lowered creatinine, urea, and malondialdehyde levels, while increasing glutathione reductase and superoxide dismutase levels. Urea, creatinine, and malondialdehyde levels were significantly (p<0.05) higher in rats administered LFX 50mg and 100mg compared to rats given (LFX + vitamin D). The main findings of this study show that vitamin D reduces renal dysfunction, suggesting that vitamin D has antioxidant properties and may be used to prevent renal injury.


Kidney Diseases , Levofloxacin , Vitamin D , Animals , Rats , Antioxidants/pharmacology , Cholecalciferol/metabolism , Creatinine , Glutathione/metabolism , Glutathione Reductase/metabolism , Glutathione Reductase/pharmacology , Kidney , Levofloxacin/adverse effects , Levofloxacin/metabolism , Malondialdehyde , Oxidative Stress , Superoxide Dismutase/metabolism , Urea/metabolism , Urea/pharmacology , Vitamin D/pharmacology
20.
J Hazard Mater ; 454: 131468, 2023 07 15.
Article En | MEDLINE | ID: mdl-37146338

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Melatonin , Metals, Heavy , Melatonin/pharmacology , Cadmium/toxicity , Cadmium/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Oxidative Stress , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Superoxide Dismutase/metabolism , Chromium/metabolism , Glutathione Reductase/metabolism , Chlorophyll/metabolism , Glutathione/metabolism , Seedlings/metabolism
...