Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.320
Filtrar
1.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900067

RESUMEN

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Asunto(s)
Fosfatasa Alcalina , Materiales Biomiméticos , Calcificación Fisiológica , Animales , Ratas , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Calcificación Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Glicerofosfatos/química , Poliuretanos/química , Poliuretanos/farmacología
2.
ACS Biomater Sci Eng ; 10(7): 4359-4373, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38842569

RESUMEN

The conventional approach for developing any polymeric biomaterial is to follow protocols available in the literature and/or perform trial-and-error runs without a scientific basis. Here, we propose an analysis of a complex overlay of molecular interactions between drugs and polymers that provides a strategic pathway for biomaterial development. First, this work provides an innovative interaction-based method for developing an ocular formulation involving in situ gelling chitosan, gelatin, and glycerophosphate systems. A systematic interaction study is conducted based on the measurement of hydrodynamic radius, zeta potential, and viscosity with the sequential addition of formulation components. The increase in the hydrodynamic radius of the polymer with the addition of drugs can be interpreted as better diffusion of the drug inside the charged polymer chains and vice versa. Based on the knowledge of these interactions, a formulation has been designed that shows better drug release results with extended and sustained release compared to literature protocols, hence accentuating the importance of this study. An in-depth analysis of interactions can lead to a better understanding of the system. Second, we demonstrate the development of two dual-drug biomaterial systems, i.e., an in situ gelling and a liquid formulation at ocular surface temperature from the same polymers, which can be used as an ocular antiglaucoma formulation. Prior knowledge of the interactions between the drug polymers can be used to design a better formulation. The demonstrated application of this interaction-based protocol development can be extended universally to any biomaterial. This would provide a comprehensive idea about the properties and interactions of polymers and drugs, which can also serve as a base/starting point for a new formulation/biomaterial development.


Asunto(s)
Materiales Biocompatibles , Quitosano , Glicerofosfatos , Quitosano/química , Glicerofosfatos/química , Materiales Biocompatibles/química , Viscosidad , Liberación de Fármacos , Gelatina/química , Polímeros/química , Humanos , Geles/química
3.
J Microbiol Biotechnol ; 34(6): 1229-1238, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38755002

RESUMEN

This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/ß-Glycerophosphate (ZnO-GO/CS/ß-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/ß-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/ß-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/ß-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/ß-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Grafito , Hidrogeles , Porphyromonas gingivalis , Óxido de Zinc , Quitosano/química , Quitosano/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Porphyromonas gingivalis/efectos de los fármacos , Grafito/química , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Animales , Hidrogeles/química , Glicerofosfatos/química , Concentración de Iones de Hidrógeno , Temperatura , Pruebas de Sensibilidad Microbiana , Línea Celular , Nanopartículas/química
4.
Pflugers Arch ; 476(8): 1279-1288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772920

RESUMEN

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Glicerofosfatos , Especies Reactivas de Oxígeno , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Glicerofosfatos/farmacología , Glicerofosfatos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Línea Celular , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Carbazoles/farmacología
5.
Int J Biol Macromol ; 271(Pt 1): 132540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782319

RESUMEN

Lipoteichoic acid (LTA) in the gram-positive bacterial cell wall acts as an immunomodulatory factor in host cells. The chemical structures vary among bacterial species and strains, and may be related to biological activities. In our previous work, much higher immunoglobulin A (IgA)-inducing activity was observed in cells of the Apilactobacillus genus (Apilactobacillus kosoi 10HT, Apilactobacillus apinorum JCM 30765T, and Apilactobacillus kunkeei JCM 16173T) than other lactic acid bacteria, and their LTA was responsible for the activity. In the present study, we elucidated the chemical structures of LTA from these Apilactobacillus strains to explore the structure-function relationship of the IgA-inducing activity. The 1H-nuclear magnetic resonance spectra suggested that their LTA structures were similar. All have a poly-glycerolphosphate main chain, which comprised 12 to 20 average number of the repeating units, with partial substitutions of glucose(α1-, glucosyl(α1-2)glucose(α1- (α-linked-kojibiose), and l-lysine at the C-2 hydroxy group of the glycerol residue. l-Lysine is a substituent never seen before in LTA, and is a probable characteristic of the Apilactobacillus genus. Removal of l-lysine residue from LTA by mild alkaline treatment decreased IgA induction in murine Peyer's patch experiments. The novel l-lysine residue in Apilactobacillus LTA plays a crucial role in the remarkably high IgA-inducing activity.


Asunto(s)
Inmunoglobulina A , Lipopolisacáridos , Lisina , Ácidos Teicoicos , Ácidos Teicoicos/química , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Animales , Lisina/química , Ratones , Glicerofosfatos/química , Lactobacillaceae/química
6.
Int J Biol Macromol ; 271(Pt 1): 131981, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811317

RESUMEN

The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with ß-Glycerophosphate (ß-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of ß-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/ß-GP hydrogels, only allowing the release of 60-70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/ß-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/ß-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.


Asunto(s)
Alginatos , Quitosano , Glicerofosfatos , Polisacáridos Bacterianos , Quitosano/química , Alginatos/química , Polisacáridos Bacterianos/química , Glicerofosfatos/química , Animales , Chlorocebus aethiops , Hidrogeles/química , Células Vero , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Liberación de Fármacos , Temperatura , Microesferas , Inyecciones , Supervivencia Celular/efectos de los fármacos
7.
Int J Biol Macromol ; 270(Pt 1): 132296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740159

RESUMEN

Glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (GPDH) are critical in glucose homeostasis. The role of genistein and metformin on these enzymes and glucose production was investigated in C2C12, HepG2, and 3T3-L1 cells. Enzyme kinetics, Real-Time PCR and western blots were performed to determine enzyme activities and expressions of mRNAs and proteins. Glucose production and uptake were also measured in these cells. siRNAs were used to assess their impact on the enzymes and glucose production. Ki values for the compounds were determined using purified GK and GPDH. Genistein decreased GK activity by ∼45 %, while metformin reduced cGPDH and mGPDH activities by ∼32 % and âˆ¼43 %, respectively. Insignificant changes in expressions (mRNAs and proteins) of the enzymes were observed. The compounds showed dose-dependent alterations in glucose production and uptake in these cells. Genistein non-competitively inhibited His-GK activity (Ki 19.12 µM), while metformin non-competitively inhibited His-cGPDH (Ki 75.52 µM) and mGPDH (Ki 54.70 µM) activities. siRNAs transfection showed ∼50 % and âˆ¼35 % decrease in activities of GK and mGPDH and a decrease in glucose production (0.38-fold and 0.42-fold) in 3T3-L1 cells. Considering the differential effects of the compounds, this study may provide insights into the potential therapeutic strategies for type II diabetes mellitus.


Asunto(s)
Adipocitos , Genisteína , Glucosa , Glicerol Quinasa , Glicerolfosfato Deshidrogenasa , Hepatocitos , Metformina , Genisteína/farmacología , Metformina/farmacología , Ratones , Animales , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glucosa/metabolismo , Células 3T3-L1 , Células Hep G2 , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacología , Cinética
8.
J Dent ; 146: 105039, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714243

RESUMEN

OBJECTIVE: The aim of this work was to evaluate the antibiofilm and anticaries properties of the association of arginine (Arg) with calcium glycerophosphate (CaGP) and fluoride (F). METHODS: An active attachment, polymicrobial biofilm model obtained from saliva and bovine teeth discs were used. After the initial biofilm growth period, the enamel discs were transferred to culture medium. The treatment solutions were added to the culture media to achieve the desired final concentration. The following groups were used: negative control (Control); F (110 ppm F); CaGP (0.05 %); Arg (0.8 %) and their associations (F + CaGP; Arg + F; Arg + CaGP; Arg +F + CaGP). The following analyses were carried out: bacterial viability (total bacteria, aciduric bacteria and mutans streptococci), pH assessment of the spent culture medium, dry weight quantification, evaluation of surface hardness loss (%SH) and subsurface mineral content. Normality and homoscedasticity were tested (Shapiro-Wilk and Levene's test) and the following tests were applied: two-way ANOVA (acidogenicity), Kruskall-Wallis (microbial viability) and one way ANOVA (dry weight, %SH, mineral content). RESULTS: The association Arg + F + CaGP resulted in the lowest surface hardness loss in tooth enamel (-10.9 ± 2.3 %; p < 0.05). Arg +F + CaGP exhibited highest values of subsurface mineral content (10.1 ± 2.9 gHAP/cm3) in comparison to Control and F (p < 0.05). In comparison to Control and F, Arg +F + CaGP promoted the highest reduction in aciduric bacteria and mutans streptococci (5.7 ± 0.4; 4.4 ± 0.5 logCFU/mL, p < 0.05). CONCLUSIONS: The Arg-F-Ca association demonstrated to be the most effective combination in protecting the loss of surface hardness and subsurface mineral content, in addition to controlling important virulence factors of the cariogenic biofilm. CLINICAL SIGNIFICANCE: Our findings provide evidence that the Arg-F-Ca association showed an additive effect, particularly concerning protection against enamel demineralization. The combination of these compounds may be a strategy for patients at high risk of caries.


Asunto(s)
Arginina , Biopelículas , Cariostáticos , Caries Dental , Esmalte Dental , Fluoruros , Glicerofosfatos , Viabilidad Microbiana , Saliva , Streptococcus mutans , Arginina/farmacología , Biopelículas/efectos de los fármacos , Bovinos , Animales , Esmalte Dental/efectos de los fármacos , Esmalte Dental/microbiología , Streptococcus mutans/efectos de los fármacos , Fluoruros/farmacología , Glicerofosfatos/farmacología , Cariostáticos/farmacología , Saliva/microbiología , Concentración de Iones de Hidrógeno , Caries Dental/prevención & control , Caries Dental/microbiología , Viabilidad Microbiana/efectos de los fármacos , Dureza , Humanos , Desmineralización Dental/prevención & control , Desmineralización Dental/microbiología , Propiedades de Superficie
9.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632869

RESUMEN

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Asunto(s)
Adenosina Trifosfato , Arginina , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células Artificiales/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lípidos/biosíntesis , Fosfolípidos/metabolismo , Redes y Vías Metabólicas
10.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673767

RESUMEN

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Asunto(s)
Metabolismo Energético , Osteoblastos , Osteogénesis , Estrés Oxidativo , Animales , Ratones , Osteogénesis/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Línea Celular , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacología , Calcificación Fisiológica , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología
11.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612541

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.


Asunto(s)
Glicerol , Glicerofosfatos , Simulación de Dinámica Molecular , Humanos , Ligandos , Glicerol-3-Fosfato O-Aciltransferasa , Isoformas de Proteínas , Fosfatos
12.
BMC Cardiovasc Disord ; 24(1): 221, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654161

RESUMEN

In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium ß-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/ß-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/ß-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by ß-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/ß-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.


Asunto(s)
Diferenciación Celular , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Osteogénesis , Proteína smad7 , Vía de Señalización Wnt , Animales , Apoptosis , beta Catenina/metabolismo , beta Catenina/genética , Células Cultivadas , Regulación de la Expresión Génica , Glicerofosfatos/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Osteogénesis/genética , Proteína smad7/metabolismo , Proteína smad7/genética , Ratas
13.
Mar Drugs ; 22(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535456

RESUMEN

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Asunto(s)
Ciclopentanos , Glicerol/análogos & derivados , Glicerofosfatos , Oxilipinas , Rhodophyta , Algas Marinas , Galactosa , alfa-Galactosidasa , Galactanos , Glucosa , Uridina Difosfato
14.
Biochemistry ; 63(8): 1016-1025, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38546289

RESUMEN

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.


Asunto(s)
Glicerolfosfato Deshidrogenasa , Glicerofosfatos , Fosfitos , Glicerolfosfato Deshidrogenasa/química , NAD/metabolismo , Catálisis , Cinética
15.
Adv Healthc Mater ; 13(12): e2303930, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38306618

RESUMEN

The rapid and effective healing of skin wounds resulted from severe injuries and full-layer skin defects remains a pressing clinical challenge in contemporary medical practice. The reduction of wound infection and rapid healing is helpful to rebuild and repair skin tissue. Here, a thermosensitive chitosan-based wound dressing hydrogel incorporating ß-glycerophosphate (GP), hydroxy propyl cellulose (HPC), graphene oxide (GO), and platelet-rich plasma (PRP) is developed, which exhibits the dual functions of antibacterial properties and repair promotion. GP and HPC enhance the mechanical properties through forming hydrogen bonding connection, while GO produces local heat under near-infrared light, leading to improved blood circulation and skin recovery. Notably, antibacterial properties against Pseudomonas aeruginosa, and control-release of growth factors from PRP are also achieved based on the system. In vitro experiments reveal its biocompatibility, and ability to promote cell proliferation and migration. Animal experiments demonstrate that the epithelial repair and collagen deposition can be promoted during skin wound healing in Sprague Dawley rats. Moreover, a reduction in wound inflammation levels and the improvement of wound microenvironment are observed, collectively fostering effective wound healing. Therefore, the composite hydrogel system incorporated with GO and PRP can be a promising dressing for the treatment of skin wounds.


Asunto(s)
Hidrogeles , Plasma Rico en Plaquetas , Ratas Sprague-Dawley , Piel , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Plasma Rico en Plaquetas/química , Hidrogeles/química , Hidrogeles/farmacología , Piel/lesiones , Piel/efectos de los fármacos , Ratas , Humanos , Quitosano/química , Grafito/química , Glicerofosfatos/química , Antibacterianos/química , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Vendajes
16.
FASEB J ; 38(4): e23470, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38354035

RESUMEN

Vascular calcification is a major risk factor for cardiovascular disease mortality, with a significant prevalence in chronic kidney disease (CKD). Pharmacological inhibition of histone acetyltransferase has been proven to protect against from vascular calcification. However, the role of Histone Deacetylase 2 (HDAC2) and molecular mechanisms in vascular calcification of CKD remains unknown. An in vivo model of CKD was established using mouse fed with a high adenine and phosphate diet, and an in vitro model was produced using human aortic vascular smooth muscle cells (VSMCs) stimulated with ß-glycerophosphate (ß-GP). HDAC2 expression was found to be reduced in medial artery of CKD mice and ß-GP-induced VSMCs. Overexpression of HDAC2 attenuated OPN and OCN upregulation, α-SMA and SM22α downregulation, and calcium deposition in aortas of CKD. The in vitro results also demonstrated that ß-GP-induced osteogenic differentiation was inhibited by HDAC2. Furthermore, we found that HDAC2 overexpression caused an increase in LC3II/I, a decrease in p62, and an induction of autophagic flux. Inhibition of autophagy using its specific inhibitor 3-MA blocked HDAC2's protective effect on osteogenic differentiation in ß-GP-treated VSMCs. Taken together, these results suggest that HDAC2 may protect against vascular calcification by the activation of autophagy, laying out a novel insight for the molecular mechanism in vascular calcification of CKD.


Asunto(s)
Glicerofosfatos , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Animales , Ratones , Histona Desacetilasa 2/genética , Osteogénesis , Autofagia
17.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409325

RESUMEN

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Asunto(s)
Glicerol , Glicerofosfatos , Metabolismo de los Lípidos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
18.
Mol Med ; 30(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200452

RESUMEN

BACKGROUND: Medial vascular calcification is commonly identified in chronic kidney disease (CKD) patients and seriously affects the health and life quality of patients. This study aimed to investigate the effects of protein arginine methyltransferase 3 (PRMT3) on vascular calcification induced by CKD. METHODS: A mice model of CKD was established with a two-step diet containing high levels of calcium and phosphorus. Vascular smooth muscle cells (VSMCs) were subjected to ß-glycerophosphate (ß-GP) treatment to induce the osteogenic differentiation as an in vitro CKD model. RESULTS: PRMT3 was upregulated in VSMCs of medial artery of CKD mice and ß-GP-induced VSMCs. The inhibitor of PRMT3 (SGC707) alleviated the vascular calcification and inhibited the glycolysis of CKD mice. Knockdown of PRMT3 alleviated the ß-GP-induced osteogenic transfomation of VSMCs by the repression of glycolysis. Next, PRMT3 interacted with hypoxia-induced factor 1α (HIF-1α), and the knockdown of PRMT3 downregulated the protein expression of HIF-1α by weakening its methylation. Gain of HIF-1α reversed the PRMT3 depletion-induced suppression of osteogenic differentiation and glycolysis of VSMCs. CONCLUSION: The inhibitory role of PRMT3 depletion was at least mediated by the regulation of glycolysis upon repressing the methylation of HIF-1α.


Asunto(s)
Glicerofosfatos , Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Humanos , Ratones , Hipoxia , Osteogénesis/genética , Proteína-Arginina N-Metiltransferasas/genética , Insuficiencia Renal Crónica/genética , Calcificación Vascular/etiología
19.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256063

RESUMEN

'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Glicerol , Glicerofosfatos , Femenino , Masculino , Animales , Ratones , Fibroblastos , Ácido Glutámico , Glicerolfosfato Deshidrogenasa/genética , Péptido Hidrolasas , Fosfatos
20.
J Mech Behav Biomed Mater ; 151: 106354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232670

RESUMEN

The aim of this study was to evaluate the effects of supplementing toothpastes containing 1100 ppm F with micrometric or nanometric [beta]-calcium glycerophosphate (ß-CaGPm/ß-CaGPn) on artificial enamel demineralization, using a pH cycling model. Bovine enamel blocks (4 mm × 4 mm, n = 120) selected using initial surface hardness were randomly allocated to ten toothpaste groups (n = 12): without fluoride or ß-CaGPm or ß-CaGPn (Negative control), 1100 ppm F (1100 F), and 1100 ppm F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. Blocks were treated two times per day with toothpaste slurry and subjected to five pH cycles (demineralizing and remineralizing solutions) at 37 °C. The final surface hardness, percentage of surface hardness loss (%SH), cross-sectional hardness (ΔKHN), and profile analysis and lesion depth subsurface were analysed using polarized light microscopy (PLM). Fluoride (F), calcium (Ca), and phosphorus (P) concentrations were also measured. Data were analysed using ANOVA and Student-Newman-Keuls tests ([alpha] = 0.001). Blocks treated with 1100 F toothpaste containing 0.5%ß-CaGPm or 0.25%ß-CaGPn showed with reduced %SH values when compared with those treated with 1100 F alone (p < 0.001). Reduced lesion depths (ΔKHN and PLM) were observed for the slurry made up of 1100 F and 0.25%ß-CaGPn (p < 0.001). The addition of ß-CaGPm and ß-CaGPn did not influence the enamel F concentration, with the 1100 F/0.25%ß-CaGPn group exhibiting the highest Ca and P enamel concentrations (p < 0.001). Based on the findings of this in vitro study, we can conclude that the fluoride toothpaste produced a superior effect when combined at an appropriate ß-CaGP molar ratio. This effect was achieved with a lower proportion of ß-CaGP in the form of nanometric particles.


Asunto(s)
Fluoruros , Desmineralización Dental , Humanos , Animales , Bovinos , Fluoruros/farmacología , Fluoruros/análisis , Pastas de Dientes/farmacología , Calcio , Glicerofosfatos , Estudios Transversales , Desmineralización Dental/prevención & control , Dureza , Suplementos Dietéticos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA