Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Phytopathology ; 114(8): 1950-1962, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970805

RESUMEN

MicroRNAs play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was downregulated by H. glycines infection, and overexpression of miR398b enhanced the susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced reactive oxygen species, leading to the repression of target genes GmCCS and GmCSD1b and regulating the accumulation of plant defense genes against nematode infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression of GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA sequencing revealed that a majority of differentially expressed genes in overexpressed GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating reactive oxygen species levels and defense signals.


Asunto(s)
Glycine max , MicroARNs , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Tylenchoidea , Glycine max/genética , Glycine max/inmunología , Glycine max/parasitología , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Animales , Homeostasis , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Curr Opin Allergy Clin Immunol ; 24(5): 341-348, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079158

RESUMEN

PURPOSE OF REVIEW: Adult food allergy, either unresolved from childhood, or new-onset in adult-life, is known to be increasingly prevalent. Although much of the reported anaphylaxis in adults is due to drug reactions, foods are becoming an increasingly important trigger, affecting adults of all ages, with a wide variation in food triggers which are often quite different to those reported in children. RECENT FINDINGS: Peanuts are well known to cause anaphylaxis in some adult populations, but other legumes such as soy may be more relevant in others. Reactions to natto, fermented soybeans, are currently mainly reported in Japan, but changing dietary practices and an increase in plant-based eating mean natto, other forms of soy and other legumes are increasingly linked to anaphylaxis in Western countries. Anaphylaxis to red meat, caused by sensitization to galactose-α-1,3-galactose and first reported in North America, is now a more world-wide concern. Co-factor induced anaphylaxis is increasingly associated with both wheat allergy and lipid transfer protein allergy. SUMMARY: More research is urgently needed to characterize adult food allergy, its triggers and symptom severity. Unusual food triggers and potential co-factors should be considered, so that anaphylaxis in adults can be correctly managed, not merely labelled as idiopathic.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Humanos , Anafilaxia/etiología , Anafilaxia/epidemiología , Anafilaxia/inmunología , Anafilaxia/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/epidemiología , Hipersensibilidad a los Alimentos/diagnóstico , Adulto , Alérgenos/inmunología , Alérgenos/efectos adversos , Japón/epidemiología , Hipersensibilidad al Trigo/inmunología , Hipersensibilidad al Trigo/diagnóstico , Hipersensibilidad al Trigo/epidemiología , Fabaceae/efectos adversos , Fabaceae/inmunología , Glycine max/efectos adversos , Glycine max/inmunología
3.
Arerugi ; 73(4): 353-356, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38880635

RESUMEN

The patient was a 3-year-old girl whose father was employed sorting and washing soybeans. She exhibited transient respiratory distress and loss of activity on the same day or the next day after her father came home wearing work clothes with soybean dust on them. One day, she developed anaphylaxis after being lifted into her father's arms while he was wearing his work clothes. Although a blood test was positive for soybean and Gly m 4-specific IgE antibodies, the girl was able to consume soy products (not including soy milk, which she had never consumed) without any issues. The father was instructed to change clothes before leaving work and bathe immediately upon returning home, and the girl has not had any further episodes of respiratory distress, loss of activity, or anaphylaxis. Though reports of anaphylaxis from soybean antigen inhalation are extremely rare, it is very likely that inhalation of soybean dust from the father's work clothes induced anaphylaxis in this case.


Asunto(s)
Anafilaxia , Polvo , Glycine max , Humanos , Anafilaxia/etiología , Anafilaxia/inmunología , Femenino , Preescolar , Glycine max/efectos adversos , Glycine max/inmunología , Polvo/inmunología
4.
Plant Mol Biol ; 114(4): 78, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922375

RESUMEN

Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.


Asunto(s)
Glycine max , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Glycine max/inmunología , Proteínas NLR/metabolismo , Proteínas NLR/genética , Dominios Proteicos , Inmunidad de la Planta/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Transducción de Señal , Regulación de la Expresión Génica de las Plantas
5.
Transgenic Res ; 33(3): 149-157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842603

RESUMEN

RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.


Asunto(s)
Resistencia a la Enfermedad , MicroARNs , Nicotiana , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Potyvirus , MicroARNs/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Plantas Modificadas Genéticamente/inmunología , Nicotiana/genética , Nicotiana/virología , Nicotiana/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Potyvirus/patogenicidad , Potyvirus/genética , Interferencia de ARN , Glycine max/genética , Glycine max/virología , Glycine max/inmunología
6.
Phytopathology ; 114(8): 1851-1868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772042

RESUMEN

The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR toward P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan, and three mutants derived from fast neutron irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level but also defense pathways unique to each cultivar, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible fast neutron mutants lacked enrichment of three terpenoid-related pathways and two cell wall-related pathways at either one or both time points, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important Kyoto Encyclopedia of Genes and Genomes pathways at either one or both time points, including sesquiterpenoid and triterpenoid biosynthesis; thiamine metabolism; arachidonic acid; stilbenoid, diarylheptanoid, and gingerol biosynthesis; and monobactam biosynthesis. Additionally, 31 genes that were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins; valine, leucine, and isoleucine biosynthesis; and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and further our understanding of the complex network associated with QDR mechanisms in soybean toward P. sojae.


Asunto(s)
Resistencia a la Enfermedad , Genotipo , Glycine max , Phytophthora , Enfermedades de las Plantas , Transcriptoma , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Mutación , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
7.
J Agric Food Chem ; 72(21): 12270-12280, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743450

RESUMEN

Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.


Asunto(s)
Antígenos de Plantas , Ácido Clorogénico , Glycine max , Inmunoglobulina E , Proteínas de Soja , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Glycine max/química , Glycine max/inmunología , Inmunoglobulina E/inmunología , Proteínas de Soja/química , Proteínas de Soja/inmunología , Antígenos de Plantas/química , Antígenos de Plantas/inmunología , Humanos , Hipersensibilidad a los Alimentos/inmunología , Alérgenos/química , Alérgenos/inmunología , Unión Proteica , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/inmunología
8.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669462

RESUMEN

Soybean (Glycine max ) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Agricultura , Genómica , Genes de Plantas , Genoma de Planta , Sitios de Carácter Cuantitativo
9.
J Agric Food Chem ; 72(17): 9947-9954, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647139

RESUMEN

Glycinin is an important allergenic protein. A1a is the acidic chain of the G1 subunit in glycinin (G1A1a), and it has strong allergenicity. In this study, we used phage display technology to express the protein of G1A1a and its overlapping fragments and an indirect enzyme-linked immunosorbent assay (iELISA) to determine the antigenicity and allergenicity of the expressed protein. After three rounds of screening, it was determined that fragment A1a-2-B-I (151SLENQLDQMPRRFYLAGNQEQEFLKYQQEQG181) is the allergenic domain of G1A1a destroyed by thermal processing. In addition, three overlapping peptides were synthesized from fragments A1a-2-B-I, and a linear epitope was found in this domain through methods including dot blot and iELISA. Peptide 2 (157DQMPRRFYLANGNQE170) showed allergenicity, and after replacing it with alanine, it was found that amino acids D157, Q158, M159, and Y164 were the key amino acids that affected its antigenicity, while Q158, M159, R162, and N168 affected allergenicity.


Asunto(s)
Alérgenos , Globulinas , Calor , Proteínas de Soja , Alérgenos/inmunología , Alérgenos/química , Humanos , Globulinas/química , Globulinas/inmunología , Proteínas de Soja/química , Proteínas de Soja/inmunología , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos/inmunología , Epítopos/química , Epítopos/inmunología , Dominios Proteicos , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Antígenos de Plantas/genética , Glycine max/química , Glycine max/inmunología , Ensayo de Inmunoadsorción Enzimática
10.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658148

RESUMEN

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Asunto(s)
Resistencia a la Enfermedad , Silenciador del Gen , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/inmunología , Glycine max/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Regulación de la Expresión Génica de las Plantas , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/inmunología , Xanthomonas , Especies Reactivas de Oxígeno/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658149

RESUMEN

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Asunto(s)
Autofagia , Comovirus , Resistencia a la Enfermedad , Silenciador del Gen , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Autofagia/genética , Comovirus/genética , Senescencia de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Plantas Modificadas Genéticamente/genética
12.
Phytopathology ; 114(7): 1612-1625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478699

RESUMEN

Unraveling the intricacies of soybean cyst nematode (Heterodera glycines) race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.


Asunto(s)
Adenosina , Glycine max , Enfermedades de las Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitología , Glycine max/inmunología , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia de ARN , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/inmunología
13.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003698

RESUMEN

Autophagy plays a critical role in nutrient recycling/re-utilizing under nutrient deprivation conditions. However, the role of autophagy in soybeans has not been intensively investigated. In this study, the Autophay-related gene 7 (ATG7) gene in soybeans (referred to as GmATG7) was silenced using a virus-induced gene silencing approach mediated by Bean pod mottle virus (BPMV). Our results showed that ATG8 proteins were highly accumulated in the dark-treated leaves of the GmATG7-silenced plants relative to the vector control leaves (BPMV-0), which is indicative of an impaired autophagy pathway. Consistent with the impaired autophagy, the dark-treated GmATG7-silenced leaves displayed an accelerated senescence phenotype, which was not seen on the dark-treated BPMV-0 leaves. In addition, the accumulation levels of both H2O2 and salicylic acid (SA) were significantly induced in the GmATG7-silenced plants compared with the BPMV-0 plants, indicating an activated immunity. Consistently, the GmATG7-silenced plants were more resistant against both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV) compared with the BPMV-0 plants. However, the activated immunity in the GmATG7-silenced plant was not dependent upon the activation of MPK3/MPK6. Collectively, our results demonstrated that the function of GmATG7 is indispensable for autophagy in soybeans, and the activated immunity in the GmATG7-silenced plant is a result of impaired autophagy.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Glycine max , Proteínas de Plantas , Resistencia a la Enfermedad , Silenciador del Gen , Peróxido de Hidrógeno , Enfermedades de las Plantas , Glycine max/inmunología , Glycine max/metabolismo , Glycine max/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
15.
BMC Plant Biol ; 21(1): 588, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895144

RESUMEN

BACKGROUND: Frogeye leaf spot (FLS) is a destructive fungal disease that affects soybean production. The most economical and effective strategy to control FLS is the use of resistant cultivars. However, the use of a limited number of resistant loci in FLS management will be countered by the emergence of new high-virulence Cercospora sojina races. Therefore, we identified quantitative trait loci (QTL) that control resistance to FLS and identified novel resistant genes using a genome-wide association study (GWAS) on 234 Chinese soybean cultivars. RESULTS: A total of 30,890 single nucleotide polymorphism (SNP) markers were used to estimate linkage disequilibrium (LD) and population structure. The GWAS results showed four loci (p < 0.0001) distributed over chromosomes (Chr.) 5 and 20, that are significantly associated with FLS resistance. No previous studies have reported resistance loci in these regions. Subsequently, 45 genes in the two resistance-related haplotype blocks were annotated. Among them, Glyma20g31630 encoding pyruvate dehydrogenase (PDH), Glyma05g28980, which encodes mitogen-activated protein kinase 7 (MPK7), and Glyma20g31510, Glyma20g31520 encoding calcium-dependent protein kinase 4 (CDPK4) in the haplotype blocks deserves special attention. CONCLUSIONS: This study showed that GWAS can be employed as an effective strategy for identifying disease resistance traits in soybean and narrowing SNPs and candidate genes. The prediction of candidate genes in the haplotype blocks identified by disease resistance loci can provide a useful reference to study systemic disease resistance.


Asunto(s)
Cercospora/patogenicidad , Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Glycine max/inmunología , Glycine max/microbiología , Virulencia
16.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884977

RESUMEN

Soybean cyst nematode (SCN, Heterodera glycines) is an obligate sedentary biotroph that poses major threats to soybean production globally. Recently, multiple miRNAome studies revealed that miRNAs participate in complicated soybean-SCN interactions by regulating their target genes. However, the functional roles of miRNA and target genes regulatory network are still poorly understood. In present study, we firstly investigated the expression patterns of miR159 and targeted GmMYB33 genes. The results showed miR159-3p downregulation during SCN infection; conversely, GmMYB33 genes upregulated. Furthermore, miR159 overexpressing and silencing soybean hairy roots exhibited strong resistance and susceptibility to H. glycines, respectively. In particular, miR159-GAMYB genes are reported to be involve in GA signaling and metabolism. Therefore, we then investigated the effects of GA application on the expression of miR159-GAMYB module and the development of H. glycines. We found that GA directly controls the miR159-GAMYB module, and exogenous GA application enhanced endogenous biologically active GA1 and GA3, the abundance of miR159, lowered the expression of GmMYB33 genes and delayed the development of H. glycines. Moreover, SCN infection also results in endogenous GA content decreased in soybean roots. In summary, the soybean miR159-GmMYB33 module was directly involved in the GA-modulated soybean resistance to H. glycines.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Glycine max/inmunología , MicroARNs/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiología , Animales , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/inmunología , Raíces de Plantas/parasitología , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Glycine max/parasitología
17.
Nat Commun ; 12(1): 6263, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741017

RESUMEN

Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.


Asunto(s)
Genes de Plantas , Glycine max/crecimiento & desarrollo , Glycine max/inmunología , Proteínas NLR/metabolismo , Phytophthora/patogenicidad , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico/métodos , Variaciones en el Número de Copia de ADN , Resistencia a la Enfermedad , Proteínas NLR/genética , Phytophthora/aislamiento & purificación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Glycine max/metabolismo
18.
PLoS Pathog ; 17(11): e1010104, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843607

RESUMEN

In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.


Asunto(s)
Glycine max/parasitología , Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Factores de Virulencia/metabolismo , Virulencia , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Glycine max/inmunología , Glycine max/metabolismo , Factores de Virulencia/genética
19.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769178

RESUMEN

Autophagy plays a critical role in nutrient recycling and stress adaptations. However, the role of autophagy has not been extensively investigated in crop plants. In this study, soybean autophagy-related gene 2 (GmATG2) was silenced, using virus-induced silencing (VIGS) mediated by Bean pod mottle virus (BPMV). An accelerated senescence phenotype was exclusively observed for the GmATG2-silenced plants under dark conditions. In addition, significantly increased accumulation of both ROS and SA as well as a significantly induced expression of the pathogenesis-related gene 1 (PR1) were also observed on the leaves of the GmATG2-silenced plants, indicating an activated immune response. Consistent with this, GmATG2-silenced plants exhibited a significantly enhanced resistance to Pseudomonas syringae pv. glycinea (Psg) relative to empty vector control plants (BPMV-0). Notably, the activated immunity of the GmATG2-silenced plants was independent of the MAPK signaling pathway. The fact that the accumulation levels of ATG8 protein and poly-ubiquitinated proteins were significantly increased in the dark-treated GmATG2-silenced plants relative to the BPMV-0 plants indicated that the autophagic degradation is compromised in the GmATG2-silenced plants. Together, our results indicated that silencing GmATG2 compromises the autophagy pathway, and the autophagy pathway is conserved in different plant species.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Senescencia Celular , Glycine max , Enfermedades de las Plantas , Pseudomonas syringae/inmunología , Proteínas de Soja , Autofagia/genética , Autofagia/inmunología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Comovirus/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteolisis , Proteínas de Soja/genética , Proteínas de Soja/inmunología , Glycine max/genética , Glycine max/inmunología , Glycine max/microbiología , Glycine max/virología
20.
PLoS One ; 16(10): e0258198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34618855

RESUMEN

In southern Ontario, Canada, the two-spotted spider mite (Tetranychus urticae) is an emerging pest of soybean (Glycine max) due to the increasing incidence of warmer, drier weather conditions. One key strategy to manage soybean pests is breeding resistant cultivars. Resistance to pathogens and herbivores in soybean has been associated with isoflavonoid phytoalexins, a group of specialized metabolites commonly associated with root, leaf and seed tissues. A survey of 18 Ontario soybean cultivars for spider mite resistance included evaluations of antibiosis and tolerance in relation to isoflavonoid and other metabolites detected in the leaves. Ten-day and 4-week trials beginning with early growth stage plants were used to compare survival, growth, fecundity as well as damage to leaves. Two-spotted spider mite (TSSM) counts were correlated with HPLC measurements of isoflavonoid concentration in the leaves and global metabolite profiling by high resolution LC-MS to identify other metabolites unique to the most resistant (R) and susceptible (S) cultivars. Within 10 days, no significant difference (P>0.05) in resistance to TSSM was determined between cultivars, but after 4 weeks, one cultivar, OAC Avatar, was revealed to have the lowest number of adult TSSMs and their eggs. Other cultivars showing partial resistance included OAC Wallace and OAC Lakeview, while Pagoda was the most tolerant to TSSM feeding. A low, positive correlation between isoflavonoid concentrations and TSSM counts and feeding damage indicated these compounds alone do not explain the range of resistance or tolerance observed. In contrast, other metabolite features were significantly different (P<0.05) in R versus S cultivars. In the presence of TSSM, the R cultivars had significantly greater (P<0.05) concentrations of the free amino acids Trp, Val, Thr, Glu, Asp and His relative to S cultivars. Furthermore, the R cultivar metabolites detected are viable targets for more in-depth analysis of their potential roles in TSSM defense.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Glycine max/inmunología , Glycine max/parasitología , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Tetranychidae/fisiología , Aminoácidos/análisis , Animales , Flavonoides/análisis , Herbivoria/fisiología , Metabolómica , Nucleósidos/análisis , Péptidos/análisis , Hojas de la Planta/química , Análisis de Componente Principal , Glycine max/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA