Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.124
1.
Front Immunol ; 15: 1336599, 2024.
Article En | MEDLINE | ID: mdl-38715621

Introduction: Pompe disease, a lysosomal storage disorder, is characterized by acid α-glucosidase (GAA) deficiency and categorized into two main subtypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The primary treatment, enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), faces challenges due to immunogenic responses, including the production of anti-drug antibody (ADA), which can diminish therapeutic efficacy. This study aims to assess the effectiveness of immune tolerance induction (ITI) therapy in cross-reactive immunologic material (CRIM)-positive Pompe disease patients with established high ADA levels. Method: In a single-center, open-label prospective study, we assessed ITI therapy's efficacy in Pompe disease patients, both IOPD and LOPD, with persistently elevated ADA titers (≥1:12,800) and clinical decline. The ITI regimen comprised bortezomib, rituximab, methotrexate, and intravenous immunoglobulin. Biochemical data, biomarkers, ADA titers, immune status, and respiratory and motor function were monitored over six months before and after ITI. Results: This study enrolled eight patients (5 IOPD and 3 LOPD). After a 6-month ITI course, median ADA titers significantly decreased from 1:12,800 (range 1:12,800-1:51,200) to 1:1,600 (range 1:400-1:12,800), with sustained immune tolerance persisting up to 4.5 years in some cases. Serum CK levels were mostly stable or decreased, stable urinary glucose tetrasaccharide levels were maintained in four patients, and no notable deterioration in respiratory or ambulatory status was noted. Adverse events included two treatable infection episodes and transient symptoms like numbness and diarrhea. Conclusion: ITI therapy effectively reduces ADA levels in CRIM-positive Pompe disease patients with established high ADA titers, underscoring the importance of ADA monitoring and timely ITI initiation. The findings advocate for personalized immunogenicity risk assessments to enhance clinical outcomes. In some cases, prolonged immune suppression may be necessary, highlighting the need for further studies to optimize ITI strategies for Pompe disease treatment. ClinicalTrials.gov NCT02525172; https://clinicaltrials.gov/study/NCT02525172.


Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Immune Tolerance , alpha-Glucosidases , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/immunology , alpha-Glucosidases/administration & dosage , Enzyme Replacement Therapy/adverse effects , Enzyme Replacement Therapy/methods , Glycogen Storage Disease Type II/immunology , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/therapy , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins, Intravenous/administration & dosage , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Prospective Studies , Rituximab/therapeutic use , Rituximab/adverse effects , Rituximab/administration & dosage , Treatment Outcome
3.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Article En | MEDLINE | ID: mdl-38772716

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


1-Deoxynojirimycin , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Mannosephosphates , alpha-Glucosidases , Glycogen Storage Disease Type II/drug therapy , Animals , Enzyme Replacement Therapy/methods , Mannosephosphates/metabolism , Mice , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/metabolism , alpha-Glucosidases/administration & dosage , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/metabolism
4.
J Neurol Sci ; 460: 123021, 2024 May 15.
Article En | MEDLINE | ID: mdl-38653115

BACKGROUND: Late-onset Pompe disease (LOPD) patients may still need ventilation support at some point of their disease course, despite regular recombinant human alglucosidase alfa treatment. This suggest that other pathophysiological mechanisms than muscle fibre lesion can contribute to the respiratory failure process. We investigate through neurophysiology whether spinal phrenic motor neuron dysfunction could contribute to diaphragm weakness in LOPD patients. MATERIAL AND METHODS: A group of symptomatic LOPD patients were prospectively studied in our centre from January 2022 to April 2023. We collected both demographic and clinical data, as well as neurophysiological parameters. Phrenic nerve conduction studies and needle EMG sampling of the diaphragm were perfomed. RESULTS: Eight treated LOPD patients (3 males, 37.5%) were investigated. Three patients (37.5%) with no respiratory involvement had normal phrenic nerve motor responses [median phrenic compound muscle action potential (CMAP) amplitude of 0.49 mV; 1st-3rd interquartile range (IQR), 0.48-0.65]. Those with respiratory failure (under nocturnal non-invasive ventilation) had abnormal phrenic nerve motor responses (median phrenic CMAP amplitude of 0 mV; 1st-3rd IQR, 0-0.15), and were then investigated with EMG. Diaphragm needle EMG revealed both myopathic and neurogenic changes in 3 (60%) and myopathic potentials in 1 patient. In the last one, no motor unit potentials could be recruited. CONCLUSIONS: Our study provide new insights regarding respiratory mechanisms in LOPD, suggesting a contribution of spinal phrenic motor neuron dysfunction for diaphragm weakness. If confirmed in further studies, our results recommend the need of new drugs crossing the blood-brain barrier.


Diaphragm , Electromyography , Glycogen Storage Disease Type II , Motor Neurons , Muscle Weakness , Phrenic Nerve , Humans , Glycogen Storage Disease Type II/complications , Glycogen Storage Disease Type II/physiopathology , Male , Diaphragm/physiopathology , Female , Middle Aged , Muscle Weakness/etiology , Muscle Weakness/physiopathology , Phrenic Nerve/physiopathology , Motor Neurons/physiology , Motor Neurons/pathology , Adult , Neural Conduction/physiology , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Aged , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Prospective Studies , Action Potentials/physiology
5.
Orphanet J Rare Dis ; 19(1): 173, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649872

BACKGROUND: Genetic testing can offer early diagnosis and subsequent treatment of rare neuromuscular diseases. Options for these tests could be improved by understanding the preferences of patients for the features of different genetic tests, especially features that increase information available to patients. METHODS: We developed an online discrete-choice experiment using key attributes of currently available tests for Pompe disease with six test attributes: number of rare muscle diseases tested for with corresponding probability of diagnosis, treatment availability, time from testing to results, inclusion of secondary findings, necessity of a muscle biopsy, and average time until final diagnosis if the first test is negative. Respondents were presented a choice between two tests with different costs, with respondents randomly assigned to one of two costs. Data were analyzed using random-parameters logit. RESULTS: A total of 600 online respondents, aged 18 to 50 years, were recruited from the U.S. general population and included in the final analysis. Tests that targeted more diseases, required less time from testing to results, included information about unrelated health risks, and were linked to shorter time to the final diagnosis were preferred and associated with diseases with available treatment. Men placed relatively more importance than women on tests for diseases with available treatments. Most of the respondents would be more willing to get a genetic test that might return unrelated health information, with women exhibiting a statistically significant preference. While respondents were sensitive to cost, 30% of the sample assigned to the highest cost was willing to pay $500 for a test that could offer a diagnosis almost 2 years earlier. CONCLUSION: The results highlight the value people place on the information genetic tests can provide about their health, including faster diagnosis of rare, unexplained muscle weakness, but also the value of tests for multiple diseases, diseases without treatments, and incidental findings. An earlier time to diagnosis can provide faster access to treatment and an end to the diagnostic journey, which patients highly prefer.


Genetic Testing , Rare Diseases , Humans , Genetic Testing/methods , Adult , Male , Female , Middle Aged , Rare Diseases/diagnosis , Rare Diseases/genetics , Young Adult , Adolescent , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Patient Preference
6.
Acta Myol ; 43(1): 21-26, 2024.
Article En | MEDLINE | ID: mdl-38586167

Glycogen Storage Disease (GSD) IXd, caused by PHKA1 gene mutations, is an X-linked rare disorder that can be asymptomatic or associated with exercise intolerance. GSD type II is an autosomal recessive disorder caused by mutations in the GAA gene that lead to severe cardiac and skeletal muscle myopathy. We report the first case of co-occurrence of type IXd and type II GSDs in a 53-year-old man with an atypical glycogen storage disease presentation consisting in myalgia in the lower limbs at both rest and after exercise and increased levels of transaminases from the age of 16. At the age of 43, the patient presented a steppage gait, inability to run and walk on his heels, hypotrophy of the pectoral and proximal muscles, reflexes not elicitable, and CK levels 3.6 times the upper reference limit. Next Generation Sequencing (NGS) identified one variant in the PHKA1 gene, c.1360A > G p.Ile454Val (exon 14) inherited by his mother, and two heterozygous variants in the GAA gene, c.784G > A (exon 4) and c.956-6T > C (exon 6). A review of GSD IXd cases reported to date in the literature is also provided.


Genetic Diseases, X-Linked , Glycogen Storage Disease Type II , Glycogen Storage Disease , Male , Humans , Middle Aged , Glycogen Storage Disease/complications , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Glycogen Storage Disease Type II/complications , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Phenotype
7.
Orphanet J Rare Dis ; 19(1): 154, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605392

BACKGROUND: The minimal clinically important difference (MCID) is the smallest change in outcome that physicians or patients would consider meaningful and is relevant when evaluating disease progression or the efficacy of interventions. Studies of patients with late-onset Pompe disease (LOPD) have used the 6-min walk distance (6MWD) as an endpoint to assess motor function. However, an MCID for 6MWD (% predicted and meters) has yet to be established in LOPD. The objective of the study was to derive 6MWD MCID (% predicted and meters) with different analysis methods and for subgroups of different disease severity for LOPD. METHODS: Data from the PROPEL trial were used to calculate 6MWD MCID in the overall PROPEL population and subgroups of baseline severity as assessed by walking distance and body mass index (BMI), using anchor- and distribution-based approaches. RESULTS: The 6MWD MCIDs varied widely, depending on the method and subgroup, ranging from 2.27%-8.11% predicted for the overall LOPD population (23.7 m-57.2 m). For patients with baseline 6MWD < 150 m, MCIDs ranged from -0.74%-3.37% (-2.1 m-11.3 m). MCIDs increased with distance walked at baseline until a plateau was reached. For BMI subgroups, the MCIDs were generally lowest in obese patients. CONCLUSION: Our analysis shows that MCID depends on the chosen method and disease severity. The findings suggest that applying a single MCID to all patients can be misleading; consequently, a range of possible MCIDs should be considered. This may also be highly relevant for other neuromuscular diseases. This study provides a range of 6MWD MCIDs for LOPD, with lower MCIDs for more severe patients.


Glycogen Storage Disease Type II , Humans , Disease Progression , Minimal Clinically Important Difference , Walking , Clinical Trials as Topic
9.
Viruses ; 16(3)2024 03 05.
Article En | MEDLINE | ID: mdl-38543765

The efficacy of adeno-associated virus (AAV)-based gene therapy is dependent on effective viral transduction, which might be inhibited by preexisting immunity to AAV acquired from infection or maternal delivery. Anti-AAV neutralizing Abs (NAbs) titer is usually measured by in vitro assay and used for patient enroll; however, this assay could not evaluate NAbs' impacts on AAV pharmacology and potential harm in vivo. Here, we infused a mouse anti-AAV9 monoclonal antibody into Balb/C mice 2 h before receiving 1.2 × 1014 or 3 × 1013 vg/kg of rAAV9-coGAA by tail vein, a drug for our ongoing clinical trials for Pompe disease. The pharmacokinetics, pharmacodynamics, and cellular responses combined with in vitro NAb assay validated the different impacts of preexisting NAbs at different levels in vivo. Sustained GAA expression in the heart, liver, diaphragm, and quadriceps were observed. The presence of high-level NAb, a titer about 1:1000, accelerated vector clearance in blood and completely blocked transduction. The AAV-specific T cell responses tended to increase when the titer of NAb exceeded 1:200. A low-level NAbs, near 1:100, had no effect on transduction in the heart and liver as well as cellular responses, but decreased transduction in muscles slightly. Therefore, we propose to preclude patients with NAb titers > 1:100 from rAAV9-coGAA clinical trials.


Antibodies, Neutralizing , Glycogen Storage Disease Type II , Animals , Mice , Humans , Glycogen Storage Disease Type II/therapy , Genetic Therapy , Liver , Disease Models, Animal , Dependovirus/genetics , Genetic Vectors/genetics , Antibodies, Viral
10.
Front Immunol ; 15: 1360369, 2024.
Article En | MEDLINE | ID: mdl-38524130

Introduction: High sustained anti-rhGAA antibody titers (HSAT; ≥12,800) are directly linked to reduced efficacy of enzyme replacement therapy (ERT) and subsequent clinical deterioration in infantile-onset Pompe disease (IOPD). We have previously demonstrated the safety and effectiveness of a bortezomib-based immune-tolerance induction (ITI) regimen (bortezomib, rituximab, methotrexate, and IVIG) in eliminating HSAT. Methods: Here, we describe two IOPD cases (patients 6 and 8) who developed HSAT at 8 and 10 weeks on ERT despite transient low-dose methotrexate ITI administration in the ERT-naïve setting and were treated with a bortezomib-based ITI regimen, and we compare their courses to a series of six historical patients (patients 1-5, and 7) with a similar presentation who exemplify our evolving approach to treatment. Results: In total, patients 6 and 8 received 16 and 8 doses of bortezomib (4 doses=1 cycle) respectively reducing titers from 25,600 to seronegative, but differences in the course of their therapy were instructive regarding the optimal approach to initial treatment of HSAT; specifically, patient 6 was treated initially with only a single course of bortezomib rescue therapy, while patient 8 received two back-to-back courses. Patient 8 received IVIG therapy throughout the immunosuppression whereas patient 6 received IVIG therapy and was switched to subcutaneous IgG replacement. Patient 6 had a transient reduction in anti-rhGAA antibodies, after receiving a single initial cycle of bortezomib, but had a recurrence of high anti-rhGAA antibody titer after 160 weeks that required 3 additional cycles of bortezomib to ultimately achieve tolerance. In contrast, patient 8 achieved tolerance after being given two consecutive cycles of bortezomib during their initial treatment and had B cell recovery by week 54. Since the reduction in anti-rhGAA antibodies, both patients are doing well clinically, and have decreasing ALT, AST, and CK. No major infections leading to interruption of treatment were observed in either patient. The bortezomib-based ITI was safe and well-tolerated, and patients continue to receive ERT at 40 mg/kg/week. Discussion: These case studies and our previous experience suggest that to achieve an effective reduction of anti-rhGAA antibodies in the setting of HSAT, bortezomib should be initiated at the earliest sign of high anti-rhGAA antibodies with a minimum of two consecutive cycles as shown in the case of patient 8. It is important to note that, despite initiation of ERT at age 2.3 weeks, patient 8 quickly developed HSAT. We recommend close monitoring of anti-rhGAA antibodies and early intervention with ITI as soon as significantly elevated anti-rhGAA antibody titers are noted.


Glycogen Storage Disease Type II , Humans , Infant, Newborn , Bortezomib/therapeutic use , Glycogen Storage Disease Type II/diagnosis , Immunoglobulins, Intravenous/therapeutic use , Immunomodulation , Methotrexate/therapeutic use , Treatment Outcome
12.
BMC Pediatr ; 24(1): 194, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38500078

BACKGROUND: Pompe disease, classified as glycogen storage disease type II, arises from a deficiency in the acid alpha-glucosidase (GAA) enzyme, leading to glycogen accumulation in multiple tissues. The unique correlation between genotype and enzyme activity is a key feature. This case highlights an infantile-onset form, emphasizing genetic counseling and prenatal testing importance. CASE PRESENTATION: An 18-week-old infant with respiratory distress, cyanosis, and fever was admitted. Born healthy, her sibling died from Pompe disease. She presented with cardiomegaly, hypotonia, and absent reflexes. Diagnosis was confirmed by significantly reduced GAA activity. Despite treatment initiation, the patient succumbed to cardiac arrest. CONCLUSIONS: The case underscores genetic counseling's role, offering insights into prenatal testing advancements, antenatal diagnosis through echocardiography, and the significance of early intervention, particularly in infantile-onset Pompe disease. SYNOPSIS: Genetic risk assessment and prenatal testing are crucial for families with a history of Pompe disease to improve early diagnosis and management outcomes.


Glycogen Storage Disease Type II , Humans , Infant , alpha-Glucosidases/genetics , Genetic Counseling , Genotype , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Muscle Hypotonia
13.
Eur J Neurol ; 31(5): e16223, 2024 May.
Article En | MEDLINE | ID: mdl-38375606

BACKGROUND AND PURPOSE: Pompe disease is a rare, inheritable, progressive metabolic myopathy. This study aimed to estimate the minimal clinically important difference (MCID) for an improvement in forced vital capacity in the upright seated position (FVCup) and the 6-min walk test (6MWT) after a year of treatment with enzyme replacement therapy. METHODS: Data were obtained from two prospective follow-up studies. Between-group and within-group MCIDs were estimated using anchor-based methods. Additionally, a distribution-based method was used to generate supportive evidence. As anchors, self-reported change in health and in physical functioning, shortness of breath and a categorization of the Short-Form 36 Physical Component Summary score were used. Anchor appropriateness was assessed using Spearman correlations (absolute values ≥0.29) and a sufficient number of observations in each category. RESULTS: In all, 102 patients had at least one FVCup or 6MWT measurement during enzyme replacement therapy. Based on the anchors assessed as appropriate, the between-group MCID for an improvement in FVCup ranged from 2.47% to 4.83% points. For the 6MWT, it ranged from 0.35% to 7.47% points which is equivalent to a distance of 2.18-46.61 m and 1.97-42.13 m for, respectively, a man and a woman of age 50, height 1.75 m and weight 80 kg. The results of the distribution-based method were within these ranges when applied to change in the outcome values. CONCLUSION: The MCIDs for FVCup and 6MWT derived in this study can be used to interpret differences between and within groups of patients with Pompe disease in clinical trials and cohort studies.


Glycogen Storage Disease Type II , Male , Adult , Female , Humans , Middle Aged , Glycogen Storage Disease Type II/drug therapy , Prospective Studies , Walk Test , Follow-Up Studies , Lung , Treatment Outcome
14.
J Pathol ; 263(1): 8-21, 2024 05.
Article En | MEDLINE | ID: mdl-38332735

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Glycogen Storage Disease Type II , Glycoproteins , Humans , Mice , Animals , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Glycogen Storage Disease Type II/therapy , Glycogen/analysis , Glycogen/metabolism , Glucosyltransferases/metabolism , Muscle, Skeletal/pathology , Lysosomes/metabolism
15.
Mol Metab ; 81: 101899, 2024 Mar.
Article En | MEDLINE | ID: mdl-38346589

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Glycogen Storage Disease Type II , Mice , Rats , Humans , Animals , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/pathology , Muscle, Skeletal/metabolism , Glycogen/metabolism , Genetic Therapy/methods , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/therapy
16.
J Neurol ; 271(5): 2810-2823, 2024 May.
Article En | MEDLINE | ID: mdl-38418563

The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.


1-Deoxynojirimycin , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Humans , Male , Female , Glycogen Storage Disease Type II/drug therapy , Middle Aged , Adult , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/therapeutic use , Double-Blind Method , Enzyme Replacement Therapy/methods , alpha-Glucosidases/adverse effects , alpha-Glucosidases/administration & dosage , alpha-Glucosidases/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Aged , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects
17.
J Proteomics ; 291: 105037, 2024 01 16.
Article En | MEDLINE | ID: mdl-38288553

Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa -/- mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa -/- mice. We found that muscle of Gaa -/- mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. SIGNIFICANCE: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.


Glycogen Storage Disease Type II , Animals , Mice , Genetic Therapy/methods , Glycogen/metabolism , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/pathology , Lentivirus/genetics , Lentivirus/metabolism , Lysosomes/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Proteome/metabolism , Proteomics
18.
Mol Genet Metab ; 141(2): 108119, 2024 Feb.
Article En | MEDLINE | ID: mdl-38184429

INTRODUCTION: The standard of care for patients with infantile-onset Pompe disease (IOPD) is enzyme replacement therapy (ERT), which does not cross the blood brain barrier. While neuromuscular manifestations of IOPD are well-described, central nervous system (CNS) manifestations of this disorder are far less characterized. Here we describe severe CNS-related neurological manifestations including seizures and encephalopathy in six individuals with IOPD. METHOD: We identified six children with IOPD who developed CNS manifestations such as seizures and/or encephalopathy. We studied their brain magnetic resonance imaging scans (MRIs) and graded the severity of white matter hyperintensities (WMHI) using the Fazekas scale scoring system as previously published. Longitudinal cognitive measures were available from 4/6 children. RESULTS: All six IOPD patients (4 males/2 females) had been treated with ERT for 12-15 years. Seizures and/or encephalopathy were noted at a median age at onset of 11.9 years (range 9-15 years). All were noted to have extensive WMHI in the brain MRIs and very high Fazekas scores which preceded the onset of neurological symptoms. Longitudinal IQ scores from four of these children suggested developmental plateauing. DISCUSSION: Among a subset of IOPD patients on long-term ERT, CNS manifestations including hyperreflexia, encephalopathy and seizures may become prominent, and there is likely an association between these symptoms and significant WMHI on MRI. Further study is needed to identify risk factors for CNS deterioration among children with IOPD and develop interventions to prevent neurological decline.


Glycogen Storage Disease Type II , Child , Male , Female , Humans , Adolescent , Glycogen Storage Disease Type II/complications , Glycogen Storage Disease Type II/diagnostic imaging , Glycogen Storage Disease Type II/drug therapy , Brain/diagnostic imaging , Magnetic Resonance Imaging , Seizures/diagnostic imaging , Seizures/etiology , Risk Factors , Enzyme Replacement Therapy/methods , alpha-Glucosidases/therapeutic use
19.
Orphanet J Rare Dis ; 19(1): 14, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38216959

BACKGROUND: Clinical trials for rare diseases often include multiple endpoints that capture the effects of treatment on different disease domains. In many rare diseases, the primary endpoint is not standardized across trials. The win ratio approach was designed to analyze multiple endpoints of interest in clinical trials and has mostly been applied in cardiovascular trials. Here, we applied the win ratio approach to data from COMET, a phase 3 trial in late-onset Pompe disease, to illustrate how this approach can be used to analyze multiple endpoints in the orphan drug context. METHODS: All possible participant pairings from both arms of COMET were compared sequentially on changes at week 49 in upright forced vital capacity (FVC) % predicted and six-minute walk test (6MWT). Each participant's response for the two endpoints was first classified as a meaningful improvement, no meaningful change, or a meaningful decline using thresholds based on published minimal clinically important differences (FVC ± 4% predicted, 6MWT ± 39 m). Each comparison assessed whether the outcome with avalglucosidase alfa (AVA) was better than (win), worse than (loss), or equivalent to (tie) the outcome with alglucosidase alfa (ALG). If tied on FVC, 6MWT was compared. In this approach, the treatment effect is the ratio of wins to losses ("win ratio"), with ties excluded. RESULTS: In the 2499 possible pairings (51 receiving AVA × 49 receiving ALG), the win ratio was 2.37 (95% confidence interval [CI], 1.30-4.29, p = 0.005) when FVC was compared before 6MWT. When the order was reversed, the win ratio was 2.02 (95% CI, 1.13-3.62, p = 0.018). CONCLUSION: The win ratio approach can be used in clinical trials of rare diseases to provide meaningful insight on treatment benefits from multiple endpoints and across disease domains.


Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , Orphan Drug Production , Rare Diseases/drug therapy , Treatment Outcome , Enzyme Replacement Therapy/methods , alpha-Glucosidases/therapeutic use
20.
J Patient Rep Outcomes ; 8(1): 13, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38294575

BACKGROUND: The construct validity and interpretation of the Patient-Reported Outcome Measurement Information System (PROMIS®) Physical Function short form 20a (PF20a) questionnaire were evaluated for patients with late-onset Pompe disease (LOPD), a rare, autosomal recessive, progressive neuromuscular disorder treatable by enzyme replacement therapy (ERT). METHODS: In the phase 3 PROPEL study, adults with LOPD underwent testing of physical functioning and had PRO measurements at baseline and at weeks 12, 26, 38, and 52 while receiving experimental or standard-of-care ERT. All patients were pooled for analyses, without comparisons between treatment groups. Associations and correlations between PROMIS PF20a scores and the 6-minute walk distance (6MWD), % predicted forced vital capacity (FVC), manual muscle test (MMT) of the lower extremities, Gait, Stairs, Gowers' maneuver, Chair (GSGC) score, and Rasch-built Pompe-specific Activity (R-PAct) scale were evaluated by calculating regression coefficients in linear regression models and Pearson correlation coefficients (R); patients' age, sex, race, ERT prior to study, body mass index, and study treatment were included as covariables. The minimal clinically important difference (MCID) of PROMIS PF20a was determined using distribution- and anchor-based methods. RESULTS: 123 patients received at least 1 dose of ERT. In multivariable analyses, PROMIS PF20a scores had strong correlations with R-PAct scores (R = 0.83 at baseline and R = 0.67 when evaluating changes between baseline and 52 weeks) and moderate correlations with the 6MWD (R = 0.57 at baseline and R = 0.48 when evaluating changes between baseline and 52 weeks). Moderate correlations were also observed between PROMIS PF20a and MMT (R = 0.54), GSGC (R=-0.51), and FVC (R = 0.48) at baseline. In multivariable linear regression models, associations were significant between PROMIS PF20a and 6MWD (P = 0.0006), MMT (P = 0.0034), GSGC (P = 0.0278), and R-PAct (P < 0.0001) at baseline, between PROMIS PF20a and 6MWD (P < 0.0001), FVC (P = 0.0490), and R-PAct (P < 0.0001) when combining all measurements, and between PF20a and 6MWD (P = 0.0016) and R-PAct (P = 0.0001) when evaluating changes in scores between baseline and 52 weeks. The anchor-based and distribution-based MCID for a clinically important improvement for PROMIS PF20a were 2.4 and 4.2, respectively. CONCLUSIONS: PROMIS PF20a has validity as an instrument both to measure and to longitudinally follow physical function in patients with LOPD. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03729362. Registered 2 November 2018, https://www. CLINICALTRIALS: gov/search?term=NCT03729362 .


Glycogen Storage Disease Type II , Adult , Humans , Glycogen Storage Disease Type II/diagnosis , Body Mass Index , Correlation of Data , Enzyme Replacement Therapy , Patient Reported Outcome Measures
...