Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.158
1.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697859

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Lithium Compounds , Humans , Animals , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Neuronal Plasticity/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors
2.
J Cell Biol ; 223(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38558238

Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.


Arabidopsis Proteins , Arabidopsis , Carrier Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Phosphorylation , Protein Transport , trans-Golgi Network/metabolism , Carrier Proteins/metabolism
3.
Cells ; 13(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38607047

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Cohesins , Heterocyclic Compounds, 3-Ring , Maleimides , Neoplasms , Humans , Synthetic Lethal Mutations/genetics , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/metabolism , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
4.
J Mol Histol ; 55(3): 241-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613588

Epithelial ovarian cancer (EOC) is one of the most common malignant gynecological tumors with rapid growth potential and poor prognosis, however, the molecular mechanism underlying its outgrowth remained elusive. Germ cell-specific gene 2 (GSG2) was previously reported to be highly expressed in ovarian cancer and was essential for the growth of EOC. In this study, GSG2-knockdown cells and GSG2-overexpress cells were established through lentivirus-mediated transfection with Human ovarian cancer cells HO8910 and SKOV3. Knockdown of GSG2 inhibited cell proliferation and induced G2/M phase arrest in EOC. Interestingly, the expression of p27, a well-known regulator of the cell cycle showed a most significant increase after GSG2 knockdown. Further phosphorylation-protein array demonstrated the phosphorylation of GSK3αSer21 decreased in GSG2-knockdown cells to the most extent. Notably, inhibiting GSK3α activity effectively rescued GSG2 knockdown's suppression on cell cycle as well as p27 expression in EOC. Our study substantiates that GSG2 is able to phosphorylate GSK3α at Ser21 and then leads to the reduction of p27 expression, resulting in cell cycle acceleration and cell proliferation promotion. Thus, GSG2 may have the potential to become a promising target in EOC.


Carcinoma, Ovarian Epithelial , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27 , Glycogen Synthase Kinase 3 , Ovarian Neoplasms , Humans , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Female , Cell Line, Tumor , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Cycle/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Phosphorylation , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic , Signal Transduction
5.
Cells ; 13(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38667283

Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFß pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.


Astrocytes , Ependyma , Phenotype , Animals , Astrocytes/metabolism , Astrocytes/cytology , Ependyma/cytology , Ependyma/metabolism , Mice , Cells, Cultured , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Cell Differentiation , Brain/cytology , Brain/metabolism , Rats , SOXB1 Transcription Factors/metabolism , Mice, Inbred C57BL , Mitosis , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Animals, Newborn
6.
Schizophr Res ; 267: 451-461, 2024 May.
Article En | MEDLINE | ID: mdl-38643726

The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-ß. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.


Disease Models, Animal , Methylazoxymethanol Acetate , Schizophrenia , Sex Characteristics , Animals , Methylazoxymethanol Acetate/pharmacology , Schizophrenia/physiopathology , Schizophrenia/chemically induced , Schizophrenia/metabolism , Female , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Thalamus/drug effects , Thalamus/physiopathology , Thalamus/metabolism , Phosphorylation/drug effects , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/pathology , Rats, Sprague-Dawley
7.
Nat Commun ; 15(1): 2097, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453935

Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.


Thermotolerance , Triticum , Triticum/physiology , Thermotolerance/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Heat-Shock Response/genetics , China
8.
Front Immunol ; 15: 1322670, 2024.
Article En | MEDLINE | ID: mdl-38426092

Introduction: Somatostatin (SST) is a peptide hormone primarily synthesized in the digestive and nervous systems. While its impact on the endocrine system is well-established, accumulating evidence suggests a crucial role for SST and its analogues in modulating immune responses. Despite this, the precise mechanism through which SST regulates T cells has remained largely unknown. Methods: To elucidate the impact of SST on human T cells, we conducted a series of experiments involving cell culture assays, molecular analyses, and metabolic profiling. Human T cells were treated with SST, and various parameters including proliferation, cytokine production, and metabolic activities were assessed. Additionally, we employed pharmacological inhibitors and genetic manipulations to dissect the signaling pathways mediating SST's effects on T cells. Results: We showed that SST diminishes T-cell proliferation by influencing IL-2 production and T-cell mitochondrial respiration, while having no discernible impact on TCR-induced glycolysis. Our findings also identified that the regulatory influence of SST on T-cell responses and metabolism is contingent on its receptor, SSTR3. Moreover, we demonstrated that SST governs T-cell responses and metabolism by acting through the T-cell metabolic checkpoint GSK3. Discussion: Our study provides novel insights into the immunoregulatory function of SST in human T cells, highlighting the complex interplay between hormonal signaling and immune regulation. Understanding the molecular mechanisms underlying SST's effects on T cells may offer therapeutic opportunities for manipulating immune responses in various pathological conditions.


Glycogen Synthase Kinase 3 , T-Lymphocytes , Humans , Glycogen Synthase Kinase 3/metabolism , T-Lymphocytes/metabolism , Somatostatin , Signal Transduction , Cell Proliferation
9.
PLoS One ; 19(3): e0298529, 2024.
Article En | MEDLINE | ID: mdl-38483863

Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 µmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 µmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3ß to decrease GSK3 activity, all of which exert antioxidant effects.


Gentamicins , Glucosides , Ototoxicity , Rats , Animals , Gentamicins/toxicity , Gentamicins/metabolism , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Hair Cells, Auditory , Cochlea/metabolism , Phenols/pharmacology , Phenols/metabolism , RNA, Messenger/metabolism
10.
Redox Biol ; 71: 103117, 2024 May.
Article En | MEDLINE | ID: mdl-38479223

Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances ß-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or ß-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the ß-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and ß-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or ß-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.


Glycogen Synthase Kinase 3 , Insulin-Secreting Cells , Animals , Mice , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Cullin Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Insulin-Secreting Cells/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Protein Stability , Transcription, Genetic
11.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452087

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Brassinosteroids , Edible Grain , Oryza , Plant Proteins , Brassinosteroids/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Protein Sci ; 33(4): e4938, 2024 Apr.
Article En | MEDLINE | ID: mdl-38533551

Regulation of SIRT1 activity is vital to energy homeostasis and plays important roles in many diseases. We previously showed that insulin triggers the epigenetic regulator DBC1 to prime SIRT1 for repression by the multifunctional trafficking protein PACS-2. Here, we show that liver DBC1/PACS-2 regulates the diurnal inhibition of SIRT1, which is critically important for insulin-dependent switch in fuel metabolism from fat to glucose oxidation. We present the x-ray structure of the DBC1 S1-like domain that binds SIRT1 and an NMR characterization of how the SIRT1 N-terminal region engages DBC1. This interaction is inhibited by acetylation of K112 of DBC1 and stimulated by the insulin-dependent phosphorylation of human SIRT1 at S162 and S172, catalyzed sequentially by CK2 and GSK3, resulting in the PACS-2-dependent inhibition of nuclear SIRT1 enzymatic activity and translocation of the deacetylase in the cytoplasm. Finally, we discuss how defects in the DBC1/PACS-2-controlled SIRT1 inhibitory pathway are associated with disease, including obesity and non-alcoholic fatty liver disease.


Adaptor Proteins, Signal Transducing , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glycogen Synthase Kinase 3/metabolism , Protein Processing, Post-Translational , Insulin/metabolism
13.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Article En | MEDLINE | ID: mdl-38538058

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Diosgenin , Ovarian Neoplasms , PTEN Phosphohydrolase , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Diosgenin/pharmacology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism , Up-Regulation
14.
Acta Neuropathol ; 147(1): 41, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38363426

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Neurodegenerative Diseases/pathology , Kinesins/genetics , Kinesins/metabolism , Motor Neurons/metabolism , Drosophila/genetics , Drosophila/metabolism , Mutation/genetics
15.
J Agric Food Chem ; 72(7): 3763-3772, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38330914

The crystal structure of a truncated form of the Lotus japonicus glycogen synthase kinase 3ß (GSK3ß) like kinase (LjSK190-467) has been resolved at 2.9 Å resolution, providing, for the first time, structural data for a plant GKS3ß like kinase. The 3D structure of LjSK190-467 revealed conservation at the structural level for this plant member of the GSK3ß family. However, comparative structural analysis to the human homologue revealed significant differences at the N- and C-termini, supporting the notion for an additional regulatory mechanism in plant GSK3-like kinases. Structural similarities at the catalytic site and the ATP binding site explained the similarity in the function of the human and plant protein. LjSK1 and lupeol are strongly linked to symbiotic bacterial infection and nodulation initiation. An inhibitory capacity of lupeol (IC50 = 0.77 µM) for LjSK1 was discovered, providing a biochemical explanation for the involvement of these two molecules in nodule formation, and constituted LjSK1 as a molecular target for the discovery of small molecule modulators for crop protection and development. Studies on the inhibitory capacity of two phytogenic triterpenoids (betulinic acid and hederacoside C) to LjSK1 provided their structure-activity relationship and showed that hederacoside C can be the starting point for such endeavors.


Lotus , Lupanes , Oleanolic Acid/analogs & derivatives , Humans , Lotus/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Root Nodules, Plant/metabolism
16.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38341666

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Glycogen Synthase Kinase 3 , Serum Albumin, Bovine , Sperm Capacitation , Animals , Female , Male , Mice , Calcium/metabolism , Cyclic AMP/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mammals , Phosphorylation , Semen/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/metabolism , Sperm Motility , Spermatozoa/metabolism
17.
Development ; 151(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38358799

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Frizzled Receptors , Glycogen Synthase Kinase 3 , beta Catenin , Humans , beta Catenin/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Glycogen Synthase Kinase 3/metabolism , Mesencephalon , Nervous System/metabolism , Wnt Signaling Pathway , Animals , Rats
18.
Chemosphere ; 352: 141375, 2024 Mar.
Article En | MEDLINE | ID: mdl-38325618

We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-ß(Ser9) and ß-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-ß(Ser9) and ß-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-ß and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-ß(Ser9) and ß-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-ß-activity inhibitor), or ß-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/ß-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, ß-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/ß-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.


Arsenic , Mice , Animals , Arsenic/toxicity , Heparin-binding EGF-like Growth Factor/metabolism , Glycogen Synthase Kinase 3/metabolism , beta Catenin/metabolism , ErbB Receptors/metabolism , Wnt Signaling Pathway , Hippocampus/metabolism
19.
Cancer Sci ; 115(4): 1333-1345, 2024 Apr.
Article En | MEDLINE | ID: mdl-38320747

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Mitogen-Activated Protein Kinase Kinases , Glycogen Synthase Kinase 3/metabolism , Signal Transduction , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism
20.
Glia ; 72(4): 708-727, 2024 Apr.
Article En | MEDLINE | ID: mdl-38180226

Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-ß through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.


Ascorbic Acid , Sodium-Coupled Vitamin C Transporters , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ependymoglial Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , Membrane Transport Proteins/metabolism , Mice, Transgenic , Neurons/metabolism , Sodium-Coupled Vitamin C Transporters/genetics
...