Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Toxicon ; 247: 107830, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38936671

RESUMEN

The safety of bioactive compounds, especially those isolated from medicinal plants, is a major concern for health authorities, pharmaceutical industries, and the public. Of recent, anti-tumor pregnane glycosides were isolated from Gongronema latifolium leaf, of which the toxicity of one, 3-O-[6-deoxy-3-O-methyl-ß-D-allopyranosyl-(1 â†’ 4)-ß-D-oleandropyranosyl]-17ß-marsdenin (3DMAOM), has not been evaluated. This study, therefore, evaluated the effects of 3DMAOM on selected brain and kidney function indices in mice. Female Swiss albino mice were randomly administered 5% dimethyl sulphoxide and different doses of 3DMAOM (0.5, 1, 2, and 4 mg/kg body weight) for fourteen (14) days, and their blood, brains, and kidneys were collected for biochemical analysis. There was no significant alteration in the activities of alkaline phosphatase (ALP), acetylcholinesterase, creatine kinase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the brain of the treated groups compared to control. Also, no significant changes in the activities of ALP, gamma-glutamyltransferase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the kidney of the treated groups compared to control. The plasma concentrations of Na+, K+, Cl-, PO43-, creatinine, and urea of mice were not significantly altered at all doses of the 3DMAOM compared to controls. However, the plasma concentration of Ca2+ was significantly reduced (p < 0.05) at all doses of the 3DMAOM, and the plasma concentration of uric acid was significantly reduced (p < 0.05) at 2 mg/kg body weight of the 3DMAOM compared to controls. These findings suggest that 3DMAOM isolated from Gongronema latifolium leaf may not adversely affect brain function but may affect calcium ion homeostasis in subjects.


Asunto(s)
Encéfalo , Riñón , Hojas de la Planta , Animales , Ratones , Hojas de la Planta/química , Encéfalo/efectos de los fármacos , Riñón/efectos de los fármacos , Femenino , Extractos Vegetales/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glicósidos/toxicidad
2.
Reprod Toxicol ; 126: 108604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703919

RESUMEN

Tripterygium glycosides (TG) is extracted from the roots of Chinese herbal medicine named Tripterygium wilfordii Hook F (TwHF). TG tablets are the representative TwHF-based agents with anti-inflammatory and immunomodulatory activities for treating rheumatoid arthritis. Although the curative effect of TG is remarkable, the clinical application is limited by a variety of organ toxicity. One of the most serious side-effects induced by TG is damage of the male reproductive system and the toxic mechanism is still not fully elucidated. TG-induced testicular injury was observed in male mice by treated with different concentrations of TG. The results showed that TG induced a significant decrease in testicular index. Pathological observation showed that spermatogenic cells were obviously shed, arranged loosely, and the spermatogenic epithelium was thin compared with control mice. In addition, the toxic effect of TG on mouse spermatogonia GC-1 cells was investigated. The results displayed that TG induced significant cytotoxicity in mouse GC-1 cells. To explore the potential toxic components that triggered testicular injury, the effects of 8 main components of TG on the viability of GC-1 cells were detected. The results showed that celastrol was the most toxic component of TG to GC-1 cells. Western blot analysis showed that LC3-II and the ratio of LC3-II/LC3-I were significantly increased and the expression level of p62 were decreased in both TG and celastrol treated cells, which indicated the significant activation of autophagy in spermatogonia cells. Therefore, autophagy plays an important role in the testicular injury induced by TG, and inhibition of autophagy is expected to reduce the testicular toxicity of TG.


Asunto(s)
Autofagia , Glicósidos , Triterpenos Pentacíclicos , Espermatogonias , Testículo , Tripterygium , Triterpenos , Animales , Masculino , Tripterygium/química , Tripterygium/toxicidad , Autofagia/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/patología , Glicósidos/toxicidad , Glicósidos/farmacología , Espermatogonias/efectos de los fármacos , Ratones , Triterpenos/farmacología , Triterpenos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos
3.
Chem Biodivers ; 21(6): e202400335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456571

RESUMEN

Sea cucumbers release chemical repellents from their guts when they are in danger from predators or a hostile environment. To investigate the chemical structure of the repellent, we collected and chemically analyzed the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China. Two undescribed triterpene glycosides (1 and 2), together with a known cladoloside A (3), were identified and elucidated as 3ß-O-{2-O-[ß-d-quinovopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (1), 3ß-O-{2-O-[ß-d-glucopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (2), 3ß-O-{2-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-xylopyranosyl-(1→4)-ß-d-quinovopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (3) by spectroscopic analysis, including HR-ESI-MS and NMR spectra. Compounds 1, 2, and 3 display embryonic toxicity, as indicated by their 96-hour post-fertilization lethal concentration (96 hpf-LC50) values of 0.289, 0.536, and 0.091 µM, respectively. Our study discovered a class of triterpene glycoside compounds consisting of an oligosaccharide with four sugar units and a holostane aglycone. These compounds possess embryotoxicity and may serve as chemical defense molecules in marine benthic ecosystems.


Asunto(s)
Glicósidos , Triterpenos , Animales , Glicósidos/química , Glicósidos/aislamiento & purificación , Glicósidos/toxicidad , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Stichopus/química , Vísceras/química , Pepinos de Mar/química , Embrión no Mamífero/efectos de los fármacos
4.
Sci Total Environ ; 922: 171375, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431162

RESUMEN

Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.


Asunto(s)
Glicósidos , Vibrio , Glicósidos/toxicidad , Simulación del Acoplamiento Molecular , Interacciones Farmacológicas , Transactivadores/farmacología
5.
J Chem Ecol ; 50(3-4): 185-196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441803

RESUMEN

Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.


Asunto(s)
Glicósidos , Pepinos de Mar , Triterpenos , Vísceras , Pez Cebra , Animales , Pez Cebra/fisiología , Glicósidos/química , Glicósidos/toxicidad , Glicósidos/metabolismo , Vísceras/química , Vísceras/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Triterpenos/metabolismo , Pepinos de Mar/química , Embrión no Mamífero/efectos de los fármacos , Toxinas Marinas/toxicidad , Toxinas Marinas/química
6.
J Mol Graph Model ; 128: 108716, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277856

RESUMEN

Cassava extracts containing cyanogenic compounds demonstrate anticancer properties. The cyanogenic glucoside linamarin found abundantly in cassava can release hydrogen cyanide (HCN) upon hydrolysis, a potent cytotoxin. However, linamarin's hydrolysis mechanism by human enzymes is poorly delineated and constitutes a bottleneck for therapeutic development. This study aimed to investigate linamarin's hydrolysis mechanism by human ß-glucosidase and identify structural derivatives with enhanced hydrolytic potential using density functional theory calculations. Results revealed α-anomeric derivatives as promising, with leaving group ability and steric bulk strongly governing hydrolysability. We identified several linamarin analogs with predicted rapid hydrolysis kinetics that may enable swift cytotoxic HCN release against cancer cells. This investigation enriches understanding of cyanogenic glycoside reactivity to facilitate their development as targeted antineoplastic agents. The identified derivatives set the groundwork for experimental evaluation of enhanced linamarin-inspired compounds as innovative cancer therapeutics.


Asunto(s)
Manihot , Neoplasias , Humanos , Hidrólisis , Nitrilos , Cianuro de Hidrógeno , Glicósidos/química , Glicósidos/toxicidad , Manihot/química
7.
J Ethnopharmacol ; 315: 116664, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37253395

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Psoraleae (FP), the dried and ripe fruit of Cullen corylifolium (L.) Medik., is widely used due to its various clinical pharmacological effects, but its hepatotoxicity restricts its clinical application. So far, its hepatotoxic components and their underlying mechanism have not been systematically elucidated. AIM OF THE STUDY: This study was undertaken to reveal the hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in FP and elucidate their potential mechanism. METHODS: Rats were administrated with the aqueous extract of Fructus Psoraleae (AEFP), in which eight coumarin-related compounds were focused. Subsequently, compounds exposed in rats' livers were detected by UPLC-Q-TOF-MS, and the identified hepatotoxic compounds were evaluated to elaborate their possible mechanism by the aid of high content analysis (HCA). RESULTS: Eight coumarin-related compounds were identified, among which psoralenoside (PO), isopsoralenoside (IPO), psoralen (P), and isopsoralen (IP) were the principally exposed compounds in rats' livers. Furocoumarinic acid glucoside (FAG), (E)-3-(4-(((2S, 3R, 4S, 5S, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) benzofuran-5-yl) acrylic acid (isofurocoumarinic acid glucoside, IFAG), furocoumarinic acid (FA), and (E)-3-(4-hydroxybenzofuran-5-yl) acrylic acid (isofurocoumarinic acid, IFA) were also detected in low abundance. P, IP, FA, and IFA were identified as the hepatotoxic compounds, while their glycosides were almost non-hepatotoxic. The HCA's results showed that hepatotoxic compounds disrupted the balance in reactive oxygen species (ROS), nuclear area, and mitochondrial membrane potential of HepG2 cells, leading to the occurrence of hepatotoxicity. CONCLUSIONS: P, IP, FA, and IFA were identified as hepatotoxic compounds, from which P and IP were proposed as the important risk components for hepatotoxicity. The conversion from glycosides to aglycones played an essential role in FP-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Psoralea , Ratas , Animales , Frutas/química , Medicamentos Herbarios Chinos/toxicidad , Glicósidos/toxicidad , Glicósidos/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Glucósidos
8.
Regul Toxicol Pharmacol ; 140: 105382, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36944407

RESUMEN

Goji berry leaf (GL) has been used for medicinal foods for its pharmacological effects, including anti-oxidative and anti-obesity activities. Nevertheless, toxicological information on GL is limited for developing health functional ingredient. The aim of the research was to evaluate the single dose acute, 14-day repeated oral toxicity, and genotoxicity of standardized roasted GL extract (rGL) rich in kaempferol-3-O-sophoroside-7-O-glucoside. Tested rGL was found to be stable as kaempferol-3-O-sophoroside-7-O-glucoside, showing 0.7-2.1% of analytical standard variance. According to the single dose toxicity for 14 days, the lethal dose of rGL was determined to be ≥ 2000 mg/kg. Repeated doses of 0-1000 mg/kg of rGL per day for 14 days did not show any toxicity signs or gross pathological abnormalities. No genotoxic signs for the rGL treatment appeared via bacterial reverse mutation up to 5000 µg/plate. There was no significant increase in chromosomal aberration of rGL irrespective of metabolic activation by using CHO-K1 cells (p > 0.05). Regarding carcinogenic toxicity, chromosomal aberrations were not induced at 2000 mg of rGL/kg by using the in vivo bone marrow micronucleus test (p > 0.05). Results from the current study suggest that rGL could be used as a functional ingredient to provide various effects with safety assurance.


Asunto(s)
Lycium , Cricetinae , Animales , Pruebas de Mutagenicidad/métodos , Extractos Vegetales/toxicidad , Glicósidos/toxicidad , Quempferoles/toxicidad , Aberraciones Cromosómicas , Cricetulus , Glucósidos/toxicidad
9.
Pharm Biol ; 61(1): 372-390, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36799406

RESUMEN

CONTEXT: The toxicity of atractyloside/carboxyatractyloside is generally well recognized and commonly ascribed to the inhibition of mitochondrial ADP/ATP carriers, which are pivotal for oxidative phosphorylation. However, these glycosides may 'paralyze' additional target proteins. OBJECTIVE: This review presents many facts about atractyloside/carboxyatractyloside and their plant producers, such as Xanthium spp. (Asteraceae), named cockleburs. METHODS: Published studies and other information were obtained from databases, such as 'CABI - Invasive Species Compendium', 'PubMed', and 'The World Checklist of Vascular Plants', from 1957 to December 2022. The following major keywords were used: 'carboxyatractyloside', 'cockleburs', 'hepatotoxicity', 'mitochondria', 'nephrotoxicity', and 'Xanthium'. RESULTS: In the third decade of the twenty first century, public awareness of the severe toxicity of cockleburs is still limited. Such toxicity is often only perceived by specialists in Europe and other continents. Interestingly, cocklebur is among the most widely distributed invasive plants worldwide, and the recognition of new European stands of Xanthium spp. is provided here. The findings arising from field and laboratory research conducted by the author revealed that (i) some livestock populations may instinctively avoid eating cocklebur while grazing, (ii) carboxyatractyloside inhibits ADP/GDP metabolism, and (iii) the direct/indirect target proteins of carboxyatractyloside are ambiguous. CONCLUSIONS: Many aspects of the Xanthium genus still require substantial investigation/revision in the future, such as the unification of the Latin nomenclature of currently distinguished species, bur morphology status, true fruit (achene) description and biogeography of cockleburs, and a detailed description of the physiological roles of atractyloside/carboxyatractyloside and the toxicity of these glycosides, mainly toward mammals. Therefore, a more careful interpretation of atractyloside/carboxyatractyloside data, including laboratory tests using Xanthium-derived extracts and purified toxins, is needed.


Asunto(s)
Nucleósido-Difosfato Quinasa , Animales , Atractilósido/toxicidad , Glicósidos/toxicidad , Adenosina Difosfato , Mamíferos
10.
Drug Chem Toxicol ; 46(4): 650-664, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35603506

RESUMEN

We aimed to explore novel biomarkers involved in alterations of metabolism and gene expression related to the hepatotoxic effects of Tripterygium glycosides tablet (TGT) in rats. Rats were randomly divided into groups based on oral administration of TGTs for 6 weeks: control, low-dose (9.5 mg/kg), and high-dose (18.9 mg/kg). Serum samples and total liver RNA were subjected to metabonomic and transcriptomic analyses. Thirteen metabolites were significantly up-regulated by liver injury induced by Tripterygium glycosides. Five potential biomarkers were more sensitive than Alanine aminotransferase (ALT) for accurate and timely prediction of hepatic damage. The four metabolic pathways most obviously regulated by hepatotoxicity were D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, ether lipid metabolism, and tryptophan metabolism. Transcriptomics revealed significant differences in 1792 mRNAs and 400 long non-coding (lnc) RNAs. Dysregulated lncRNAs in the TGT-induced hepatotoxicity group were associated with genes involved in amino acid metabolism using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Up-regulated expression of Ehhadh, Gpt, and Got1, and down-regulated expression of dopa decarboxylase (Ddc), Cyp1a2, Ido2, Aldh1b1, and asparagine synthetase (Asns) was validated by quantitative real-time PCR. This multiomics study has elucidated the relationship between amino metabolism and liver injury, revealing potential biomarkers.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Ratas , Animales , Medicamentos Herbarios Chinos/farmacología , Tripterygium/química , Glicósidos/toxicidad , Glicósidos/metabolismo , Transcriptoma , Hígado , Comprimidos/metabolismo , Comprimidos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Biomarcadores/metabolismo
11.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572605

RESUMEN

Fusicoccin is the α glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug.


Asunto(s)
Proteínas 14-3-3/metabolismo , Enfermedades de las Plantas/microbiología , Fenómenos Fisiológicos de las Plantas , Toxinas Biológicas/toxicidad , Vías Biosintéticas , Glicósidos/química , Glicósidos/toxicidad , Relación Estructura-Actividad
12.
Molecules ; 26(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443430

RESUMEN

Parkinson's disease (PD) is a currently incurable neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and α-synuclein aggregation. Accumulated evidence indicates that the saponins, especially from ginseng, have neuroprotective effects against neurodegenerative disorders. Interestingly, saponin can also be found in marine organisms such as the sea cucumber, but little is known about its effect in neurodegenerative disease, including PD. In this study, we investigated the anti-Parkinson effects of frondoside A (FA) from Cucumaria frondosa and ginsenoside Rg3 (Rg3) from Panax notoginseng in C. elegans PD model. Both saponins were tested for toxicity and optimal concentration by food clearance assay and used to treat 6-OHDA-induced BZ555 and transgenic α-synuclein NL5901 strains in C. elegans. Treatment with FA and Rg3 significantly attenuated DAergic neurodegeneration induced by 6-OHDA in BZ555 strain, improved basal slowing rate, and prolonged lifespan in the 6-OHDA-induced wild-type strain with downregulation of the apoptosis mediators, egl-1 and ced-3, and upregulation of sod-3 and cat-2. Interestingly, only FA reduced α-synuclein aggregation, rescued lifespan in NL5901, and upregulated the protein degradation regulators, including ubh-4, hsf-1, hsp-16.1 and hsp-16.2. This study indicates that both FA and Rg3 possess beneficial effects in rescuing DAergic neurodegeneration in the 6-OHDA-induced C. elegans model through suppressing apoptosis mediators and stimulating antioxidant enzymes. In addition, FA could attenuate α-synuclein aggregation through the protein degradation process.


Asunto(s)
Caenorhabditis elegans/fisiología , Ginsenósidos/farmacología , Glicósidos/farmacología , Enfermedad de Parkinson/patología , Triterpenos/farmacología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Ginsenósidos/química , Ginsenósidos/toxicidad , Glicósidos/química , Glicósidos/toxicidad , Longevidad/efectos de los fármacos , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Oxidopamina , Enfermedad de Parkinson/complicaciones , Proteolisis/efectos de los fármacos , Triterpenos/química , Triterpenos/toxicidad , alfa-Sinucleína/metabolismo
13.
J Ethnopharmacol ; 280: 114440, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293456

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wu-Zi-Yan-Zong-Wan (WZYZW) is a classical traditonal Chinese herbal formula and a Chinese patent medicine used to treat male infertility. However, the chemical components of WZYZW and its mechanism are not yet fully clarified. AIM OF THE STUDY: The purpose of this study is to observe the effect and underlying mechanism of WZYZW on ameliorating blood-testis barrier (BTB) dysfunction in mice with spermatogenic dysfunction induced by administration of Tripterygium wilfordii Hook. f. multiglycosides (GTW). MATERIALS AND METHODS: WZYZW was administered by gavage to mice with GTW-induced spermatogenic dysfunction (kidney essence deficiency pattern) for 40 days. Testis tissues were obtained for subsequent histopathological analysis. Biotin tracing was used to evaluate the permeability of Sertoli cell tight junctions. The levels of proinflammatory cytokines including interleukin (IL)-6, IL-17A, IL-1α and tumor necrosis factor (TNF)-α were analyzed by ELISA. The expression levels of proteins related to tight junction including ZO-1, JAM-A and occludin were analyzed by western blotting. The ultrastructures of tight junctions were observed by transmission electron microscopy. RESULTS: WZYZW ameliorated GTW-induced testicular spermatogenic dysfunction. Levels of IL-6, IL-17A, IL-1α, and TNF-α in the groups receiving low, medium, and high doses of WZYZW decreased in a dose-dependent manner. WZYZW impeded a biotin tracer from permeating the BTB, protecting its integrity in GTW-treated mice. In addition, our results showed no significant changes in the protein expressions of ZO-1, JAM-A, and occludin after WZYZW administration compared with the GTW group. Meanwhile, WZYZW exhibited a linear arrangement and restored the typical "sandwich" structure of BTB. No acute poisoning incidences were observed in all groups during the experiment. CONCLUSIONS: Our findings demonstrate that WZYZW may ameliorate some GTW-induced BTB dysfunction, possibly by regulating proinflammatory cytokine levels. In vitro studies on the regulation of BTB permeability by WZYZW and its active components are further required.


Asunto(s)
Barrera Hematotesticular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Glicósidos/toxicidad , Inflamación/metabolismo , Testículo/metabolismo , Tripterygium/química , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Espermatogénesis/efectos de los fármacos , Testículo/irrigación sanguínea
14.
Parasitology ; 148(11): 1392-1400, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162452

RESUMEN

Acanthamoeba spp. are widely distributed in the environment and cause serious infections in humans. Treatment of Acanthamoeba infections is very challenging and not always effective which requires the development of more efficient drugs against Acanthamoeba spp. The purpose of the present study was to test medicinal plants that may be useful in the treatment of Acanthamoeba spp. Here we evaluated the trophozoital and cysticidal activity of 13 flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. Lusitanicum against the amoeba Acanthamoeba castellanii. AlamarBlue Assay Reagent® was used to determine the activity against trophozoites of A. castellanii, and cytotoxic using Vero cells. Cysticidal activity was assessed on treated cysts by light microscopy using a Neubauer chamber to quantify cysts and trophozoites. Flavonoids 1, 2, 3 and 4 showed higher trophozoital activity and selectivity indexes than the reference drug chlorhexidine digluconate. In addition, flavonoid 2 showed 100% cysticidal activity at a concentration of 50 µm, lower than those of the reference drug and flavonoid 3 (100 µm). These results suggest that flavonoids 2 and 3 might be used for the development of novel therapeutic approaches against Acanthamoeba infections after satisfactory in vivo evaluations.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Aconitum/química , Delphinium/química , Glicósidos/farmacología , Extractos Vegetales/farmacología , Ranunculaceae/química , Acanthamoeba/crecimiento & desarrollo , Animales , Chlorocebus aethiops , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/toxicidad , Glicósidos/química , Glicósidos/aislamiento & purificación , Glicósidos/toxicidad , Concentración 50 Inhibidora , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Trofozoítos/efectos de los fármacos , Trofozoítos/crecimiento & desarrollo , Células Vero/efectos de los fármacos
15.
Mar Drugs ; 19(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801633

RESUMEN

Nine new mono-, di-, and trisulfated triterpene penta- and hexaosides, kurilosides A3 (1), D1 (2), G (3), H (4), I (5), I1 (6), J (7), K (8), and K1 (9) and two desulfated derivatives, DS-kuriloside L (10), having a trisaccharide branched chain, and DS-kuriloside M (11), having hexa-nor-lanostane aglycone with a 7(8)-double bond, have been isolated from the Far-Eastern deep-water sea cucumber Thyonidium (=Duasmodactyla) kurilensis (Levin) and their structures were elucidated based on 2D NMR spectroscopy and HR-ESI mass-spectrometry. Five earlier unknown carbohydrate chains and two aglycones (having a 16ß,(20S)-dihydroxy-fragment and a 16ß-acetoxy,(20S)-hydroxy fragment) were found in these glycosides. All the glycosides 1-9 have a sulfate group at C-6 Glc, attached to C-4 Xyl1, while the positions of the other sulfate groups vary in different groups of kurilosides. The analysis of the structural features of the aglycones and the carbohydrate chains of all the glycosides of T. kurilensis showed their biogenetic relationships. Cytotoxic activities of the compounds 1-9 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, and erythrocytes were studied. The highest cytotoxicity in the series was demonstrated by trisulfated hexaoside kuriloside H (4), having acetoxy-groups at C(16) and C(20), the latter one obviously compensated the absence of a side chain, essential for the membranolytic action of the glycosides. Kuriloside I1 (6), differing from 4 in the lacking of a terminal glucose residue in the bottom semi-chain, was slightly less active. The compounds 1-3, 5, and 8 did not demonstrate cytotoxic activity due to the presence of hydroxyl groups in their aglycones.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Glicósidos/toxicidad , Hemólisis/efectos de los fármacos , Neuronas/efectos de los fármacos , Pepinos de Mar/metabolismo , Triterpenos/toxicidad , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/patología , Eritrocitos/patología , Glicósidos/biosíntesis , Glicósidos/aislamiento & purificación , Ratones , Estructura Molecular , Neuronas/patología , Relación Estructura-Actividad , Triterpenos/aislamiento & purificación , Triterpenos/metabolismo
16.
Metab Brain Dis ; 36(4): 653-667, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33496919

RESUMEN

Epilepsy disease is characterized by the neuronal dysfunction or abnormal neuronal activity of the brain which is regulated by astrocytes. These are glial cells and found to be the major regulators of the brain which are guided by the occurrence of adenosine kinase (ADK) enzyme in the central nervous system (CNS). During the normal physiological environment, ADK maintains the level of adenosine in the CNS. Dysfunction of ADK levels results in accumulation of adenosine levels in the CNS that leads to the pathophysiology of the brain such as astrogliosis which is a pathological hallmark of epileptic seizures. Vicine, an alkaloid glycoside in bitter gourd juice (Momordica charantia) is found to be toxic to the human system if the bitter gourd juice is consumed more. This compound inhibits ADK enzyme activity to lead epilepsy and seizure. Here, the toxic effect of vicine targeting ADK using computational predictions was investigated. The 3-dimensional structure of ADK has been constructed using I-Tasser, which has been refined by ModRefiner, GalaxyRefine, and 3D refine and it was endorsed using PROCHECK, ERRAT, and VADAR. 3D structure of the ligand molecule has been obtained from PubChem. Molecular docking has been achieved using AutoDock 4.2 software, from which the outcome showed the effective interaction between vicine and ADK, which attains binding free energy (∆G) of - 4.13 kcal/mol. Vicine molecule interacts with the active region ARG 149 of ADK and inhibits the functions of ADK that may cause imbalance in energy homeostasis. Also, pre-ADMET results robustly propose in which vicine possesses toxicity, and meanwhile, from the Ames test, it was shown as mutagenic. Hence, the results from our study suggest that vicine was shown to be toxic that suppresses the ADK activity to undergo pathological conditions in the neuronal junctions to lead epilepsy.


Asunto(s)
Adenosina Quinasa/toxicidad , Alcaloides/toxicidad , Desarrollo de Medicamentos/métodos , Glucósidos/toxicidad , Glicósidos/toxicidad , Enfermedades del Sistema Nervioso/inducido químicamente , Pirimidinonas/toxicidad , Adenosina Quinasa/química , Alcaloides/química , Animales , Glucósidos/química , Glicósidos/química , Humanos , Ratones , Simulación del Acoplamiento Molecular/métodos , Momordica charantia , Estructura Secundaria de Proteína , Pirimidinonas/química , Ratas , Toxinas Biológicas/química , Toxinas Biológicas/toxicidad
17.
Mar Drugs ; 19(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374188

RESUMEN

Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Flavonoides/farmacología , Glicósidos/farmacología , Microalgas/efectos de los fármacos , Mytilus/efectos de los fármacos , Roseobacter/efectos de los fármacos , Triazoles/farmacología , Animales , Artemia/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Química Clic , Flavonoides/síntesis química , Flavonoides/toxicidad , Glicósidos/síntesis química , Glicósidos/toxicidad , Tecnología Química Verde , Enlace de Hidrógeno , Microalgas/crecimiento & desarrollo , Estructura Molecular , Mytilus/crecimiento & desarrollo , Relación Estructura-Actividad Cuantitativa , Roseobacter/crecimiento & desarrollo , Triazoles/síntesis química , Triazoles/toxicidad , Microbiología del Agua
18.
Zhongguo Zhong Yao Za Zhi ; 45(4): 755-763, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237475

RESUMEN

The aim of this paper was to observe the toxic effect of Tripterygium Glycosides Tablets on the reproductive system of Ⅱ type collagen induced arthritis(CIA) male rats, and to explore the toxic mechanism preliminarily. Fifty SD rats were randomly divided into normal control group(Con), model group(CIA), Tripterygium Glycosides Tablets clinical equivalent dose groups of 1, 2, 4 times(9, 18, 36 mg·kg~(-1)), 10 rats in each group, and were given by gavage once a day for 42 days after the first immunization. The organ index of testis and epididymis were calculated on days 21 and 42. Histopathological and morphological changes of testis and epididymis were observed under optical microscope. Sperm count, sperm malformation rate and sperm kinetic parameters in epididymal tissues were observed by computer assisted sperm analysis(CASA). The concentration of testosterone(T), nitric oxide synthase(NOS) and aromatase(CYP19 A1) in serum were detected by ELISA. Immunohistochemistry was used to observe the expression of Bax and Bcl-2 related proteins in the apoptosis pathway of testis and epididymis. The results showed that, compared with Con group, CIA group significantly increased the rate of testicular spermatogenic tubule lesion and sperm malformation, decreased the average path speed, and no significant changes were observed in other groups. Tripterygium Glycosides Tablets at 4 times clinical equivalent dose can significantly reduce the testis index(P<0.01), each dose group can reduce the epididymis index(P<0.05). Each dose group of Tripterygium Glycosides Tablets could cause different degrees of damage to the testis and epididymis, the proportion of testicular histopathology lesions increased, the number of spermatogenic cells in the seminiferous tubules decreased, and so on. It could reduce the number of sperm, increase the rate of sperm deformity, make the parameters of sperm dynamics abnormal, and so on. Tripterygium Glycosides Tablets at 4 times dose could significantly reduce the content of serum sex hormone T and key enzyme of androgen synthesis(P<0.05 or P<0.01), but had no effect on CYP19 A1. The expression of Bax and Bcl-2 in testis and epididymis were increased by 2 and 4 times doses of Tripterygium Glycosides Tablets(P<0.05, P<0.01 or P<0.01). The results showed that 21 d administration of Tripterygium Glycosides Tablets at equal or higher doses could induce obvious toxic effect to the reproductive organs of CIA male rats, and lower the level of serum sex hormone T and the key enzyme of androgen synthesis, NOS. The mechanism of abnormal changes of Bax and Bcl-2 in Testis and epididymis is still to be elucidated.


Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Genitales Masculinos/efectos de los fármacos , Glicósidos/toxicidad , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Tripterygium/química , Animales , Artritis Experimental , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Espermatozoides/patología , Comprimidos , Testículo/patología
19.
J Am Soc Mass Spectrom ; 31(4): 856-863, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32125841

RESUMEN

Mast cells are essential in mediating inflammatory processes. When activated, mast cells can rapidly release characteristic granules and various mediators into the interstitium. Tryptase (TPS) and ß-hexosaminidase (HEXB) are typical protease mediators stored in granules and released upon activation. They have been recognized as important biomarkers of anaphylaxis, and the released level is associated with the severity of allergic reactions. In this study, a sensitive, accurate, and selective liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneously quantifying the two biomarkers was developed and validated in LAD2 cell culture supernatant, and P14R was used as internal standard. Good linearity was observed in the range of 50-2500 ng/mL for TPS and 10-2000 ng/mL for HEXB both with R2 > 0.99. The matrix effect and recovery were both within acceptable limits. We quantified TPS and HEXB released from Laboratory of Allergic Disease 2 (LAD2) mast cells treated with several potential allergens, and the results demonstrate that the method can be used to investigate TPS and HEXB levels in LAD2 mast cell model during allergy research. We anticipate our approach to be a robust and sensitive assessment method for more biomarkers with similar kinetics characteristics and to be a major tool of allergic drug assessment or antiallergic drug development in research.


Asunto(s)
Alérgenos/toxicidad , Anafilaxia/inducido químicamente , Biomarcadores/análisis , Cromatografía Liquida/métodos , Mastocitos/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Anafilaxia/metabolismo , Anafilaxia/patología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Glicósidos/toxicidad , Humanos , Isoflavonas/farmacología , Límite de Detección , Mastocitos/metabolismo , Triptasas/análisis , Cadena beta de beta-Hexosaminidasa/análisis
20.
Nat Prod Res ; 34(3): 398-404, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30602316

RESUMEN

Two new phenolic glycosides, named lanatusosides C (1) and D (2), together with four known compounds (3-6), were isolated from the seeds of Citrullus lanatus. Among them, compounds 3 and 4 were isolated from Cucurbitaceae for the first time, and compound 5 was reported from this plant for the first time. Their structures were elucidated by means of extensive spectral analysis, including HR-ESI-MS, 1H and 13C NMR techniques. The isolated new compounds were evaluated for cytotoxic activity against HepG2 cell line, of which compound 1 demonstrated weak cytotoxicity against the tested cell line.


Asunto(s)
Citrullus/química , Glicósidos/aislamiento & purificación , Semillas/química , Cucurbitaceae , Ensayos de Selección de Medicamentos Antitumorales , Glicósidos/química , Glicósidos/toxicidad , Células Hep G2 , Humanos , Estructura Molecular , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA