Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.413
Filtrar
1.
Commun Biol ; 7(1): 1085, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232040

RESUMEN

The developmental plasticity of the root system plays an essential role in the adaptation of plants to the environment. Among many other signals, auxin and its directional, intercellular transport are critical in regulating root growth and development. In particular, the PIN-FORMED2 (PIN2) auxin exporter acts as a key regulator of root gravitropic growth. Multiple regulators have been reported to be involved in PIN2-mediated root growth; however, our information remains incomplete. Here, we identified ROWY Bro1-domain proteins as important regulators of PIN2 sorting control. Genetic analysis revealed that Arabidopsis rowy1 single mutants and higher-order rowy1 rowy2 rowy3 triple mutants presented a wavy root growth phenotype. Cell biological experiments revealed that ROWY1 and PIN2 colocalized to the apical side of the plasma membrane in the root epidermis and that ROWYs are required for correct PM targeting of PIN2. In addition, ROWYs also affected PIN3 protein abundance in the stele, suggesting the potential involvement of additional PIN transporters as well as other proteins. A global transcriptome analysis revealed that ROWY genes are involved in the Fe2+ availability perception pathway. This work establishes ROWYs as important novel regulators of root gravitropic growth by connecting micronutrient availability to the proper subcellular targeting of PIN auxin transporters.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Raíces de Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Gravitropismo/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación
2.
Plant J ; 120(1): 318-334, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39162107

RESUMEN

Plants synthesize hundreds of small secretory peptides, which are perceived by the receptor-like kinase (RLK) family at the cell surface. Various signaling peptide-RLK pairs ensure plant adaptation to distinct environmental conditions. Here, we report that SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) immune peptides modulate root growth and development by regulating PIN-FORMED (PIN)-regulated polar auxin transport in Arabidopsis. The SCOOP4 and SCOOP12 treatments impaired root gravitropic growth, auxin redistribution in response to gravistimulation, and PIN abundance in the PM. Furthermore, genetic and cell biological analyses revealed that these physiological and cellular effects of SCOOP4 and SCOOP12 peptides are mediated by the receptor MALE DISCOVERER1-INTERACTING RECEPTOR LIKE KINASE2 (MIK2) and the downstream mitogen-activated kinase MPK6. Biochemical evidence indicates that MPK6 directly phosphorylates the cytosolic loop of PIN proteins. Our work established a link between the immune signaling peptide SCOOPs and root growth pathways, providing insights into the molecular mechanisms underlying plant root adaptive growth in the defense response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Quinasas Activadas por Mitógenos , Raíces de Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Transporte Biológico , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Fosforilación , Gravitropismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética
3.
Plant Sci ; 348: 112234, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216696

RESUMEN

Plant architecture is an important agronomic trait to determine the biomass and sward structure of forage grass. The IGT family plays a pivotal role in plant gravitropism, encompassing both the gravitropic response and the modulation of plant architecture. We have previously shown that LjLAZY3, one of the IGT genes, plays a distinct role in root gravitropism in L. japonicus. However, the function of LAZY proteins on shoot gravitropism in this species is poorly understood. In this study, we identified nine IGT genes in the L. japonicus genome, which have been categorized into four clades based on the phylogenetic relationships of IGT proteins from 18 legumes: LAZY1, NGR (NEGATIVE GRAVITROPIC RESPONSE OF ROOTS), IGT-LIKE, and TAC1. We found that LAZY genes in the first three clades have demonstrated distinct role for modulating plant gravitropism in L. japonicus with specific impacts as follows. Mutation of the LAZY1 gene, LjLAZY1, defected the gravitropic response of hypocotyl without impacting the main stem's branch angle. In contrast, the overexpression of the NGR gene, LjLAZY3, substantially modulated the shoot's gravitropism, leading to narrower lateral branch angles. Additionally, it enhanced the shoots' gravitropic response. The overexpression of another NGR gene, LjLAZY4, specifically reduced the main stem's branch angle and decreased plant stature without affecting the shoot gravitropic response. The phenotype of IGT-LIKE gene LjLAZY2 overexpression is identical to that of LjLAZY4. While overexpression of the IGT-LIKE gene LjLAZY5 did not induce any observable changes in branch angle, plant height, or gravitropic response. Furthermore, the LjLAZYs were selectively interacted with different BRXL and RLD proteins, which should the important factor to determine their different functions in controlling organ architecture in L. japonicus. Our results deepen understanding of the LjLAZY family and its potential for plant architecture improvement in L. japonicus.


Asunto(s)
Gravitropismo , Lotus , Brotes de la Planta , Gravitropismo/genética , Gravitropismo/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Lotus/genética , Lotus/fisiología , Lotus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genes de Plantas , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201298

RESUMEN

Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.


Asunto(s)
Cloruro de Calcio , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Peróxido de Hidrógeno , Pisum sativum , Raíces de Plantas , Peróxido de Hidrógeno/metabolismo , Pisum sativum/efectos de los fármacos , Pisum sativum/metabolismo , Pisum sativum/fisiología , Gravitropismo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Cloruro de Calcio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transcriptoma , Lignina/metabolismo , Almidón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39030690

RESUMEN

Tension wood is a specialized xylem tissue associated with gravitropism in angiosperm trees. However, few regulators of tension wood formation have been identified. The molecular mechanisms underpinning tension wood formation remain elusive. Here, we report that a Populus KNOTTED-like homeobox gene, PagKNAT2/6b, is involved in tension wood formation and gravity response. Transgenic poplar plants overexpressing PagKNAT2/6b displayed more sensitive gravitropism than controls, as indicated by increased stem curvature. Microscopic examination revealed greater abundance of fibre cells with a gelatinous cell wall layer (G-layer) and asymmetric growth of secondary xylem in PagKNAT2/6b overexpression lines. Conversely, PagKNAT2/6b dominant repression plants exhibited decreased tension wood formation and reduced response to gravity stimulation. Moreover, sensitivity to gravity stimulation showed a negative relationship with development stage. Expression of genes related to growth and senescence was affected in PagKNAT2/6b transgenic plants. More importantly, transcription activation and electrophoretic mobility shift assays suggested that PagKNAT2/6b promotes the expression of cytokinin metabolism genes. Consistently, cytokinin content was increased in PagKNAT2/6b overexpression plants. Therefore, PagKNAT2/6b is involved in gravitropism and tension wood formation, likely via modulation of cytokinin metabolism.


Asunto(s)
Citocininas , Gravitropismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Madera , Gravitropismo/fisiología , Citocininas/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Populus/fisiología , Populus/metabolismo , Madera/crecimiento & desarrollo , Madera/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Xilema/metabolismo , Xilema/fisiología , Xilema/crecimiento & desarrollo , Xilema/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
7.
Science ; 384(6701): 1241-1247, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38870308

RESUMEN

Plant stems comprise nodes and internodes that specialize in solute exchange and elongation. However, their boundaries are not well defined, and how these basic units arise remains elusive. In rice with clear nodes and internodes, we found that one subclade of class I knotted1-like homeobox (KNOX1) genes for shoot meristem indeterminacy restricts node differentiation and allows internode formation by repressing YABBY genes for leaf development and genes from another node-specific KNOX1 subclade. YABBYs promote nodal vascular differentiation and limit stem elongation. YABBY and node-specific KNOX1 genes specify the pulvinus, which further elaborates the nodal structure for gravitropism. Notably, this KNOX1 subclade organization is specific to seed plants. We propose that nodes and internodes are distinct domains specified by YABBY-KNOX1 cross-regulation that diverged in early seed plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Meristema , Oryza , Proteínas de Plantas , Tallos de la Planta , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Oryza/genética , Oryza/crecimiento & desarrollo , Gravitropismo/genética , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Genes de Plantas
8.
BMC Plant Biol ; 24(1): 485, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822229

RESUMEN

BACKGROUND: Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS: Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS: Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.


Asunto(s)
Arabidopsis , Brasinoesteroides , Perfilación de la Expresión Génica , Gravitropismo , Raíces de Plantas , Brasinoesteroides/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Gravitropismo/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Mutación , Oxilipinas/metabolismo
9.
Plant Cell ; 36(9): 3328-3343, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691576

RESUMEN

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Raíces de Plantas , Salinidad , Pared Celular/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Gravitropismo , Arabinosa/metabolismo , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicosilación
10.
Plant Physiol Biochem ; 210: 108592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569422

RESUMEN

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Dicarboxílicos , Proteínas F-Box , Gravitropismo , Ácidos Indolacéticos , Raíces de Plantas , Receptores de Superficie Celular , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Gravitropismo/efectos de los fármacos , Ácidos Dicarboxílicos/metabolismo , Proteínas F-Box/metabolismo , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Simulación del Acoplamiento Molecular
11.
Plant Physiol ; 195(2): 1586-1600, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478430

RESUMEN

Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gravitropismo , Oryza , Hojas de la Planta , Proteínas de Plantas , Brotes de la Planta , Factores de Transcripción , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Gravitropismo/genética , Gravitropismo/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Regiones Promotoras Genéticas/genética , Fenotipo
12.
Plant Physiol ; 195(3): 1969-1980, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38446735

RESUMEN

Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.


Asunto(s)
Etilenos , Gravitropismo , Ácidos Indolacéticos , Oryza , Raíces de Plantas , Zea mays , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Gravitropismo/efectos de los fármacos , Gravitropismo/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Oryza/genética , Oryza/fisiología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Grano Comestible/efectos de los fármacos , Grano Comestible/fisiología , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Mutación/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
Plant Cell ; 36(6): 2310-2327, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38442314

RESUMEN

The dynamic changes in membrane phospholipids affect membrane biophysical properties and cell signaling, thereby influencing numerous biological processes. Nonspecific phospholipase C (NPC) enzymes hydrolyze common phospholipids to release diacylglycerol (DAG), which is converted to phosphatidic acid (PA) and other lipids. In this study, 2 Arabidopsis (Arabidopsis thaliana) tandemly arrayed genes, NPC3 and NPC4, were identified as critical factors modulating auxin-controlled plant growth and tropic responses. Moreover, NPC3 and NPC4 were shown to interact with the auxin efflux transporter PIN-FORMED2 (PIN2). The loss of NPC3 and NPC4 enhanced the endocytosis and vacuolar degradation of PIN2, which disrupted auxin gradients and slowed gravitropic and halotropic responses. Furthermore, auxin-triggered activation of NPC3 and NPC4 is required for the asymmetric PA distribution that controls PIN2 trafficking dynamics and auxin-dependent tropic responses. Collectively, our study reveals an NPC-derived PA signaling pathway in Arabidopsis auxin fluxes that is essential for fine-tuning the balance between root growth and environmental responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Fosfolipasas de Tipo C , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endocitosis , Gravitropismo , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatidicos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/genética
14.
Adv Sci (Weinh) ; 11(18): e2306129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447146

RESUMEN

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.


Asunto(s)
Gravitropismo , Robótica , Robótica/métodos , Robótica/instrumentación , Gravitropismo/fisiología , Diseño de Equipo/métodos , Metales/química , Cristales Líquidos , Plantas
15.
Elife ; 122024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441122

RESUMEN

Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.


Asunto(s)
Gravitropismo , Proteínas Quinasas , Acilación , Transporte Biológico , Ácidos Indolacéticos
16.
Nat Commun ; 15(1): 2648, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531848

RESUMEN

Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Gravitropismo/fisiología , Raíces de Plantas/metabolismo , Tropismo/fisiología , Proteínas de Arabidopsis/metabolismo , Agua/metabolismo , Pared Celular/metabolismo
17.
J Plant Physiol ; 296: 154224, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507925

RESUMEN

Roots exhibit hydrotropism in response to moisture gradients, with the hydrotropism-related gene Mizu-kussei1 (MIZ1) playing a role in regulating root hydrotropism in an oblique orientation. However, the mechanisms underlying MIZ1-regulated root hydrotropism are not well understood. In this study, we employed obliquely oriented experimental systems to investigate root hydrotropism in Arabidopsis. We found that the miz1 mutant displays reduced root hydrotropism but increased root gravitropism following hydrostimulation, as compared to wild-type plants. Conversely, overexpression of AtMIZ1 leads to enhanced root hydrotropism but decreased root gravitropism following hydrostimulation, as compared to wild-type plants. Using co-immunoprecipitation followed by mass spectrometry (IP-MS), we explored proteins that interact with AtMIZ1, and we identified PGMC1 co-immunoprecipitated with MIZ1 in vivo. Furthermore, the miz1 mutant exhibited higher expression of the PGMC1 gene and increased phosphoglucomutase (PGM) activity, while AtMIZ1 overexpressors resulted in lower expression of the PGMC1 gene, reduced amyloplast amount, and reduced PGM activity in comparison to wild-type roots. In addition, different Arabidopsis natural accessions having difference in their hydrotropic response demonstrated expression level of PGMC1 was negatively correlated with hydrotropic root curvature and AtMIZ1 expression. Our results provide valuable insights into the role of amyloplast in MIZ1-regulated root hydrotropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Agua/metabolismo , Tropismo/genética , Gravitropismo/genética , Raíces de Plantas/metabolismo
18.
Plant Physiol Biochem ; 208: 108481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447424

RESUMEN

Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.


Asunto(s)
Arabidopsis , Gravitropismo , Calcio , Raíces de Plantas/fisiología , Arabidopsis/fisiología , Ácidos Indolacéticos , Plantas , Almidón
19.
Plant Physiol ; 195(2): 1229-1255, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38366651

RESUMEN

Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.


Asunto(s)
Gravitropismo , Ácidos Indolacéticos , Proteínas de Plantas , Prunus persica , Ácidos Indolacéticos/metabolismo , Gravitropismo/fisiología , Gravitropismo/genética , Prunus persica/genética , Prunus persica/fisiología , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Gravitación , Árboles/fisiología , Árboles/genética
20.
Plant J ; 118(6): 1732-1746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394056

RESUMEN

Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.


Asunto(s)
Gravitropismo , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Agua , Gravitropismo/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Agua/metabolismo , Tropismo/fisiología , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA