Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Molecules ; 28(9)2023 May 02.
Article En | MEDLINE | ID: mdl-37175263

Grindelia squarrosa is an arid lands herb that has been used in Native American traditional medicine, is a potential source of pharmacologically active compounds, and has been explored as a source of biofuel. The purpose of this work was to examine the essential oil composition of G. squarrosa from southern Idaho. Gas chromatographic methods revealed the essential oil of G. squarrosa var. serrulata to be rich in monoterpenoids, α-pinene (21.9%), limonene (17.1%), terpinolene (10.6%), and borneol (6.5%). The essential oil composition of G. squarrosa from Idaho is similar to that previously reported from specimens collected from Montana and confirms the volatile phytochemistry of plants growing in North America. The major essential oil components were screened for antimicrobial activity against respiratory and dermal pathogens. (-)-ß-Pinene showed strong antibacterial activity against Streptococcus pneumoniae (MIC 39.1 µg/mL) and (-)-borneol showed strong activity against Staphylococcus aureus (MIC 78.1 µg/mL).


Grindelia , Oils, Volatile , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Grindelia/chemistry , Idaho , Microbial Sensitivity Tests , Oils, Volatile/analysis , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Monoterpenes/analysis , Monoterpenes/chemistry , Monoterpenes/pharmacology , Streptococcus pneumoniae/drug effects , Staphylococcus aureus/drug effects , Antifungal Agents/analysis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology
2.
Molecules ; 27(15)2022 Jul 31.
Article En | MEDLINE | ID: mdl-35956847

Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), ß-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, ß-pinene, and borneol were present primarily as (-)-enantiomers (100% enantiomeric excess (ee) for (-)-α-pinene and (-)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (-)-ß-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (-)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (-)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (-)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (-)-borneol as a novel modulator of human neutrophil function.


Grindelia , Oils, Volatile , Camphanes , Grindelia/chemistry , Humans , Limonene/analysis , Neutrophils , Oils, Volatile/chemistry , Plant Leaves/chemistry , Plant Oils/chemistry
3.
J Ethnopharmacol ; 249: 112311, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-31644941

ETHNOPHARMACOLOGICAL RELEVANCE: During the epidemic season, over 90% of acute wheezing disease is associated with bronchial inflammation. Both neutrophil- and eosinophil-mediated inflammation have been involved in the pathophysiology of acute bronchitis, but neutrophil cell recruitment has been shown to be dominant. The ongoing inflammation increases the chemotaxis of neutrophils to inflamed site providing to their overaccumulation. The pharmacological reduction of neutrophil migration can be limited by suppression of major chemo-attractants and cytokines (IL-8, IL-1ß and TNF-α) release and downregulation of adhesive molecules. AIM OF THE STUDY: During a screening of plants traditionally used in respiratory tracts diseases (e.g. cough, rhinitis, bronchitis, throat infection, fever, influenza) in Europe, we have selected roots of Inula helenium and aerial parts of Grindelia squarrosa as a potential source of compounds limiting neutrophil migration. MATERIALS AND METHODS: The effect on IL-8, IL-1ß and TNF-α release by neutrophils and respiratory epithelium cell line (A549) was measured by enzyme-linked immunosorbent assay (ELISA). The surface expression of adhesive molecules was analyzed with flow cytometry, and the neutrophil attachment to the epithelial cells was assessed fluorimetrically. RESULTS: We confirmed the ability of selected extracts and compounds to suppress neutrophil binding to the epithelium surface via downregulation of ß2 integrin. Alantolactone and grindelic acid have shown significant suppression of IL-8, TNF-α and IL-1ß release comparable with budesonide, used as a positive control. CONCLUSIONS: The present study demonstrated that Inula helenium and Grindelia squarrosa, which have been traditionally used in Europe as medicinal plants, are a valuable source of active compounds with anti-inflammatory activity. Our observations justify the traditional use of I. helenium and G. squarrosa for a treatment of inflammation-based diseases in respiratory tract.


Grindelia/chemistry , Inflammation/drug therapy , Inula/chemistry , Neutrophils/drug effects , Respiratory Mucosa/drug effects , A549 Cells , Adolescent , Adult , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line, Tumor , Cytokines/metabolism , Diterpenes/pharmacology , Down-Regulation/drug effects , Europe , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Lactones/pharmacology , Neutrophils/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Respiratory Mucosa/metabolism , Sesquiterpenes, Eudesmane/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
4.
Nat Prod Res ; 33(10): 1535-1540, 2019 May.
Article En | MEDLINE | ID: mdl-29322829

Essential oils from flowers and leaves of Grindelia integrifolia DC. were investigated for the first time in terms of chemical composition and antimicrobial activity. The GC-FID/MS analysis allowed for the identification of 58 and 72 volatiles, comprising 92.4 and 90.1% of the oils, respectively. The major components of the flower oil were α-pinene (34.9%) and limonene (13.1%), while myrcene (16.9%), spathulenol (12.3%), ß-eudesmol (11.9%) and limonene (10.1%) dominated among the leaf volatiles. The antimicrobial activity, evaluated against 12 selected bacteria and fungus, was found moderate, with the strongest effect of both oils observed against C. albicans (MIC = MBC: 0.63 and 0.31 mg/mL for flower and leaf oil, respectively).


Anti-Infective Agents/pharmacology , Grindelia/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Acyclic Monoterpenes , Alkenes/analysis , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bicyclic Monoterpenes , Candida albicans/drug effects , Drug Evaluation, Preclinical/methods , Flowers/chemistry , Fungi/drug effects , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Monoterpenes/analysis , Plant Leaves/chemistry , Plant Oils/analysis , Plant Oils/chemistry , Plant Oils/pharmacology
5.
Naunyn Schmiedebergs Arch Pharmacol ; 390(12): 1229-1238, 2017 Dec.
Article En | MEDLINE | ID: mdl-28875231

The development of hybrids from natural products is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can induce apoptosis in cancer cells. To contribute to this field of interest, we investigated the effect of a synthetic hybrid from cativic acid and caffeic acid (5) on viability, proliferation, and apoptosis in human neuroblastoma cells (IMR-32). Three hybrids were prepared via Mitsunobu esterification from 17-hydroxycativic acid (1) and natural phenols. Cell viability was analyzed by MTT assay. SYTOX green and LDH leakage were used to determine the cytotoxic effect. Caspase-3 activity, cell cycle phases, and proliferation were analyzed in order to characterize the biological effects of hybrid 5. The mitogen-activated protein kinase (MAPK) status was evaluated for elucidating the potential mechanisms involved in hybrid 5 effect. Hybrid 5 reduced the viability of IMR-32 cells in a time- and concentration-dependent manner (IC50 = 18.0 ± 1.3 µM) as a result of its antiproliferative effect through changes in the cell cycle distribution and induction of apoptosis associated with activation of caspase-3. Exposure to 5 triggered ERK1/2 activation and nuclear translocation. Hybrid 5 also promoted an increase in nuclear localization of the transcription factor c-Jun. Inhibition of ERK1/2 and JNK potentiated 5-induced inhibition of IMR-32 viability. Hybrid 5 displays cell growth inhibition by promoting cell cycle arrest and apoptosis, through ERK1/2 and JNK participation.


Antineoplastic Agents, Phytogenic/pharmacology , Caffeic Acids/pharmacology , Diterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Caffeic Acids/chemistry , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Diterpenes/chemistry , Grindelia/chemistry , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Neuroblastoma/drug therapy , Nuclear Localization Signals/drug effects
7.
Chem Biodivers ; 14(5)2017 May.
Article En | MEDLINE | ID: mdl-28135782

The new methylated grindelane diterpenoid, 7ß-hydroxy-8(17)-dehydrogrindelic acid (1b), together with the known 7α-hydroxy-8(17)-dehydrogrindelic acid (2a), 6-oxogrindelic acid (3a), 4ß-hydroxy-6-oxo-19-norgrindelic (4a), 19-hydroxygrindelic acid (5a), 18-hydroxygrindelic acid (6a), 4α-carboxygrindelic acid (7a), 17-hydroxygrindelic acid (8a), 6α-hydroxygrindelic acid (9a), 8,17-bisnor-8-oxagrindelic acid (10a), 7α,8α-epoxygrindelic acid (11a), and strictanonic acid (12a) as methyl esters were obtained from an Argentine collection of Grindelia chiloensis (Cornel.) Cabrera. Their structures and relative configurations were established on the basis of spectroscopic analysis. CHCl3 extract from the aerial parts and their pure compounds were evaluated for their antifungal and depigmenting effects. Methyl ester derivative of 10a (10b) exhibited a remarkable mycelial growth inhibition against Botritis cinerea with an IC50 of 13.5 µg ml-1 . While the new grindelane 1b exerted a clear color reduction of the yellow-orange pigment developed by Fusarium oxysporum against UV-induced damage.


Antifungal Agents/isolation & purification , Grindelia/chemistry , Skin Lightening Preparations/isolation & purification , Antifungal Agents/pharmacology , Diterpenes , Fusarium/drug effects , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Skin Lightening Preparations/pharmacology
8.
Bioorg Med Chem ; 22(15): 3838-49, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-25017625

Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC50=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC50=21.1 µM), selectivity over butyrylcholinesterase (BChE) (IC50=171.1 µM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC50 value of 3.2 µM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.


Cholinesterase Inhibitors/chemical synthesis , Diterpenes/chemical synthesis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cell Line, Tumor , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , Diterpenes/chemistry , Diterpenes/metabolism , Grindelia/chemistry , Grindelia/metabolism , Humans , Kinetics , Molecular Conformation , Molecular Docking Simulation
9.
Nat Prod Commun ; 9(4): 573-4, 2014 Apr.
Article En | MEDLINE | ID: mdl-24868887

The essential oils of Grindelia squarrosa (Pursh) Dunal and G. hirsutula Hook. & Am. cultivated in Romania were isolated by hydrodistillation. The essential oils were analyzed by a combination of GC-FID and GC-MS. The identification of the constituents was achieved from their retention indices and comparison of their MS data with computer library database and literature data. The fifty-six identified constituents accounted for 72.1-81.3% of the oils. The oils were found to contain a-pinene, beta-pinene, limonene, borneol, bornyl acetate and germacrene D as main constituents. The oils obtained from the two species showed small differences in chemical composition. However, menthol, menthone and pulegone were detected only in the essential oil of G. hirsutula.


Grindelia/chemistry , Plant Oils/chemistry , Chromatography, Gas , Plant Shoots
10.
J Pharm Biomed Anal ; 94: 163-72, 2014 Jun.
Article En | MEDLINE | ID: mdl-24603350

The phenolic composition of herbal tea (HT) and hydromethanolic extract (HME) obtained from Grindelia robusta Nutt. was studied by HPLC-DAD-ESI/MS(n). Thirty six flavonoids and hydroxycinnamic acids were detected, from which thirty are described for the first time in this species. Quantification by HPLC-DAD showed that diosmetin-7-O-glucuronide-3'-O-pentoside+apigenin-7-O-glucuronide-4'-O-pentoside, apigenin-7-O-glucuronide+diosmetin-7-O-glucuronide and 3,5-dicaffeoylquinic acid+3,4-dicaffeoylquinic acid were the major compounds. Since the health-promoting effects of natural phenolic compounds against brain disorders is of increasing interest, HT and HME were also tested against oxygen and nitrogen reactive species and against enzymes related with Alzheimer's disease and depression. Extracts displayed strong in vitro scavenging activity and monoamine oxidase-A (MAO-A) inhibitory activity. The anti-MAO-A capacity was observed at non-toxic concentrations for SH-SY5Y human neuroblastoma cell line, reinforcing the benefits of G. robusta HT. However, no protection against hydrogen peroxide treatment was observed.


Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Grindelia/chemistry , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Beverages , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Neuroblastoma/drug therapy , Quality Control , Spectrometry, Mass, Electrospray Ionization/methods
11.
Chem Biodivers ; 11(2): 311-22, 2014 Feb.
Article En | MEDLINE | ID: mdl-24591319

A bioassay-guided phytochemical analysis of the ethanolic extract of Grindelia argentina Deble & Oliveira-Deble (Asteraceae) allowed the isolation of a known flavone, hispidulin, and three new oleanane-type saponins, 3-O-ß-D-xylopyranosyl-(1→3)-ß-D-glucopyranosyl-2ß,3ß,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-ß-D-xylopyranosyl-(1→2)-ß-D-apiofuranosyl-(1→3)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester (2), 3-O-ß-D-glucopyranosyl-2ß,3ß,23-trihydroxyolean-12-en-28-oic acid 28-O-ß-D-xylopyranosyl-(1→2)-ß-D-apiofuranosyl-(1→3)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, (3) and 3-O-ß-D-xylopyranosyl-(1→3)-ß-D-glucopyranosyl-2ß,3ß,23-trihydroxyolean-12-en-28-oic acid 28-O-ß-D-xylopyranosyl-(1→2)-ß-D-apiofuranosyl-(1→3)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester (4), named grindeliosides A-C, respectively. Their structures were determined by extensive 1D- and 2D-NMR experiments along with mass spectrometry and chemical evidence. The isolated compounds were evaluated for their inhibitory activities against LPS/IFN-γ-induced NO production in RAW 264.7 macrophages and for their cytotoxic activities against the human leukemic cell line CCRF-CEM and MRC-5 lung fibroblasts. Hispidulin markedly reduced LPS/IFN-γ-induced NO production (IC50 51.4 µM), while grindeliosides A-C were found to be cytotoxic, with grindelioside C being the most active against both CCRF-CEM (IC50 4.2±0.1 µM) and MRC-5 (IC50 4.5±0.1 µM) cell lines.


Grindelia/chemistry , Nitric Oxide/biosynthesis , Saponins/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Molecular Structure , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship
12.
Acta Pol Pharm ; 69(4): 693-8, 2012.
Article En | MEDLINE | ID: mdl-22876612

2D-TLC and RP-HPLC methods were applied to qualitatively determinate free phenolic acids and those liberated by acid and alkaline hydrolysis in the flowers and leaves of G. robusta and G. squarrosa. The presence of eleven phenolic acids, namely: caffeic, chlorogenic, p-coumaric, p-hydroxybenzoic, ferulic, gallic, protocatechuic, vanillic salicylic, p-hydroxyphenylacetic and ellagic acids was determined. Quantitative estimate of phenolic acids, expressed as caffeic acid, has been analyzed by the method described in the Polish Pharmacopoeia VIII. The content of phenolic acids in G. robusta reached 7.33 mg/g and 6.23 mg/g for flowers and leaves, respectively. The flowers and leaves of G. squarrosa were characterized by similar level of phenolic acids, namely 6.81 mg/g and 6.59 mg/g, respectively.


Grindelia/chemistry , Hydroxybenzoates/analysis , Calibration , Chromatography, High Pressure Liquid/standards , Chromatography, Thin Layer/standards , Flowers , Hydrogen-Ion Concentration , Hydrolysis , Plant Leaves , Reference Standards
13.
Phytother Res ; 24(11): 1687-92, 2010 Nov.
Article En | MEDLINE | ID: mdl-21031629

Plant extracts and/or secondary metabolites are receiving considerable attention as therapeutic agents for treating inflammatory diseases such as periodontitis, which affects the tooth supporting tissues. The aim of this study was to investigate the effect of a Grindelia robusta extract enriched in saponins and polyphenols on Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS)-induced inflammatory mediator (IL-6, TNF-a, RANTES, MCP-1, PGE(2) ) and matrix metalloproteinase (MMP-1, -3, -7, -8, -9, -13) secretion by macrophages. LPS induced a marked increase in the secretion of all inflammatory mediators and MMPs tested by macrophages, as determined by enzyme-linked immunosorbent assays. At non-cytotoxic concentrations, the G. robusta extract inhibited dose-dependently the secretion of IL-6, RANTES, MCP-1 and, to a lesser extent, PGE(2) and TNF-a. Such inhibition was also observed for MMP-1, -3, -7, -8, -9 and -13 secretion. This ability of G. robusta extract to reduce the LPS-induced secretion of inflammatory mediators and MMPs was associated with a reduction of nuclear factor-kappa B (NF-kB) p65 activation. The results suggest that G. robusta extract possesses an antiinflammatory therapeutic potential through its capacity to reduce the accumulation of inflammatory mediators and MMPs.


Anti-Inflammatory Agents/pharmacology , Grindelia/chemistry , Macrophages/drug effects , Plant Extracts/pharmacology , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Matrix Metalloproteinases/metabolism , Pasteurellaceae/chemistry , U937 Cells
14.
Mol Cell Biochem ; 336(1-2): 127-35, 2010 Mar.
Article En | MEDLINE | ID: mdl-19813079

Whole plant methanolic extracts of 14 traditionally used medicinal herbs were evaluated for their anti-inflammatory activity. Extracts of Grindelia robusta, Salix nigra, Arnica montana, and Quassia amara showed up to 4.5-fold inhibition of nitric oxide (NO) production in the J774 murine macrophage cells challenged with LPS without cytotoxicity. These four selected extracts significantly reduced the protein levels of inducible NO synthase (iNOS) and the cyclooxygenase-2 (COX-2) as observed by Western blot analysis. Culture supernatants from cells treated with these extracts indicated 3-5-fold reduction of tumor necrosis factor-alpha (TNF-alpha). However, only G. robusta and Q. amara extracts significantly inhibited (by 50%) IL-1beta and IL-12 secretions. Furthermore, all these plant extracts were shown to prevent the LPS-mediated nuclear translocation of nuclear factor-kappaB (NF-kappaB). All the above observations indicate the anti-inflammatory potential of these plant extracts.


Anti-Infective Agents/pharmacology , Inflammation Mediators/metabolism , Inflammation/prevention & control , Lipopolysaccharides/toxicity , Macrophages/drug effects , Plant Extracts/pharmacology , Animals , Arnica/chemistry , Cell Line , Cyclooxygenase 2/metabolism , Grindelia/chemistry , Inflammation/chemically induced , Interleukins/metabolism , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Plants, Medicinal/chemistry , Protein Transport/drug effects , Quassia/chemistry , Salix/chemistry , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Fitoterapia ; 80(5): 267-9, 2009 Jul.
Article En | MEDLINE | ID: mdl-19278665

The flavonoid pattern of an acetonic extract of Grindelia robusta Nutt. was investigated in detail. The flavonoids were enriched by CC. In addition to twelve known methylated exudate flavonols four compounds were identified for the first time in G. robusta. Several substances of the flavonoid complex, among them the main compounds quercetin-3-methylether and 6-OH-kaempferol-3,6-dimethylether, were tested for their activity to inhibit neutrophil elastase. Quercetin-3-methylether was shown to be most active with an IC(50) of 19 microM, thus obviously contributing to the anti-inflammatory activity of the drug.


Anti-Inflammatory Agents/isolation & purification , Flavonoids/isolation & purification , Flavonols/isolation & purification , Grindelia/chemistry , Leukocyte Elastase/antagonists & inhibitors , Plant Extracts/isolation & purification , Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Flavonols/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Quercetin/analogs & derivatives
16.
J Nat Prod ; 68(4): 554-8, 2005 Apr.
Article En | MEDLINE | ID: mdl-15844947

Two new norditerpenoids, 4beta-hydroxy-19-normanoyl oxide (1) and 4alpha-hydroxy-18-normanoyl oxide (2), the new 18-O-alpha-l-arabinopyranosylmanoyl oxide (3a), and the known diterpenoids jhanol (4) and 18-hydroxy-13-epi-manoyl oxide (5) were isolated, together with other common plant constituents from an Argentine collection of Grindelia scorzonerifolia. The structures of the new compounds were established by extensive 1D and 2D NMR techniques and chemical transformations. Structural features of compounds 2 and 4 were verified by X-ray crystallographic analyses. The insecticidal effect of compound 3a was evaluated against the polyphagous pest Spodoptera frugiperda. Pupal and adult malformations leading to death occurred when 3a was incorporated in a larval diet at a concentration of 100 ppm.


Diterpenes/isolation & purification , Grindelia/chemistry , Insecticides/isolation & purification , Plants, Medicinal/chemistry , Spodoptera/drug effects , Animals , Argentina , Crystallography, X-Ray , Diterpenes/chemistry , Diterpenes/pharmacology , Feeding Behavior/drug effects , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Molecular Conformation , Molecular Structure
...