Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.450
1.
J Environ Sci (China) ; 144: 185-198, 2024 Oct.
Article En | MEDLINE | ID: mdl-38802230

There is a large surface-groundwater exchange downstream of wastewater treatment plants (WWTPs), and antibiotics upstream may influence sites downstream of rivers. Thus, samples from 9 effluent-receiving urban rivers (ERURs) and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021. For ERURs, 8 out of 13 target quinolone antibiotics (QNs) were detected, and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02-2,476 ng/L, respectively. For groundwater, all target QNs were detected, and the total QNs concentration was 1.09-23.03 ng/L for December and 4.54-170.3 ng/L for April. The distribution of QNs was dissimilar between ERURs and groundwater. Most QN concentrations were weakly correlated with land use types in the system. The results of a positive matrix factorization model (PMF) indicated four potential sources of QNs in both ERURs and groundwater, and WWTP effluents were the main source of QNs. From December to April, the contribution of WWTP effluents and agricultural emissions increased, while livestock activities decreased. Singular value decomposition (SVD) results showed that the spatial variation of most QNs was mainly contributed by sites downstream (7.09%-88.86%) of ERURs. Then, a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient (SRQ), and the SRQ for QNs was at high level, especially for the sites downstream of WWTPs. Regarding temporal variation, the SRQ for WWTP effluents, aquaculture, and agricultural emissions increased. Therefore, in order to control the antibiotic pollution, more attention should be paid to WWTP effluents, aquaculture, and agricultural emission sources for the benefit of sites downstream of WWTPs.


Anti-Bacterial Agents , Environmental Monitoring , Groundwater , Quinolones , Rivers , Wastewater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , China , Rivers/chemistry , Quinolones/analysis , Anti-Bacterial Agents/analysis , Wastewater/chemistry , Cities , Waste Disposal, Fluid/methods
2.
Environ Monit Assess ; 196(6): 585, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809286

The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.


Environmental Monitoring , Geologic Sediments , Groundwater , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Nigeria , Water Pollutants, Chemical/analysis , Petroleum Pollution/analysis , Geologic Sediments/chemistry , Groundwater/chemistry
3.
Environ Monit Assess ; 196(6): 512, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704803

To gain a comprehensive understanding of the hydrochemical characteristics, controlling factors, and water quality of groundwater in the main stream area of Yishu River (MSYR), a study was conducted using water quality data collected during both the dry and wet seasons. Through statistical analysis, hydrochemical methods, fuzzy comprehensive evaluation, and health risk evaluation modeling, the water chemical characteristics of the main stream area of Yishu River were studied, and the water quality of the area was comprehensively evaluated. The findings indicate that HCO3- and Ca2+ are the predominant anions and cations in the MSYR during the dry and wet seasons, respectively. Moreover, anion concentration in groundwater follows HCO3- > SO42- > NO3- > Cl-, while cations are ranked as Ca2+ > Na+ > Mg2+ > K+. Overall, the groundwater manifests as weakly alkaline and is predominantly classified as hard-fresh water. During the wet season, there is greater groundwater leaching and filtration, with rock and soil materials more readily transferred to groundwater, and the concentrations of main chemical components in groundwater are higher than those during the dry season, and the hydrochemical types are primarily characterized as HCO3-Ca·Mg and SO4·Cl-Ca·Mg types. These results also suggest that the chemical composition of the groundwater in the MSYR is influenced mainly by water-rock interaction. The primary ions originate from the dissolution of silicate rock and carbonate rock minerals, while cation exchange plays a critical role in the hydrogeochemical process. Groundwater in the MSYR is classified mostly as class II water, indicating that it is generally of good quality. However, areas with high levels of class IV and V water are present locally, and NO3- concentration is a crucial factor affecting groundwater quality. In the wet season, more groundwater and stronger mobility lead to greater mobility of NO3- and wider diffusion. Therefore, the risk evaluation model shows that nitrate health risk index is higher in the wet season than it is in the dry season, with children being more vulnerable to health risks than adults. To study groundwater in this area, its hydrochemical characteristics, water quality, and health risk assessment are of great practical significance for ensuring water safety for residents and stable development of social economy.


Environmental Monitoring , Groundwater , Rivers , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Rivers/chemistry , China , Seasons
4.
Environ Monit Assess ; 196(6): 518, 2024 May 07.
Article En | MEDLINE | ID: mdl-38710968

The article presents a comprehensive framework for assessing the physical vulnerability of hand-dug wells within the Are Community, Southwestern Nigeria. The study spans from March to April 2023 and meticulously examines 90 wells, focusing on critical parameters such as well collar, well cover, and well lining information. The analysis reveals significant variations in well collar construction materials and dimensions, emphasizing the community's adaptive strategies. The Well Collar Height Index (WCi), Well Cover Index (WCOi), Well Lining Index (WLi), and the derived Vulnerability Index categorize wells into vulnerability classes, offering a nuanced understanding of susceptibility levels. Notably, the study identifies wells with Very High vulnerability that demand urgent attention, as well as wells with effective protective measures categorized as Very Low vulnerability. The article emphasizes the need for a nuanced understanding of local practices and materials, highlighting the variability in well collar construction. It discusses the implications of well cover conditions and the critical role of well linings in assessing groundwater vulnerability. The Vulnerability Index combines these parameters, guiding targeted interventions based on risk severity. The study lays the groundwork for future interventions to enhance the safety and sustainability of water sources within the Are Community. It recommends immediate comprehensive measures for highly vulnerable wells, ongoing monitoring, community engagement, and knowledge sharing. The future scope includes incorporating geochemical analysis, targeted interventions, regular maintenance, community training, and exploring alternative water sources for sustainable improvements.


Environmental Monitoring , Water Wells , Nigeria , Environmental Monitoring/methods , Humans , Water Supply/statistics & numerical data , Groundwater/chemistry , Risk Assessment
5.
Environ Monit Assess ; 196(6): 532, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727964

WetSpass-M model and multi-technique baseflow separation (MTBS) were applied to estimate spatio-temporal groundwater recharge (GWR) to be used to comprehend and enhance sustainable water resource development in the data-scarce region. Identification of unit Hydrographs And Component flows from Rainfall, Evaporation, and Streamflow (IHACRES) techniques outperform the existing 13 MTBS techniques to separate baseflow depending on the correlation matrix; mean baseflow was 5.128 m3/s. The WetSpass-M model performance evaluated by Nash-Sutcliff Efficiency (NSE) was 0.95 and 0.89; R2 was 0.90 and 0.85 in comparison to observed and simulated mean monthly baseflow and runoff (m3/s), respectively. The estimated mean annual water balance was 608.2 mm for actual evapotranspiration, 221.42 mm for the surface runoff, 87.42 mm for interception rate, and 177.66 mm for GWR, with an error of - 3.29 mm/year. The highest annual actual evapotranspiration was depicted in areas covered by vegetation, whereas lower in the settlement. The peak annual interception rates have been noticed in areas covered with forests and shrublands, whereas the lowest in settlement and bare land. The maximum annual runoff was depicted in settlement and bare land, while the lowest was in forest-covered areas. The annual recharge rates were low in bare land due to high runoff and maximum in forest-covered areas due to low surface runoff. The watershed's downstream areas receive scanty annual rainfall, which causes low recharge and drought. The findings point the way ahead in terms of selecting the best approach across multi-technique baseflow separations.


Environmental Monitoring , Groundwater , Water Movements , Groundwater/chemistry , Ethiopia , Environmental Monitoring/methods , Rain , Models, Theoretical , Water Supply/statistics & numerical data , Hydrology
6.
Environ Geochem Health ; 46(6): 203, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695991

Manganese (Mn) is of particular concern in groundwater, as low-level chronic exposure to aqueous Mn concentrations in drinking water can result in a variety of health and neurodevelopmental effects. Much of the global population relies on drinking water sourced from karst aquifers. Thus, we seek to assess the relative risk of Mn contamination in karst by investigating the Shenandoah Valley, VA region, as it is underlain by both karst and non-karst aquifers and much of the population relies on water wells and spring water. Water and soil samples were collected throughout the Shenandoah Valley, to supplement pre-existing well water and spring data from the National Water Information System and the Virginia Household Water Quality Program, totaling 1815 wells and 119 springs. Soils were analyzed using X-ray fluorescence and Mn K-Edge X-ray absorption near-edge structure spectroscopy. Factors such as soil type, soil geochemistry, and aquifer lithology were linked with each location to determine if correlations exist with aqueous Mn concentrations. Analyzing the distribution of Mn in drinking water sources suggests that water wells and springs within karst aquifers are preferable with respect to chronic Mn exposure, with < 4.9% of wells and springs in dolostone and limestone aquifers exceeding 100 ppb Mn, while sandstone and shale aquifers have a heightened risk, with > 20% of wells exceeding 100 ppb Mn. The geochemistry of associated soils and spatial relationships to various hydrologic and geologic features indicates that water interactions with aquifer lithology and soils contribute to aqueous Mn concentrations. Relationships between aqueous Mn in spring waters and Mn in soils indicate that increasing aqueous Mn is correlated with decreasing soil Mn(IV). These results point to redox conditions exerting a dominant control on Mn in this region.


Groundwater , Manganese , Oxidation-Reduction , Soil , Water Pollutants, Chemical , Water Wells , Manganese/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Soil/chemistry , Natural Springs/chemistry , Environmental Monitoring , Drinking Water/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Spectrometry, X-Ray Emission , Environmental Exposure
7.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Article En | MEDLINE | ID: mdl-38690765

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Colloids , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Colloids/chemistry , Environmental Restoration and Remediation/methods , Polymers/chemistry , Charcoal/chemistry , Sand/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry
8.
Environ Monit Assess ; 196(6): 548, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743314

Palaeochannels are remnants of rivers or stream channels filled with younger sediments over the period of time. In ancient times, these rivers/channels were thriving in phenomenal conditions, but due to frequent tectonic activities, they lost the direction of their original path and were gradually either lost or buried under thick beds of younger alluvium. Palaeochannels act as reservoirs for fresh groundwater since they are made up of coarser sediments and were formerly flowing rivers. Depending on the groundwater regime and local topography, these could either be saturated or dry. The palaeochannels have high groundwater potential if saturated. These are ideal sites for artificial groundwater recharge, if dry. The identification of palaeochannels becomes quite challenging if they are buried under thick deposits of finer younger sediments. In the present study, an attempt has been made to characterize the Saraswati River Palaeochannel in parts of Yamuna Nagar and Kurukshetra districts of Haryana by using surface and subsurface geophysical methods. Till date, the palaeochannels in this area were mainly discerned on the basis of remote sensing only; therefore, geophysical characterization of these palaeochannels has been attempted in this study. In surface geophysical methods, electrical resistivity surveys, especially gradient resistivity profiling (GRP) and vertical electrical sounding (VES), were conducted in the study area, while electrical and natural gamma logging was used as subsurface geophysical approaches to identify the coarser sands of buried palaeochannels. The main objective of the study was to characterize the Saraswati River palaeochannel and analyze the quality of the groundwater stored in the palaeochannel in the study area. The findings were compared with the well-log data and were found in good agreement.


Environmental Monitoring , Geologic Sediments , Groundwater , Rivers , Rivers/chemistry , India , Groundwater/chemistry , Geologic Sediments/chemistry
9.
World J Microbiol Biotechnol ; 40(7): 208, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767676

Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.


Biodegradation, Environmental , Electrochemical Techniques , Wastewater/chemistry , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Organic Chemicals/metabolism
10.
J Environ Manage ; 359: 120933, 2024 May.
Article En | MEDLINE | ID: mdl-38696848

Groundwater serves as an important resource for drinking and agriculture in many countries, including India. Assessing the quality of groundwater is essential for understanding its chemical characteristics and suitability for consumption. This study aims to explore the factors affecting the hydrogeochemical changes in groundwater within Guwahati City, Assam, India. Groundwater samples were collected and analyzed for major and trace elements, as well as anion concentrations. Concentrations of As, Al, Ba, Cu, F-, Fe, Mn, and Pb exceeded the permissible limits set by both World Health Organization (WHO) and Bureau of Indian Standards (BIS), indicating serious health concerns for the local inhabitants. The distribution pattern of trace elements exceeding the guideline values is intricate, suggesting widespread contamination of groundwater throughout the study area. The Heavy Metal Pollution Index (HPI) and Water Quality Index (WQI) revealed that, except for the central zone, groundwater across the entire study area requires intervention. Piper plot illustrated that the groundwater is predominantly of Ca-HCO3 type, indicating the dominance of alkaline earth and weak acids. Groundwater hydrogeochemistry is mainly controlled by rock-water interaction and evolves through silicate weathering, carbonate weathering, and cation exchange processes. Multivariate statistical analysis identified distinct groups of groundwater based on chemical characteristics, emphasizing the role of both natural processes and anthropogenic activities in influencing groundwater quality. Regular monitoring, management, and intervention of groundwater sources throughout the study area are crucial for long-term use. The findings of this study will assist stakeholders, regulators, and policymakers in formulating strategies for the sustainable use of groundwater.


Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/analysis , India , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Trace Elements/analysis , Water Quality
11.
Chemosphere ; 358: 142083, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701859

Dissolve organic matters (DOM) usually showed negative effect on the removal of inorganic arsenic (As) in groundwater by electrochemical approaches, yet which parts of sub-component within DOM played the role was lack of evidence. Herein, we investigated the effects of land-source humic-like acid (HA) on groundwater As(III) removal using air cathode iron electrocoagulation, based on the parallel factor analysis of three-dimensional excitation-emission matrix and statistical methods. Our results showed that the land-source HA contained five kinds of components and all components presented significantly negative correlations with the removal of both As(III) and As(V). However, the high aromatic fulvic-like acid and low aromatic humic-like acid components of land-source HA presented the opposite correlations with the concentration of As(III) during the reaction. The high aromaticity fulvic-like components of land-source HA (Sigma-Aldrich HA, SAHA) produced during the reaction facilitated the oxidation of As(III) due to its high electron transfer capacities and good solubility in wide pH range, but the low aromaticity humic-like ones worked against the oxidation of As(III). Our findings offered the novel insights for the flexible activities of DOM in electron Fenton system.


Arsenites , Electrodes , Groundwater , Humic Substances , Iron , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Iron/chemistry , Humic Substances/analysis , Arsenites/chemistry , Oxidation-Reduction , Electrocoagulation/methods , Water Purification/methods
12.
Chemosphere ; 358: 142244, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705411

Neonicotinoids are a class of broad-spectrum insecticides that are dominant in the world market. They are widely distributed in the environment. Understanding the sources, distribution, and fate of these contaminants is critical to mitigating their effects and maintaining the health of aquatic ecosystems. Contamination of surface and groundwater by neonicotinoids has become a widespread problem worldwide, requiring comprehensive action to accurately determine the mechanisms behind the migration of these pesticides, their properties, and their adverse effects on the environment. A new approach to risk analysis for groundwater intake contamination with emerging contaminants was proposed. It was conducted on the example of four neonicotinoids (acetamiprid, clothianidin, thiamethoxam, and imidacloprid) in relation to groundwater accessed by a hypothetical groundwater intake, based on data obtained in laboratory tests using a dynamic method (column experiments). The results of the risk analysis conducted have shown that in this case study the use of acetamiprid and thiamethoxam for agricultural purposes poses an acceptable risk, and does not pose a risk to the quality of groundwater extracted from the intake for food purposes. Consequently, it does not pose a risk to the health and life of humans and other organisms depending on that water. The opposite situation is observed for clothianidin and imidacloprid, which pose a higher risk of groundwater contamination. For higher maximum concentration of neonicotinoids used in the risk analysis, the concentration of clothianidin and imidacloprid in the groundwater intake significantly (from several to several hundred thousand times) exceeds the maximum permissible levels for drinking water (<0.1 µg/L). This risk exists even if the insecticides containing these pesticides are used according to the information sheet provided by the manufacturer (lower maximum concentration), which results in exceeding the maximum permissible levels for drinking water from several to several hundred times.


Groundwater , Insecticides , Neonicotinoids , Water Pollutants, Chemical , Groundwater/chemistry , Neonicotinoids/analysis , Water Pollutants, Chemical/analysis , Insecticides/analysis , Risk Assessment , Environmental Monitoring , Thiamethoxam/analysis , Humans , Thiazoles/analysis , Guanidines/analysis , Drinking Water/chemistry , Nitro Compounds/analysis
13.
Chemosphere ; 358: 142212, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714251

The process of removing Ca2+ and Mg2+ ions typically results in the co-precipitation of Ca2+ and Mg2+ along with other salt waste. To improve water treatment efficiency towards a zero-waste goal, it is crucial to separate Ca2+ and Mg2+, and recover them in their purified form. This study proposes a two-step electrochemical approach that separately recovers Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. The first step uses an undivided cell with 3D electrodes and controlled flow directions to selectively precipitate CaCO3 on the electrode, keeping the cell removal efficiency. The second step employs a two-compartment cell with a cationic exchange membrane to recover Mg(OH)2. This approach was evaluated on RO reject water with high Ca2+ to Mg2+ ratio and industrial effluent-polluted groundwater with a low ratio. Treatment of domestic RO reject water using undivided cell specifically recovered 64% of CaCO3, although the low conductivity of the RO reject water limited further Mg2+ recovery. Conversely, treating industrial effluent-polluted groundwater with this two-step process successfully recovered 80% of CaCO3 and 94% of Mg(OH)2. SEM, EDAX, and XRD analysis confirmed the quality of the recovered products.


Calcium Carbonate , Electrochemical Techniques , Groundwater , Magnesium Hydroxide , Water Pollutants, Chemical , Water Purification , Calcium Carbonate/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Electrochemical Techniques/methods , Magnesium Hydroxide/chemistry , Magnesium/chemistry , Waste Disposal, Fluid/methods
14.
Sci Rep ; 14(1): 11017, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745041

Mining activities have increased the potential risks of metal pollution to the groundwater resources in arid areas across the globe. Therefore, this study aimed to examine the health risk associated with nickel (Ni) in the groundwater sources of a mining-impacted area, South Khorasan, Eastern Iran. A total of 110 stations were included in the study, comprising 62 wells, 40 qanats, and 8 springs in summer, 2020. Initially, the collected samples were tested for temperature, pH, and electrical conductivity (EC). Subsequently, the samples were filtered and treated with nitric acid (HNO3) to measure the concentration of Ni using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Hazard quotient (HQ) and non-carcinogenic risk assessments were employed to evaluate the potential risks of Ni to the inhabitants. The findings revealed that the concentration of Ni ranged from 0.02 to 132.39 µg l-1, and only two stations exhibited Ni concentrations above the WHO standards (20 µg l-1). The results demonstrated that 98.21% of the sampled locations had HQ values below one, indicating negligible risk, while 1.78% of the stations exhibited HQ values of one or higher, representing a high non-carcinogenic risk for water consumers. Overall, the concentration of nickel in the groundwater of South Khorasan exceeded the World Health Organization (WHO) limit solely in the Halvan station, posing a non-carcinogenic risk for the residents in that area, and therefore, additional efforts should be made to provide healthier groundwater to consumers in this region.


Environmental Monitoring , Groundwater , Mining , Nickel , Water Pollutants, Chemical , Nickel/analysis , Groundwater/analysis , Groundwater/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Humans , Iran , Environmental Monitoring/methods
15.
Environ Monit Assess ; 196(6): 560, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767712

We have a poor understanding of how urban drainage and other engineered components interact with more natural hydrological processes in green and blue spaces to generate stream flow. This limits the scientific evidence base for predicting and mitigating the effects of future development of the built environment and climate change on urban water resources and their ecosystem services. Here, we synthesize > 20 years of environmental monitoring data to better understand the hydrological function of the 109-km2 Wuhle catchment, an important tributary of the river Spree in Berlin, Germany. More than half (56%) of the catchment is urbanized, leading to substantial flow path alterations. Young water from storm runoff and rapid subsurface flow provided around 20% of stream flow. However, most of it was generated by older groundwater (several years old), mainly recharged through the rural headwaters and non-urban green spaces. Recent drought years since 2018 showed that this base flow component has reduced in response to decreased recharge, causing deterioration in water quality and sections of the stream network to dry out. Attempts to integrate the understanding of engineered and natural processes in a traditional rainfall-runoff model were only partly successful due to uncertainties over the catchment area, effects of sustainable urban drainage, adjacent groundwater pumping, and limited conceptualization of groundwater storage dynamics. The study highlights the need for more extensive and coordinated monitoring and data collection in complex urban catchments and the use of these data in more advanced models of urban hydrology to enhance management.


Droughts , Environmental Monitoring , Rivers , Urbanization , Environmental Monitoring/methods , Rivers/chemistry , Water Movements , Groundwater/chemistry , Hydrology , Models, Theoretical , Germany , Climate Change
16.
Environ Sci Pollut Res Int ; 31(23): 33223-33238, 2024 May.
Article En | MEDLINE | ID: mdl-38691293

Groundwater contamination by pharmaceutically active compounds (PhACs) has been considered a public health concern worldwide. Alongside the potential toxicological risk of these organic substances, many countries still rely on groundwater for drinking water supply. Thus, this study identified a priority list of seven licit PhACs, comprising acetaminophen (ACT), tramadol (TRA), carbamazepine (CBZ), erythromycin (ERY), sulfamethoxazole (SMX), metformin (MET), and oxazepam (OXZ). Consumption, concentration, and human toxicity in silico results were collected from open access databases. These three indicators were analyzed separately and grouped through a general risk index. The consumption index (data from the USA and Brazil) indicated that ACT, TRA, and MET are the most consumed. Monitoring samples from the USA and Europe (n = 816) indicated that OXZ and ERY stand out as the higher occurrence index considering both regions, but the ranking for each region showed considerable differences. When assessing toxicological risk, an index ≥ 0.5 was attributed to CBZ, MET, OXZ, SMX, and TRA. The general risk indicated the need to be attentive to MET, OXZ, and TRA as they presented ≥ 0.5 index values for at least two indicators.


Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Pharmaceutical Preparations/analysis , Environmental Monitoring , Carbamazepine/toxicity , Drinking Water/chemistry , Brazil
17.
Environ Sci Pollut Res Int ; 31(23): 34396-34414, 2024 May.
Article En | MEDLINE | ID: mdl-38702486

Groundwater contamination with arsenic (As) is a significant concern in Pakistan's Punjab Province. This study analyzed 69 groundwater samples from Faisalabad, Gujranwala, Lahore, and Multan to understand hydrogeochemistry, health impacts, contamination sources, and drinking suitability. Results revealed varying as concentrations across districts, with distinctive cation and anion orders. Faisalabad exhibited Na+ > Mg2+ > Ca2+ > K+ > Fe2+ for cations and SO42- > Cl- > HCO3- > NO3- > F- for anions. Gujranwala showed Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. In Lahore, demonstrated: Na+ > Ca2+ > Mg2+ > Fe > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. Multan indicated K+ > Ca2+ > Mg2+ > Na+ > Fe for cations and HCO3- > SO42- > Cl- > F- > NO3- ) for anions. Hydrochemical facies were identified as CaHCO3 and CaMgCl types. Principal Component Analysis (PCA), highlighted the influence of natural processes and human activities on groundwater pollution. Water Quality Index (WQI) result reveal that most samples met water quality standards. The carcinogenic risk values for children exceeded permissible limits in all districts, emphasizing a significant cancer risk. The study highlights the need for rigorous monitoring to mitigate (As) contamination and protect public health from associated hazards.


Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Pakistan , Water Pollutants, Chemical/analysis , Arsenic/analysis , Humans
18.
Environ Sci Pollut Res Int ; 31(23): 34446-34458, 2024 May.
Article En | MEDLINE | ID: mdl-38703318

Underground coal gasification (UCG) is a promising technology, but the groundwater pollution caused by UCG is a potential risk to the environment. The measured results of the stratum in the combustion cavity resulting from UCG had proven that the combustion cavity would be filled with some UCG residues and caving rocks when UCG was finished. The pollutants in underground water around the combustion cavity include organic pollutants, inorganic pollutants, and ammonia nitrogen, and one of the primary organic pollutants is phenol. The migration and diffusion characteristics of organic pollutants (taking phenol as a representative) in the groundwater of the combustion cavity were investigated by breakthrough experiments and numerical simulations. The results show that the hydraulic conductivity of the coarse UCG residues is much higher than that of fine residues, and the hydraulic conductivity of the UCG residues with the size of - 0.15 mm and 0.15-0.3 mm are 4.68 × 10-6 m/s and 1.91 × 10-4 m/s respectively. The dispersivity λ for the migration of organic pollutants will be influenced significantly by the size of UCG residues in fractures of the combustion cavity, while the distribution coefficient Kd will not. The dispersivity of organic pollutants in the fine UCG residues is more significant than that in the coarse residues, and the λ for the two kinds of residues are 3.868 cm and 1.765 cm, respectively. The shape of the migration path slightly affects the pollutant concentration distribution along the path, but the width of a path has a more pronounced influence on the concentration distribution. In this research, the influence was formulated by a new technical term, MPWIT, which is related to transverse dispersion. Specifically, while the transverse dispersion values account for 20% and 10% of the longitudinal dispersion, respectively, the corresponding MPWIT values are 39.48 mm and 33.96 mm.


Coal , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring
19.
Environ Sci Pollut Res Int ; 31(24): 35878-35896, 2024 May.
Article En | MEDLINE | ID: mdl-38743337

The fluoride dynamics of the Dharmagarh Block of Kalahandi District, Odisha, India, and associated health risk assessment have been studied. Complex data matrices were evaluated using groundwater quality index, fluoride pollution index, and principal component analysis to understand the geological evolution and identify potential sources for fluoride pollution. The study region comprises granite, granitic gneiss, and khondalite of hard and compact rock of Precambrian Eon, which supplies mostly the fluoride-bearing minerals. Altogether thirty-four (34) groundwater samples across the entire study area were collected and subjected to various physico-chemical analyses. The majority of the groundwater in the proposed region is hard to very hard type with Mg-HCO3 and Na-HCO3 being the two dominant facies. Groundwater contains fluoride in concentrations ranging from 0.21 to 2.26 mg/L. The statistical analysis of the quality parameters reveals the moderate positive correlation of fluoride with sodium (0.392) and pH (0.313) and week positive correlation with EC, TDS, TH, TA, Mg2+, and HCO3-, which directly depicts the initiation of fluoride problem within the study area. Based on the water quality index, 23.53% samples are good, 73.53% are poor, and 2.94% are very poor in nature. With respect to fluoride pollution index, 5.88% samples show high pollution, 55.88% samples show medium pollution, and 38.24% of samples show low pollution index. Human health risk assessment has also been carried out using the hazard quotient of fluoride. Altogether 70.59% of samples show Total Hazard Index (THI) values < 1 suggesting low risk of cancer and within the permissible range, whereas 29.41% of samples show THI > 1 suggesting the non-carcinogenic risk of pollutants, which exceeds the allowable limit for all the classes of male, female and children.


Environmental Monitoring , Fluorides , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , India , Fluorides/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Humans
20.
J Hazard Mater ; 472: 134583, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38749250

Iron-based materials such as nanoscale zerovalent iron (nZVI) are effective candidates to in situ remediate hexachromium (Cr(VI))-contaminated groundwater. The anaerobic bacteria could influence the remediation efficiency of Cr(VI) during its cotransport with nZVI in porous media. To address this issue, the present study investigated the adsorption and reduction of Cr(VI) during its cotransport with green tea (GT) modified nZVI (nZVI@GT) and iron sulfides (FeS and FeS2) in the presence of D. vulgaris or S. putrefaciens in water-saturated sand columns. Experimental results showed that the nZVI@GT preferred to heteroaggregate with FeS2 rather than FeS, forming nZVI@GT-FeS2 heteroaggregates. Although the presence of D. vulgaris further induced nZVI@GT-FeS2 heteroaggregates to form larger clusters, it pronouncedly improved the dissolution of FeS and FeS2 for more Cr(VI) reduction associated with lower Cr(VI) flux through sand. In contrast, S. putrefaciens could promote the dispersion of the heteroaggregates of nZVI@GT-FeS2 and the homoaggregates of nZVI@GT or FeS by adsorption on the extracellular polymeric substances, leading to the improved transport of Fe-based materials for a much higher Cr(VI) immobilization in sand media. Overall, our study provides the essential perspectives into a chem-biological remediation technique through the synergistic removal of Cr(VI) by nZVI@GT and FeS in contaminated groundwater. ENVIRONMENTAL IMPLICATION: The green-synthesized nano-zero-valent iron particles (nZVI@GT) using plant extracts (or iron sulfides) have been used for in situ remediation of Cr(VI) contaminated groundwater. Nevertheless, the removal of Cr(VI) (including Cr(VI) adsorption and Cr(III) generation) could be influenced by the anaerobic bacteria governing the transport of engineered nanoparticles in groundwater. This study aims to reveal the inherent mechanisms of D. vulgaris and S. putrefaciens governing the cotransport of nZVI@GT combined with FeS (or FeS2) to further influence the Cr(VI) removal in simulated complex groundwater media. Our findings provides a chemical and biological synergistic remediation strategy for nZVI@GT application in Cr(VI)-contaminated groundwater.


Chromium , Groundwater , Iron , Metal Nanoparticles , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Sulfides/chemistry , Adsorption , Tea/chemistry , Water Purification/methods , Ferrous Compounds
...