Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 593(6): 611-621, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30815863

RESUMEN

Improving the performance of the key photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by protein engineering is a critical strategy for increasing crop yields. The extensive chaperone requirement of plant Rubisco for folding and assembly has long been an impediment to this goal. Production of plant Rubisco in Escherichia coli requires the coexpression of the chloroplast chaperonin and four assembly factors. Here, we demonstrate that simultaneous expression of Rubisco and chaperones from a T7 promotor produces high levels of functional enzyme. Expressing the small subunit of Rubisco with a C-terminal hexahistidine-tag further improved assembly, resulting in a ~ 12-fold higher yield than the previously published procedure. The expression system described here provides a platform for the efficient production and engineering of plant Rubisco.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Clonación Molecular/métodos , Chaperoninas del Grupo I/genética , Chaperonas Moleculares/genética , Proteínas de Unión a Fosfato/genética , Ribulosa-Bifosfato Carboxilasa/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Chaperoninas del Grupo I/metabolismo , Histidina/genética , Histidina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fotosíntesis/genética , Pliegue de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribulosa-Bifosfato Carboxilasa/aislamiento & purificación , Ribulosa-Bifosfato Carboxilasa/metabolismo
2.
J Med Microbiol ; 67(9): 1203-1211, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30074472

RESUMEN

Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Chaperoninas del Grupo I/metabolismo , Proteostasis , Animales , Bacterias/genética , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/genética , Chaperoninas del Grupo I/genética , Humanos
3.
Science ; 358(6368): 1272-1278, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217567

RESUMEN

Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Escherichia coli/enzimología , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cloroplastos/metabolismo , Cristalografía por Rayos X , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Chaperoninas del Grupo I/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagénesis , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética
4.
FEBS J ; 282(20): 3959-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26237751

RESUMEN

The specific cochaperonin, chloroplast chaperonin (Cpn)20, consisting of two tandem GroES-like domains, is present abundantly in plant and algal chloroplasts, in addition to Cpn10, which is similar in size to GroES. How Cpn20 oligomers, containing six or eight 10-kDa domains, cooperate with the heptameric ring of chaperonin at the same time as encountering symmetry mismatch is unclear. In the present study, we characterized the functional cooperation of cochaperonins, including two plastidic Cpn20 homo-oligomers from Arabidopsis (AtCpn20) and Chlamydomonas (CrCPN20), and one algal CrCPNs hetero-oligomer, consisting of three cochaperonins, CrCPN11, CrCPN20 and CrCPN23, with two chaperonins, Escherichia coli GroEL and Chlamydomonas CrCPN60. AtCpn20 and CrCPNs were functional for assisting both chaperonins in folding model substrates ribulose bisphosphate carboxylase oxygenase from Rhodospirillum rubrum (RrRubisco) in vitro and complementing GroES function in E. coli. CrCPN20 cooperated only with CrCPN60 (and not GroEL) to refold RrRubisco in vitro and showed differential complementation with the two chaperonins in E. coli. Cochaperonin concatamers, consisting of six to eight covalently linked 10-kDa domains, were functionally similar to their respective native forms. Our results indicate that symmetrical match between chaperonin and cochaperonin is not an absolute requisite for functional cooperation.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Chaperoninas del Grupo I/metabolismo , Modelos Moleculares , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas Algáceas/agonistas , Proteínas Algáceas/química , Proteínas Algáceas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chaperonina 10/agonistas , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/agonistas , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/agonistas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas del Grupo I/agonistas , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Peso Molecular , Multimerización de Proteína , Replegamiento Proteico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhodospirillum rubrum/enzimología , Rhodospirillum rubrum/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética
5.
PLoS One ; 9(11): e113835, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25419702

RESUMEN

The A. thaliana genome encodes five co-chaperonin homologs, three of which are destined to the chloroplast. Two of the proteins, Cpn10(2) and Cpn20, form functional homo-oligomers in vitro. In the current work, we present data on the structure and function of the third A. thaliana co-chaperonin, which exhibits unique properties. We found that purified recombinant Cpn10(1) forms inactive dimers in solution, in contrast to the active heptamers that are formed by canonical Cpn10s. Additionally, our data demonstrate that Cpn10(1) is capable of assembling into active hetero-oligomers together with Cpn20. This finding was reinforced by the formation of active co-chaperonin species upon mixing an inactive Cpn20 mutant with the inactive Cpn10(1). The present study constitutes the first report of a higher plant Cpn10 subunit that is able to function only upon formation of hetero-oligomers with other co-chaperonins.


Asunto(s)
Proteínas de Arabidopsis/química , Chaperoninas/química , Chaperoninas del Grupo I/química , Multimerización de Proteína , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Electroforesis en Gel de Poliacrilamida , Chaperoninas del Grupo I/genética , Chaperoninas del Grupo I/metabolismo , Modelos Moleculares , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
6.
Plant Mol Biol ; 83(3): 205-18, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23783410

RESUMEN

Previous study showed that the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR) positively regulates abscisic acid (ABA) signaling. Here, we investigated the functions of a CHLH/ABAR interaction protein, the chloroplast co-chaperonin 20 (CPN20) in ABA signaling in Arabidopsis thaliana. We showed that down-expression of the CPN20 gene increases, but overexpression of the CPN20 gene reduces, ABA sensitivity in the major ABA responses including ABA-induced seed germination inhibition, postgermination growth arrest, promotion of stomatal closure and inhibition of stomatal opening. Genetic evidence supports that CPN20 functions downstream or at the same node of CHLH/ABAR, but upstream of the WRKY40 transcription factor. The other CPN20 interaction partners CPN10 and CPN60 are not involved in ABA signaling. Our findings show that CPN20 functions negatively in the ABAR-WRKY40 coupled ABA signaling independently of its co-chaperonin role, and provide a new insight into the role of co-chaperones in the regulation of plant responses to environmental cues.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Chaperoninas del Grupo I/fisiología , Transducción de Señal , Proteínas de Arabidopsis/genética , Regulación hacia Abajo , Chaperoninas del Grupo I/genética , Liasas/metabolismo
7.
Plant Signal Behav ; 8(2): e23074, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23299425

RESUMEN

Activation of Cu/Zn superoxide dismutases (CuZnSODs) is aided by Cu incorporation and disulfide isomerization by Cu chaperone of SOD (CCS). As well, an Fe-S cluster scaffold protein, ISU, might alter the incorporation of Fe or Mn into yeast MnSOD (ySOD2), thus leading to active or inactive ySOD2. However, metallochaperones involved in the activation of FeSODs are unknown. Recently, we found that a chloroplastic chaperonin cofactor, CPN20, could mediate FeSOD activity. To investigate whether Fe incorporation in FeSOD is affected by CPN20, we used inductively coupled plasma mass spectrometry to analyze the ability of CPN20 to bind Fe. CPN20 could bind Fe, and the Fe binding to FeSOD was increased with CPN20 incubation. Thus, CPN20 might be an Fe chaperone for FeSOD activation, a role independent of its well-known co-chaperonin activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Chaperoninas del Grupo I/metabolismo , Hierro/metabolismo , Superóxido Dismutasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chaperoninas del Grupo I/genética , Superóxido Dismutasa/genética
8.
New Phytol ; 197(1): 99-110, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23057508

RESUMEN

Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Chaperoninas del Grupo I/metabolismo , Superóxido Dismutasa/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Chaperoninas del Grupo I/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Transfección , Técnicas del Sistema de Dos Híbridos
9.
Biochem J ; 446(2): 311-20, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22657732

RESUMEN

The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Chaperoninas del Grupo I/metabolismo , Proteínas de Choque Térmico/metabolismo , Subunidades de Proteína/metabolismo , Synechococcus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caseínas/metabolismo , Secuencia Conservada , Endopeptidasa Clp/química , Endopeptidasa Clp/genética , Estabilidad de Enzimas , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
10.
J Biol Chem ; 287(24): 20471-81, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22518837

RESUMEN

The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)ß(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonina 10/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Chaperoninas del Grupo I/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Algáceas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chaperonina 10/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas del Grupo I/genética , Complejos Multiproteicos/genética , Pliegue de Proteína/efectos de los fármacos
11.
Plant Mol Biol ; 77(1-2): 105-15, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21633907

RESUMEN

The involvement of type I chaperonins in bacterial and organellar protein folding has been well-documented. In E. coli and mitochondria, these ubiquitous and highly conserved proteins form chaperonin oligomers of identical 60 kDa subunits (cpn60), while in chloroplasts, two distinct cpn60 α and ß subunit types co-exist together. The primary sequence of α and ß subunits is ~50% identical, similar to their respective homologies to the bacterial GroEL. Moreover, the A. thaliana genome contains two α and four ß genes. The functional significance of this variability in plant chaperonin proteins has not yet been elucidated. In order to gain insight into the functional variety of the chloroplast chaperonin family members, we reconstituted ß homo-oligomers from A. thaliana following their expression in bacteria and subjected them to a structure-function analysis. Our results show for the first time, that A. thaliana ß homo-oligomers can function in vitro with authentic chloroplast co-chaperonins (ch-cpn10 and ch-cpn20). We also show that oligomers made up of different ß subunit types have unique properties and different preferences for co-chaperonin partners. We propose that chloroplasts may contain active ß homo-oligomers in addition to hetero-oligomers, possibly reflecting a variety of cellular roles.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Chaperoninas del Grupo I/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Genoma de Planta , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología
12.
Mol Microbiol ; 74(5): 1152-68, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19843217

RESUMEN

Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome-wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well-conserved proteins with complex alpha/beta domains. In contrast, thermosome substrates comprise a group of faster-evolving proteins and contain a much wider range of different domain folds, including small all-alpha and all-beta modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.


Asunto(s)
Proteínas Arqueales/metabolismo , Chaperoninas del Grupo I/metabolismo , Chaperoninas del Grupo II/metabolismo , Methanosarcina/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/análisis , Proteínas Arqueales/química , Proteínas Arqueales/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Células Eucariotas/metabolismo , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Chaperoninas del Grupo II/química , Chaperoninas del Grupo II/genética , Methanosarcina/genética , Modelos Moleculares , Filogenia , Unión Proteica/genética , Pliegue de Proteína , Proteoma/análisis , Especificidad por Sustrato , Termosomas/química , Termosomas/genética , Termosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA