Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Cardiovasc Pathol ; 68: 107581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37838075

RESUMEN

BACKGROUND: We previously showed that growth differentiation factor 5 (GDF5) limits infarct expansion post-myocardial infarction (MI). We now examine the acute post-MI role of GDF5 in cardiac rupture. METHODS AND RESULTS: Following permanent ligation of the left anterior descending artery, GDF5 deficiency (i.e., GDF5 knockout mice) reduced the incidence of cardiac rupture (4/24 vs. 17/24; P < .05), and improved survival over 28-d compared to wild-type (WT) mice (79% vs. 25%; P < .0001). Moreover, at 3-d post-MI, GDF5-deficient mice manifest: (a) reduced heart weight/body weight ratio (P < .0001) without differences in infarct size or cardiomyocyte size; (b) increased infarct zone expression of Col1a1 (P < .05) and Col3a1 (P < .01), suggesting increased myocardial fibrosis; and (c) reduced aortic and left ventricular peak systolic pressures (P ≤ .05), suggesting reduced afterload. Despite dysregulated inflammatory markers and reduced circulating monocytes in GDF5-deficient mice at 3-d post-MI, reciprocal bone marrow transplantation (BMT) failed to implicate GDF5 in BM-derived cells, suggesting the involvement of tissue-resident GDF5 expression in cardiac rupture. CONCLUSIONS: Loss of GDF5 reduces cardiac rupture post-MI with increased myocardial fibrosis and lower afterload, albeit at the cost of chronic adverse remodeling.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento , Rotura Cardíaca , Infarto del Miocardio , Animales , Ratones , Modelos Animales de Enfermedad , Fibrosis , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Rotura Cardíaca/genética , Rotura Cardíaca/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/patología
2.
Sci Rep ; 13(1): 22778, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123662

RESUMEN

Growth differentiation factor 5 (GDF5), a BMP family member, is highly expressed in the surface layer of articular cartilage. The GDF5 gene is a key risk locus for osteoarthritis and Gdf5-deficient mice show abnormal joint development, indicating that GDF5 is essential in joint development and homeostasis. In this study, we aimed to identify transcription factors involved in Gdf5 expression by performing two-step screening. We first performed microarray analyses to find transcription factors specifically and highly expressed in the superficial zone (SFZ) cells of articular cartilage, and isolated 11 transcription factors highly expressed in SFZ cells but not in costal chondrocytes. To further proceed with the identification, we generated Gdf5-HiBiT knock-in (Gdf5-HiBiT KI) mice, by which we can easily and reproducibly monitor Gdf5 expression, using CRISPR/Cas9 genome editing. Among the 11 transcription factors, Hoxa10 clearly upregulated HiBiT activity in the SFZ cells isolated from Gdf5-HiBiT KI mice. Hoxa10 overexpression increased Gdf5 expression while Hoxa10 knockdown decreased it in the SFZ cells. Moreover, ChIP and promoter assays proved the direct regulation of Gdf5 expression by HOXA10. Thus, our results indicate the important role played by HOXA10 in Gdf5 regulation and the usefulness of Gdf5-HiBiT KI mice for monitoring Gdf5 expression.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Factores de Transcripción/metabolismo
3.
Med Sci (Paris) ; 39 Hors série n° 1: 47-53, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975770

RESUMEN

Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.


Title: GDF5 - Un candidat thérapeutique dans la lutte contre la sarcopénie. Abstract: La sarcopénie est une maladie musculaire complexe liée à l'âge qui affecte entre 10 à 16 % des personnes âgées de plus 65 ans. Elle se caractérise par une perte excessive de la masse musculaire et de la force. Malgré la multitude d'études visant à comprendre les mécanismes physiologiques qui sous-tendent cette pathologie, la physiopathologie de la sarcopénie reste encore mal comprise. A ce jour, il n'existe pas de traitement pharmacologique pour lutter contre cette pathologie. Dans ce contexte, notre équipe développe des approches thérapeutiques basées sur l'utilisation de la protéine GDF5 pour contrecarrer la perte de la masse et de la fonction musculaire dans diverses conditions pathologiques dont la sarcopénie. Après avoir décrypté un des mécanismes moléculaires régulant l'expression du GDF5, nous avons démontré le potentiel thérapeutique de cette protéine dans la préservation de la masse et la force musculaire chez les souris âgées.


Asunto(s)
Sarcopenia , Anciano , Animales , Humanos , Ratones , Factor 5 de Diferenciación de Crecimiento/metabolismo , Músculo Esquelético/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/genética
4.
Mol Biol Rep ; 50(8): 6337-6347, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37310547

RESUMEN

BACKGROUND: Degenerative disc disease(DDD)is one of the most important causes of low back pain (LBP). Programmed death of human nucleus pulposus mesenchymal stem cells (NPMSCs) plays an important role in the progression of DDD. Growth differentiation factor-5 (GDF-5) is a protein that promotes chondrogenic differentiation, and has been reported to slow the expression of inflammatory factors in nucleus pulposus cells. Compared with those in normal rats, MRI T2-weighted images show hypointense in the central nucleus pulposus region of the intervertebral disc in GDF-5 knockout rats. METHODS AND RESULTS: We aimed to evaluate the role of GDF-5 and Ras homolog family member A (RhoA) in NPMSCs. We used lipopolysaccharide (LPS) to simulate the inflammatory environment in degenerative disc disease, and performed related experiments on the effects of GDF-5 on NPMSCs, including the effects of pyroptosis, RhoA protein, and the expression of extracellular matrix components, and the effects of GDF-5, on NPMSCs. In addition, the effect of GDF-5 on chondroid differentiation of NPMSCs was included. The results showed that the addition of GDF-5 inhibited the LPS-induced pyroptosis of NPMSCs, and further analysis of its mechanism showed that this was achieved by activating the RhoA signaling pathway. CONCLUSION: These findings suggest that GDF-5 plays an important role in inhibiting the pyroptosis of NPMSCs and GDF-5 may have potential for degenerative disc disease gene-targeted therapy in the future.


Asunto(s)
Degeneración del Disco Intervertebral , Células Madre Mesenquimatosas , Núcleo Pulposo , Animales , Humanos , Ratas , Factor 5 de Diferenciación de Crecimiento/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/terapia , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Núcleo Pulposo/metabolismo , Piroptosis , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901991

RESUMEN

Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.


Asunto(s)
Exosomas , MicroARNs , Ratones , Animales , PPAR gamma/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , MicroARNs/genética , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Exosomas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo
6.
Hand (N Y) ; 18(3): 436-445, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34340572

RESUMEN

BACKGROUND: As hand surgeons, tendon injuries and lacerations are a particularly difficult problem to treat, as poor healing potential and adhesions hamper optimal recovery. Adipose-derived stem cells (ADSCs) have been shown to aid in rat Achilles tendon healing after a puncture defect, and this model can be used to study tendon healing in the upper extremity. We hypothesized that ADSCs cultured with growth differentiation factor 5 (GDF5) and platelet-derived growth factor (PDGF) would improve tendon healing after a transection injury. METHODS: Rat Achilles tendons were transected and then left either unrepaired or repaired. Both groups were treated with a hydrogel alone, a hydrogel with ADSCs, or a hydrogel with ADSCs that were cultured with GDF5 and PDGF prior to implantation. Tissue harvested from the tendons was evaluated for gene expression of several genes known to play an important role in successful tendon healing. Histological examination of the tendon healing was also performed. RESULTS: In both repaired and unrepaired tendons, those treated with ADSCs cultured with GDF5/PDGF prior to implantation showed the best tendon fiber organization, the smallest gaps, and the most organized blood vessels. Treatment with GDF5/PDGF increased expression of the protenogenesis gene SOX9, promoted cell-to-cell connections, improved cellular proliferation, and enhanced tissue remodeling. CONCLUSIONS: Adipose-derived stem cells cultured with GDF5/PDGF prior to implantation can promote tendon repair by improving cellular proliferation, tenogenesis, and vascular infiltration. This effect results in a greater degree of organized tendon healing.


Asunto(s)
Tendón Calcáneo , Factor de Crecimiento Derivado de Plaquetas , Ratas , Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Hidrogeles/metabolismo , Células Madre
7.
Artículo en Inglés | MEDLINE | ID: mdl-35675541

RESUMEN

OBJECTIVE: To explore the role of WNT family member 1 (WNT1) in the development of dysplasia of the hip (DDH) and the molecular mechanism involved in this process. Methods: Si-WNT1, pcDNA3.1-WNT1 or corresponding negative controls were transfected into human osteoblast hFOB1.19 and human chondrocyte C28/I2, respectively. The proliferation of cells was measured by EdU assay. The relative expressions of human noggin gene (NOG), growth differentiating factor 5 (GDF5), WNT1, and WNT1-inducible-signaling pathway protein 2 (WISP2) were determined by immunofluorescence analysis. The protein expressions of RNA-binding protein of multiple splice forms 2 (RBPMS2), NOG, bone morphogenetic protein 2 (BMP2), BMP4, WNT1 and WISP2 were determined by western blot. Animal experiment was also performed and the morphological development of hip joint was observed. Results: Overexpression of WNT1 promoted osteoblast proliferation and inhibited chondrocyte proliferation, while knockdown of WNT1 inhibited osteoblast proliferation. In chondrocytes, knockdown of WNT1 upregulated NOG expression, while overexpression of WNT1 downregulated its expression. In osteoblasts and chondrocytes, overexpression of WNT1 increased BMP2, BMP4, WNT1, and WISP2 expression. RBPMS2 and NOG were slightly expressed in each group. Conclusion: Overexpression of WNT1 promoted osteoblast proliferation, inhibited chondrocyte proliferation, and increased the expressions of BMP2, BMP4, WNT1, and WISP2. Therefore, WNT1 may be a new therapeutic target for DDH.


Asunto(s)
Luxación Congénita de la Cadera , Osteoblastos , Proteína Wnt1 , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Diferenciación Celular , Proliferación Celular , Factor V/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Luxación Congénita de la Cadera/metabolismo , Humanos , Osteoblastos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteína Wnt1/metabolismo
8.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451016

RESUMEN

It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Pluripotentes , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Hipertrofia , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
9.
Stem Cell Res Ther ; 13(1): 130, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346361

RESUMEN

BACKGROUND: The treatment of bone loss has posed a challenge to clinicians for decades. Thus, it is of great significance to identify more effective methods for bone regeneration. However, the role and mechanisms of long non-coding RNA small nucleolar RNA host gene 5 (SNHG5) during osteogenic differentiation remain unclear. METHODS: We investigated the function of SNHG5, Yin Yang 1 (YY1), miR-212-3p and growth differentiation factor 5 (GDF5) in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro and in vivo. Molecular mechanisms were clarified by chromatin immunoprecipitation assay and dual luciferase reporter assay. RESULTS: We found SNHG5 expression was upregulated during osteogenesis of hBMSCs. Knockdown of SNHG5 in hBMSCs inhibited osteogenic differentiation while overexpression of SNHG5 promoted osteogenesis. Moreover, YY1 transcription factor directly bound to the promoter region of SNHG5 and regulated SNHG5 expression to promote osteogenesis. Dual luciferase reporter assay confirmed that SNHG5 acted as a miR-212-3p sponge and miR-212-3p directly targeted GDF5 and further activated Smad1/5/8 phosphorylation. miR-212-3p inhibited osteogenic differentiation, while GDF5 promoted osteogenic differentiation of hBMSCs. In addition, calvarial defect experiments showed knockdown of SNHG5 and GDF5 inhibited new bone formation in vivo. CONCLUSION: Our results demonstrated that the novel pathway YY1/SNHG5/miR-212-3p/GDF5/Smad regulates osteogenic differentiation of hBMSCs and may serve as a potential target for the treatment of bone loss.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , ARN Largo no Codificante , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , ARN Largo no Codificante/genética
10.
Dev Dyn ; 251(9): 1535-1549, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242444

RESUMEN

BACKGROUND: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota. RESULTS: We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected. CONCLUSIONS: Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento , Pez Cebra , Aletas de Animales/metabolismo , Animales , Huesos/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Ratones , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681754

RESUMEN

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR's). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-ß1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741's therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


Asunto(s)
Bencimidazoles/farmacología , Condrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Piperidinas/farmacología , Pirimidinas/farmacología , Tiazoles/farmacología , Animales , Bencimidazoles/química , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Interleucina-1beta/farmacología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Osteoartritis/patología , Piperidinas/química , Pirimidinas/química , Ratas Wistar , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/patología , Tiazoles/química
12.
Nat Commun ; 12(1): 5363, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508093

RESUMEN

The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.


Asunto(s)
Condrocitos/fisiología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Placa de Crecimiento/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos , Femenino , Factor 5 de Diferenciación de Crecimiento/economía , Placa de Crecimiento/citología , Placa de Crecimiento/diagnóstico por imagen , Imagenología Tridimensional , Microscopía Intravital , Ratones Noqueados , Modelos Animales , Tibia/citología , Tibia/efectos de los fármacos , Tibia/crecimiento & desarrollo , Microtomografía por Rayos X
13.
Nat Commun ; 12(1): 4161, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230488

RESUMEN

Given the pleiotropic nature of coding sequences and that many loci exhibit multiple disease associations, it is within non-coding sequence that disease-specificity likely exists. Here, we focus on joint disorders, finding among replicated loci, that GDF5 exhibits over twenty distinct associations, and we identify causal variants for two of its strongest associations, hip dysplasia and knee osteoarthritis. By mapping regulatory regions in joint chondrocytes, we pinpoint two variants (rs4911178; rs6060369), on the same risk haplotype, which reside in anatomical site-specific enhancers. We show that both variants have clinical relevance, impacting disease by altering morphology. By modeling each variant in humanized mice, we observe joint-specific response, correlating with GDF5 expression. Thus, we uncouple separate regulatory variants on a common risk haplotype that cause joint-specific disease. By broadening our perspective, we finally find that patterns of modularity at GDF5 are also found at over three-quarters of loci with multiple GWAS disease associations.


Asunto(s)
Exones , Luxación de la Cadera/genética , Luxación de la Cadera/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Animales , Condrocitos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos
14.
Orthop Surg ; 13(3): 734-741, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33817978

RESUMEN

Intervertebral disc degeneration (IDD) is widely recognized as the main cause of low back pain, which leads to disability in aging populations and induces great losses both socially and economically worldwide. Unfortunately, current treatments for IDD are aimed at relieving symptoms instead of preserving disc structure and function. Researchers are forged to find new promising biological therapeutics to stop, and even reverse, IVD degeneration. Recently, the injection of growth factors has been shown to be a promising biological therapy for IDD. A number of growth factors have been investigated to modulate the synthesis of the extracellular matrix (ECM) through a variety of pathogenetic biological mechanisms, including suppressing inflammatory process and down-regulating degrading enzymes. However, growth factors, including Transforming Growth Factor-ß (TGF-ß), Fibroblast Growth Factor (FGF), and Insulin-like Growth Factor-1 (IGF-1), may induce unwanted blood vessel in-growth, which accelerates the process of IDD. On the contrary, studies have demonstrated that injection of GDF-5 into the intervertebral disc of mice can effectively alleviate the degeneration of the intervertebral disc, which elicits their response via BMPRII and will not induce blood vessel in-growth. This finding suggests that GDF-5 is more suitable for use in IDD treatment compared with the three other growth factors. Substantial evidence has suggested that GDF-5 may maintain the structure and function of the intervertebral disc (IVD). GDF-5 plays an important role in IDD and is a very promising therapeutic agent for IDD. This review is focused on the mechanisms and functions of GDF-5 in IDD.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento/metabolismo , Degeneración del Disco Intervertebral , Humanos
15.
Int J Rheum Dis ; 24(5): 694-700, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33861510

RESUMEN

AIM: Osteoarthritis (OA) is the most common chronic joint disorder, resulting from the breakdown of joint cartilage. It occurs in the knees, hands, and hips, leading to pain, stiffness, inflammation, and swelling. METHODS: In this study, 100 hand and knee OA patients, meeting the American College of Rheumatology criteria were included in the case group, and 100 healthy individuals were allocated to the control group. Blood samples were collected from the participants. After DNA extraction, genotyping was carried out for GDF5 rs143383 C/T polymorphism by allele-specific polymerase chain reaction (ASPCR) and for D-repeat alleles of asporin (ASPN) by conventional PCR assay. RESULTS: The results showed that the frequency of the D14 allele of ASPN was significantly higher than other alleles in the case group (P = .0001). Also, the frequency of the D14 allele among women was significantly higher than in men (P = .004). Moreover, the frequency of the TT allele in GDF5 rs143383 C/T polymorphism was significantly higher than the CC and CT alleles in the case group, compared with the control group (P = .001). A significant difference was found between the TT allele and other alleles in female and male patients compared with the control group (P = .02). CONCLUSIONS: The D14 allele of the ASPN gene and TT allele of the GDF5 gene (rs143383 + 104T/C) are associated with hand and knee OA in the Kurdish population, indicating that these alleles could be risk factors for OA, at least in our populations.


Asunto(s)
Cartílago Articular/fisiopatología , Proteínas de la Matriz Extracelular/genética , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Mano/fisiopatología , Osteoartritis de la Rodilla/genética , Polimorfismo Genético/genética , Anciano , Alelos , Estudios de Casos y Controles , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Predisposición Genética a la Enfermedad/etnología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Irán/epidemiología , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/epidemiología , Polimorfismo de Nucleótido Simple
16.
Cell Prolif ; 54(3): e12998, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33522652

RESUMEN

Growth differentiation factor 5 (GDF-5) is essential for cartilage development and homeostasis. The expression and function of GDF-5 are highly associated with the pathogenesis of osteoarthritis (OA). OA, characterized by progressive degeneration of joint, particularly in cartilage, causes severe social burden. However, there is no effective approach to reverse the progression of this disease. Over the past decades, extensive studies have demonstrated the protective effects of GDF-5 against cartilage degeneration and defects. Here, we summarize the current literature describing the role of GDF-5 in development of cartilage and joints, and the association between the GDF-5 gene polymorphisms and OA susceptibility. We also shed light on the protective effects of GDF-5 against OA in terms of direct GDF-5 supplementation and modulation of the GDF-5-related signalling. Finally, we discuss the current limitations in the application of GDF-5 for the clinical treatment of OA. This review provides a comprehensive insight into the role of GDF-5 in cartilage and emphasizes GDF-5 as a potential therapeutic candidate in OA.


Asunto(s)
Condrocitos/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Animales , Enfermedades de los Cartílagos/tratamiento farmacológico , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/farmacología , Humanos
17.
J Cell Mol Med ; 25(4): 1939-1948, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33369147

RESUMEN

The migration of epidermal stem cells (EpSCs) is critical for wound re-epithelization and wound healing. Recently, growth/differentiation factor-5 (GDF-5) was discovered to have multiple biological effects on wound healing; however, its role in EpSCs remains unclear. In this work, recombinant mouse GDF-5 (rmGDF-5) was found via live imaging in vitro to facilitate the migration of mouse EpSCs in a wound-scratch model. Western blot and real-time PCR assays demonstrated that the expression levels of RhoA and matrix metalloproteinase-9 (MMP9) were correlated with rmGDF-5 concentration. Furthermore, we found that rmGDF-5 stimulated mouse EpSC migration in vitro by regulating MMP9 expression at the mRNA and protein levels through the RhoA signalling pathway. Moreover, in a deep partial-thickness scald mouse model in vivo, GDF-5 was confirmed to promote EpSC migration and MMP9 expression via RhoA, as evidenced by the tracking of cells labelled with 5-bromo-2-deoxyuridine (BrdU). The current study showed that rmGDF-5 can promote mouse EpSC migration in vitro and in vivo and that GDF-5 can trigger the migration of EpSCs via RhoA-MMP9 signalling.


Asunto(s)
Movimiento Celular/genética , Células Epidérmicas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células Cultivadas , Expresión Génica , Regulación de la Expresión Génica , Metaloproteinasa 9 de la Matriz/genética , Ratones , ARN Mensajero/genética
18.
Dev Biol ; 470: 136-146, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217406

RESUMEN

The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Articulaciones/embriología , Miositis Osificante/embriología , Miositis Osificante/metabolismo , Dedos del Pie/embriología , Animales , Tipificación del Cuerpo , Condrogénesis , Modelos Animales de Enfermedad , Miembro Anterior/anomalías , Miembro Anterior/embriología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Placa de Crecimiento/embriología , Miembro Posterior/anomalías , Miembro Posterior/embriología , Articulaciones/anomalías , Articulaciones/metabolismo , Ratones , Osteogénesis , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células Madre/fisiología , Dedos del Pie/anomalías
19.
Eur Rev Med Pharmacol Sci ; 24(21): 10975-10983, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33215411

RESUMEN

OBJECTIVE: Destruction of extracellular matrix (ECM), especially collagen II and aggrecan, is an essential feature of intervertebral disc degeneration (IDD). This project planned to elucidate the role of cartilage-derived morphogenetic protein-1 (CDMP-1) in the collagen II and aggrecan synthesis of nucleus pulposus (NP) cells under the IL-1ß induced degeneration. PATIENTS AND METHODS: We cultured human primary NP cells in the different concentrations of IL-1ß medium and analyzed the CDMP-1 level. Recombinant human CDMP-1 protein was used to co-culture with IL-1ß to investigate its effects on collagen II and aggrecan synthesis of NP cells. Additionally, the bone morphogenetic protein type IB receptor (ALK6) gene silenced and upregulated NP cells were used to evaluate the function of ALK6 in the CDMP-1 treated NP cells. Collagen II, aggrecan, MMP9, MMP13, and TIMP4 expression level were analyzed to assess the ECM stability of NP cells. RESULTS: CDMP-1 gene expression decreased in the IL-1ß treated NP cells with a dose-dependent. Appropriate CDMP-1 protein supplement contributed to the collagen II and aggrecan production, the suppression of MMP9 and MMP13, and the upregulation of TIMP4. However, the silencing of ALK6 rejected the positive function of CDMP-1 on the collagen II and aggrecan; on the contrary, ALK6 upregulation magnified the CDMP-1 induced collagen II and aggrecan production. CONCLUSIONS: CDMP-1 is efficient in promoting the collagen II and aggrecan synthesis of NP cells, which is probably based on the mediation of ALK6.


Asunto(s)
Agrecanos/biosíntesis , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Colágeno Tipo II/biosíntesis , Factor 5 de Diferenciación de Crecimiento/metabolismo , Núcleo Pulposo/metabolismo , Adulto , Agrecanos/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Células Cultivadas , Colágeno Tipo II/genética , Femenino , Factor 5 de Diferenciación de Crecimiento/genética , Humanos , Masculino , Núcleo Pulposo/citología
20.
J Mater Sci Mater Med ; 31(12): 130, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33252704

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) are well-known for tissue regeneration and bone repair. This study intended to evaluate the potential efficiency BMSCs in poly(lactide-co-glycolide) (PLGA) scaffolds for the treatment of laryngeal cartilage defects. BMSCs were isolated and identified, and added with 10 ng/mL transforming growth factor-beta1 (TGF-ß1) or/and 300 ng/mL CDMP1 to coculture with PLGA scaffolds. The chondrogenic differentiation, migration, and apoptosis of BMSCs were detected under the action of TGF-ß1 or/and CDMP1. After successful modeling of laryngeal cartilage defects, PLGA scaffolds were transplanted into the rabbits correspondingly. After 8 weeks, laryngeal cartilage defects were assessed. Levels of collagen II, aggrecan, Sox9, Smad2, Smad3, ERK, and JNK were detected. The TGF-ß1 or/and CDMP1-induced BMSCs expressed collagen II, aggrecan, and Sox9, with enhanced cell migration and inhibited apoptosis. In addition, laryngeal cartilage defect in rabbits with TGF-ß1 or/and CDMP1 was alleviated, and levels of specific cartilage matrix markers were decreased. The combined effects of TGF-ß1 and CDMP1 were more significant. The TGF-ß1/Smad and ERK/JNK pathways were activated after TGF-ß1 or/and CDMP1 were added to BMSCs or rabbits. In summary, BMSCs and PLGA scaffolds repair laryngeal cartilage defects in rabbits by activating the TGF-ß1/Smad and ERK/JNK pathways under the coaction of TGF-ß1 and CDMP1.


Asunto(s)
Cartílago/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/citología , Diferenciación Celular , Movimiento Celular , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Femenino , Laringe/metabolismo , Laringe/fisiología , Masculino , Trasplante de Células Madre Mesenquimatosas , Conejos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...