Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Nutrients ; 16(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125340

RESUMEN

A study on 81 individuals (18-75 years old) with mildly impaired fasting blood glucose (FBG) concentrations (98-125 mg/dL) was undertaken to investigate the tolerability of a food supplement (FS) based on Zea mays and Gymnema sylvestre extracts, zinc, and chromium and its efficacy on glucose and lipid metabolism. The subjects were randomized into three groups (27 in each group) and supplemented with one or two tablet(s)/day of FS (groups 1 and 2, respectively), or two tablets/day of placebo (group 3). Blood sampling was carried out at baseline (t0) and after a 3-month treatment (t1), and biochemical parameters associated with glucose and lipid metabolism and kidney and liver toxicity were evaluated. Compared to the placebo, FBG and glycated haemoglobin (HbA1c) were significantly (p < 0.001) reduced in group 1 subjects. In contrast, at the doses of one and two tablet(s)/day, the FS exerted no effect on the other parameters examined. We conclude that in subjects with slightly impaired FBG, ingestion of a FS based on Z. mays and G. sylvestre extracts, zinc, and chromium over 3 months lowers FBG and modulates glucose homeostasis by improving glucose metabolism. These beneficial effects occur in the absence of biochemical evidence of kidney and liver toxicity.


Asunto(s)
Glucemia , Cromo , Suplementos Dietéticos , Gymnema sylvestre , Zea mays , Zinc , Humanos , Persona de Mediana Edad , Método Doble Ciego , Masculino , Adulto , Cromo/administración & dosificación , Anciano , Femenino , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Adulto Joven , Extractos Vegetales/farmacología , Adolescente , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Hemoglobina Glucada/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos
2.
Nutrients ; 16(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064727

RESUMEN

Gymnema sylvestre (GS) and berberine (BBR) are natural products that have demonstrated therapeutic potential for the management of obesity and its comorbidities, as effective and safe alternatives to synthetic drugs. Although their anti-obesogenic and antidiabetic properties have been widely studied, comparative research on their impact on the gene expression of adipokines, such as resistin (Res), omentin (Ome), visfatin (Vis) and apelin (Ap), has not been reported. METHODOLOGY: We performed a comparative study in 50 adult Mexican patients with obesity treated with GS or BBR for 3 months. The baseline and final biochemical parameters, body composition, blood pressure, gene expression of Res, Ome, Vis, and Ap, and safety parameters were evaluated. RESULTS: BBR significantly decreased (p < 0.05) body weight, blood pressure and Vis and Ap gene expression and increased Ome, while GS decreased fasting glucose and Res gene expression (p < 0.05). A comparative analysis of the final measurements revealed a lower gene expression of Ap and Vis (p < 0.05) in patients treated with BBR than in those treated with GS. The most frequent adverse effects in both groups were gastrointestinal symptoms, which attenuated during the first month of treatment. CONCLUSION: In patients with obesity, BBR has a better effect on body composition, blood pressure, and the gene expression of adipokines related to metabolic risk, while GS has a better effect on fasting glucose and adipokines related to insulin resistance, with minimal side effects.


Asunto(s)
Adipoquinas , Berberina , Composición Corporal , Gymnema sylvestre , Obesidad , Resistina , Humanos , Masculino , Femenino , Adulto , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipoquinas/sangre , Adipoquinas/metabolismo , Composición Corporal/efectos de los fármacos , Persona de Mediana Edad , Berberina/farmacología , Resistina/sangre , Resistina/metabolismo , Apelina , Presión Sanguínea/efectos de los fármacos , Nicotinamida Fosforribosiltransferasa/metabolismo , Citocinas/metabolismo , Citocinas/sangre , Extractos Vegetales/farmacología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Lectinas , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
3.
Biomed Pharmacother ; 177: 117043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941896

RESUMEN

This study investigated the chemical constituents, antioxidant potential, and in vitro and in silico antidiabetic activity of Gymnema sylvestre. Column chromatography and spectroscopic techniques identified twelve compounds from the methanol extract, including 4 sterols (1-4), 5 triterpenoids (5-9), and 3 flavonoids (10-12). The chemophenetic significance of all compounds was also investigated. The antioxidant capacity of the extract and compounds (1-4) was evaluated using FRAP and DPPH assays. The extract exhibited strong free radical scavenging activity (IC50 = 48.34 µg/mL), while compounds (1-4) displayed varying degrees of efficacy (IC50 = 98.30-286.13 µg/mL). The FRAP assay indicated significant reducing power for both extract and compounds (58.54, 47.61, 56.61, and 49.11 mg Eq.VitC/g for extract and compounds 1 & 2, 3, and 4, respectively). The antidiabetic potential was assessed through α-amylase and α-glucosidase enzyme inhibition assays. The crude extract demonstrated the most potent inhibition (IC50 = 218.46 and 57.42 µg/mL for α-glucosidase and α-amylase respectively) suggesting its potential for managing postprandial hyperglycaemia. In silico studies employed molecular docking and dynamics simulations to elucidate the interactions between identified compounds and α-amylase/α-glucosidase enzymes. The results revealed promising binding affinities between the compounds and target enzymes, with compound 6 demonstrating the highest predicted inhibitory activity with -10 kcal/mol and -9.1 kcal/mol for α-amylase and α-glucosidase, respectively. This study highlights the presence of diverse bioactive compounds in Gymnema sylvestre. The extract exhibits antioxidant properties and inhibits carbohydrate-digesting enzymes, suggesting its potential as a complementary therapeutic approach for managing hyperglycaemia associated with type 2 diabetes.


Asunto(s)
Antioxidantes , Simulación por Computador , Inhibidores de Glicósido Hidrolasas , Gymnema sylvestre , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Extractos Vegetales , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Gymnema sylvestre/química , Extractos Vegetales/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Metabolismo Secundario
4.
Microb Pathog ; 192: 106670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734323

RESUMEN

The increasing need for pharmaceutical agents that possess attributes such as safety, cost-effectiveness, environmental sustainability, and absence of side effects has driven the advancement of nanomedicine research, which lies at the convergence of nanotechnology and medicine. AIMS AND OBJECTIVES: The study aimed to synthesize non-toxic selenium nanoparticles (SeNPs) using Gymnema sylvestre (G. sylvestre) and Cinnamon cassia (C. cassia) extracts. It also sought to develop and evaluate versatile nanomedicine formulations i.e. selenium nanoparticles of G. sylvestre and C. cassia (SeNPs), drug (lupeol) loaded SeNPs (DLSeNPs), drug-loaded and coated (PEG) SeNPs (DLCSeNPs) without side effects. METHODS: The SeNPs formulations were hydrothermally synthesized, loaded with lupeol to improve efficacy, coated with polyethylene glycol (PEG) for targeted delivery, and characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta potential analysis, size distribution analysis, and X-ray diffraction (XRD). Hemolytic cytotoxicity, 2,2-Diphenyl-1-picrylhydzayl (DPPH), total Reducing power, and total antioxidant capacity (TAC) antioxidant assays, carrageenan-induced paw edema, and histological studies were used to estimate the acute anti-inflammatory activity of the synthesized SeNPs. RESULTS: The final form of PEGylated and drug (lupeol)-loaded selenium nanoparticles (DLCSeNPs) exhibited an average particle size ranging from 100 to 500 nm as evidenced by SEM, and Zeta potential results. These nanoparticles demonstrated no cytotoxic effects and displayed remarkable antioxidant (IC50 values 19.29) and anti-inflammatory capabilities. These results were fed into Graph-pad Prism 5 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p < 0.001). All nano-formulations exhibited significant overall antioxidant activity, with IC50 values ≤ 386 (p < 0.05) as analyzed by ANOVA. The study's results suggest that G. sylvestre outperformed C. cassia in terms of reducing 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical, potassium ferricyanide, and ammonium molybdate in respective antioxidant assays. As far as anti-inflammatory activities are concerned drug (lupeol)-loaded and PEG-coated G. sylvestre SeNPs exhibited the highest anti-inflammatory potential from all other nano-formulations including drug (lupeol)-loaded and PEG-coated C. cassia SeNPs, as exhibited to reduce the release of pro-inflammatory signals i.e. cytokines and NF-kB, making them innovative anti-inflammatory nanomedicine. CONCLUSION: The study synthesized lupeol-loaded and PEG-coated SeNPs, showcasing the potential for biocompatible, cost-effective anti-inflammatory nanomedicines. G. Sylvester's superior antioxidant and anti-inflammatory performance than Cinnamon cassia emphasizes medicinal plant versatility.


Asunto(s)
Antiinflamatorios , Antioxidantes , Gymnema sylvestre , Nanopartículas , Extractos Vegetales , Selenio , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Selenio/química , Selenio/farmacología , Animales , Nanopartículas/química , Gymnema sylvestre/química , Ratas , Nanomedicina , Edema/tratamiento farmacológico , Edema/inducido químicamente , Humanos , Cinnamomum zeylanicum/química , Espectroscopía Infrarroja por Transformada de Fourier , Tamaño de la Partícula , Masculino , Difracción de Rayos X , Supervivencia Celular/efectos de los fármacos
5.
Bioprocess Biosyst Eng ; 47(8): 1377-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819452

RESUMEN

The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 µg/mL) than gram-negative bacteria (201.46-236.19 µg/mL). Microscopic visualization inferred that at 250 µg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.


Asunto(s)
Antibacterianos , Biopelículas , Neoplasias de la Mama , Gymnema sylvestre , Óxido de Zinc , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Óxido de Zinc/química , Óxido de Zinc/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Gymnema sylvestre/química , Femenino , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
6.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695158

RESUMEN

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Asunto(s)
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Gusto/fisiología , Unión Proteica , Secuencia de Aminoácidos , Células HEK293
7.
Nutrients ; 15(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513560

RESUMEN

The primary control of dysmetabolic patients is extremely challenging worldwide, with inadequate dietary habits and sporadic physical activity among the key risk factors for metabolic syndrome onset. Nowadays, there is no exclusive treatment for this condition, and considering that preventive measures usually fail, new therapeutic approaches need to be proposed and investigated. This present pilot study compared the effects of diet alone and in association with a combination of myo-inositol and d-chiro-inositol in their 40:1 ratio, α-lactalbumin, and Gymnema sylvestre on different metabolic parameters in obese dysmetabolic patients. To this purpose, 37 patients with BMI between 30 and 40 and fasting blood glucose between 100 and 125 mg/dL were divided into two groups: (i) the control group followed a hypocaloric Mediterranean diet, (ii) while the study group was also supplemented with a daily dosage of two sachets, each one containing 1950 mg myo-inositol, 50 mg d-chiro-inositol, 50 mg α-lactalbumin, and 250 mg Gymnema Sylvestre. After a 6-month treatment, all parameters improved in both groups. Nevertheless, the treated group experienced a greater improvement, especially concerning the variation from the baseline of HOMA index, triglycerides, BMI, body weight, and waist circumference. These findings support the supplementation with myo-inositol and d-chiro-inositol in the 40:1 ratio, α-lactalbumin, and Gymnema sylvestre as a therapeutical strategy to potentiate the beneficial effects induced via dietary programs in dysmetabolic patients.


Asunto(s)
Gymnema sylvestre , Síndrome del Ovario Poliquístico , Humanos , Femenino , Lactalbúmina/metabolismo , Inositol/uso terapéutico , Proyectos Piloto , Dieta , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Peso Corporal , Metaboloma
8.
Appl Microbiol Biotechnol ; 107(14): 4459-4469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37266583

RESUMEN

Diabetes is a chronic disease that affects several organs and can be treated using phytochemicals found in medicinal plants. Gymnema sylvestre (Asclepiadaceae) is one such medicinal plant rich in anti-diabetic properties. The plant is commonly known as madhunashini in Sanskrit because of its ability to cure diabetes (sugar). Gymnemic acid (GA) is a phytochemical (a triterpenoid saponin) responsible for the herb's main pharmacological activity. This secondary metabolite has a lot of potential as a phytochemical with pharmacological properties including nephroprotection, hypoglycemia, antioxidant, antimicrobial, and anti-inflammatory. Gymnema has acquired a lot of popularity in recent years due to its low side effects and high efficacy in healing diabetes, which has led to overexploitation by pharmaceutical enterprises for its biomass in the wild for the purification of gymnemic acid. Modern biotechnological techniques involving the establishment of cell and organ cultures from G. sylvestre will assist us in fulfilling the need for gymnemic acid production. The present review provides insights on the establishment of cell and organ cultures for the production of a potent antidiabetic molecule gymnemic acid. Further, the review also delves into the intricacies of the different strategies for improved production of gymnemic acid using various elicitors. There is huge potential for sustainable production of gymnemic acid which could be met by establishment of bioreactor scale production. Understanding and engineering the biosynthetic pathway could also lead to improved GA production. KEY POINTS: • Gymnemic acid is one of the potential anti-diabetic molecules from madhunashini • Cell and organ culture offers potential approach for gymnemic acid production • Elicitation strategies have improved the gymnemic acid production.


Asunto(s)
Diabetes Mellitus , Gymnema sylvestre , Plantas Medicinales , Saponinas , Triterpenos , Gymnema sylvestre/química , Gymnema sylvestre/metabolismo , Plantas Medicinales/química , Extractos Vegetales/farmacología , Saponinas/metabolismo , Diabetes Mellitus/tratamiento farmacológico
9.
Arch Microbiol ; 205(5): 186, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043042

RESUMEN

Gymnema sylvestre is a tropical climber species that is widely used in traditional medicine since ages. In the present study, the transcriptome datasets of G. sylvestre available in public domain were screened for the presence of novel plant viral sequences and a putative novel virus tentatively named as Gymnema sylvestre virus 1 (GysV1) was identified. Coding-complete genome segments of GysV1 that are 6.35 kb (RNA1) and 3.98 kb (RNA2) long possessed a single large open reading frame coding for a polyprotein. BLASTp, sequence identity and phylogenetic analyses revealed the relatedness of GysV1 to the members of the subgenus Cholivirus (genus Sadwavirus; family Secoviridae; order Picornavirales). Based on the species demarcation criteria of the family Secoviridae, GysV1 can be regarded as a new cholivirus member.


Asunto(s)
Gymnema sylvestre , Virus ARN , Secoviridae , Gymnema sylvestre/genética , Transcriptoma , Filogenia , Secoviridae/genética , Virus ARN/genética , Genoma Viral
10.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662401

RESUMEN

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Asunto(s)
COVID-19 , Gymnema sylvestre , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Ratas , Animales , FN-kappa B/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Gymnema sylvestre/metabolismo , Especies Reactivas de Oxígeno , Lesión Pulmonar/tratamiento farmacológico , Lipopolisacáridos/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas
11.
Phytother Res ; 37(3): 949-964, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580574

RESUMEN

There is a growing interest in the considerable health benefits of Gymnema Sylvestre (GS) supplementation, as some studies have reported that it may improve cardiometabolic risk factors. However, the widespread impact of GS supplementation on the parameters mentioned above is not fully resolved. Consequently, this study aimed to examine the effects of GS supplementation on lipid profile, glycemic control, blood pressure, and anthropometric indices in adults. Eligible randomized controlled trials (RCT), published up to November 2021, were identified through PubMed, Scopus, and ISI Web of Science databases. Six studies were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CI). All studies were conducted in adults that used a GC supplement (>1 week) and assessed our selected cardiovascular risk factors. Outcomes revealed that GS supplementation significantly decreased triglyceride (p < .001), total cholesterol (p < .001), low-density lipoprotein (p < .001), fasting blood sugar (p < .001), and diastolic blood pressure (p = .003). Some limitations, including notable heterogeneity, low quality of studies, and lack of diversity among research participants, should be considered when interpreting our results. Our outcomes suggest that GS supplementation may improve cardiovascular risk factors. Future large-high-quality RCTs with longer duration and various populations are needed to firmly establish the clinical efficacy of the plant.


Asunto(s)
Gymnema sylvestre , Humanos , Adulto , Presión Sanguínea , Control Glucémico , Suplementos Dietéticos , Triglicéridos , Glucemia
12.
Molecules ; 29(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202777

RESUMEN

BACKGROUND: Folk medicines are attractive therapeutic agents for treating type 2 diabetes mellitus (T2DM). Most plant extracts that have been suggested to restore ß-cells function were tested in vivo. Some only have been tested in vitro to determine whether they have a direct effect on ß-cells islets of Langerhans. Currently, there are no defined criteria for screening of ß-cell-directed plant-based remedies as potential antidiabetic agents. SUMMARY: In this review, we have identified certain criteria/characteristics that can be used to generate a "screening portfolio" to identify plant extracts as potential ß-cell-directed agents for the treatment of T2DM. To validate our screening method, we studied the potential therapeutic efficacy of a Gymnema sylvestre (GS) extract using the screening criteria detailed in the review. Six criteria have been identified and validated using OSA®, a GS extract. By using this screening method, we show that OSA® fulfilled most of the criteria identified for an effective ß-cell-directed antidiabetic therapy, being an effective insulin-releasing agent at nontoxic concentrations; maintaining ß-cell insulin content by stimulating a concomitant increase in insulin gene transcription; maintaining ß-cell mass by protecting against apoptosis; and being effective at maintaining normoglycemia in vivo in a mouse model and a human cohort with T2DM. KEY MESSAGES: The present review has highlighted the importance of having a screening portfolio for plant extracts that have potential antidiabetic effects in the treatment of T2DM. We propose that this screening method should be adopted for future studies to identify new ß-cell-directed antidiabetic plant derived agents.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gymnema sylvestre , Magnoliopsida , Animales , Ratones , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
Nutrients ; 14(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36558446

RESUMEN

Gymnemic-acids (GA) block lingual sweet taste receptors, thereby reducing pleasantness and intake of sweet food. Objective: To examine whether a 14-day gymnema-based intervention can reduce sweet foods and discretionary sugar intake in free-living adults. Healthy adults (n = 58) were randomly allocated to either the intervention group (INT) or control group (CON). The intervention comprised of consuming 4 mg of Gymnema sylvestre containing 75% gymnema acids, a fibre and vitamin supplement, and an associated healthy-eating guide for 14 days; participants in the CON group followed the same protocol, replacing the GA with a placebo mint. Amount of chocolate bars eaten and sensory testing were conducted before and after the 14-day intervention (post-GA or placebo dosing on days zero and 15, respectively). Food frequency questionnaires were conducted on days zero, 15 and after a 28-day maintenance period to examine any changes in intake of sweet foods. A range of statistical procedures were used to analyse the data including Chi square, t-test and two-way analysis of variance. Post dosing, INT consumed fewer chocolates (2.65 ± 0.21 bars) at day zero than CON (3.15 ± 0.24 bars; p = 0.02); there were no differences between groups at day 15 (INT = 2.77 ± 0.22 bars; CON = 2.78 ± 0.22 bars; p = 0.81). At both visits, a small substantive effect (r < 0.3) was observed in the change in pleasantness and desire ratings, with INT showing a slight increase while CON showed a small decrease over the 14-day period. No differences were found in the intake of 9 food categories between groups at any timepoint. There were no differences in consumption of low sugar healthy foods between visits, or by group. The 14-day behavioural intervention reduced pleasantness and intake of chocolate in a laboratory setting. There was no habituation to the mint over the 14-day period. This study is the first to investigate the effect of longer-term gymnema acid consumption on sweet food consumption outside of a laboratory setting; further research is needed to assess how long the effect of the 14-day intervention persists.


Asunto(s)
Gymnema sylvestre , Gymnema , Humanos , Adulto , Azúcares , Ansia , Preferencias Alimentarias , Gusto
14.
BMJ Case Rep ; 15(3)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318201

RESUMEN

Hepatitis-associated aplastic anaemia (HAAA) is a rare condition characterised by onset of acute hepatitis which is followed by development of severe pancytopenia due to bone marrow failure within 6 months. This syndrome can be precipitated by acute viral infections, but the aetiology remains unknown in the majority. Drug-induced HAAA is extremely rare and has been reported with nutritional and dietary supplements in current literature. We report the first cases of ayurvedic herbal and homeopathic remedies-associated HAAA in two patients which proved fatal in both. Evaluation of patients with acute hepatitis and severe pancytopenia must include a detailed evaluation for complementary and alternative medicine use.


Asunto(s)
Anemia Aplásica , Enfermedad Hepática Inducida por Sustancias y Drogas , Gymnema sylvestre , Hepatitis , Materia Medica , Anemia Aplásica/inducido químicamente , Anemia Aplásica/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/complicaciones , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Hepatitis/complicaciones , Humanos , Materia Medica/efectos adversos
15.
J Microencapsul ; 39(2): 125-135, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35282781

RESUMEN

AIM: This work studies the development and evaluation of Gymnema sylvestre (GYM) extract loaded sustained release polymeric nanoparticles (PNPs) for enhanced bioavailability and reduced nephrotoxicity. The current therapy is associated with the drawbacks of addiction and repeated administration. METHOD: The sustained release PNPs were developed and evaluated for toxicity. PNPs of GYM were prepared by double emulsion solvent evaporation technique utilising Taguchi model and evaluated for physicochemical properties (particle size, zeta potential, entrapment efficiency), in vitro drug release, compatibility, and stability. Further, the bioavailability and in vivo nephrotoxicity studies in diabetic rat model were also carried out. RESULT: The developed optimised nanoparticles were 205.7 ± 1.20 nm in size, -40.68 mV zeta potential, compatible, and stable in nature with improved entrapment efficiency (67.1 ± 0.2%) and sustained release. Moreover, nanoparticles were found to lower the blood glucose level in single as well as multiple doses. Results of in vivo study indicated that GYM-NPs increased the phosphorylase activity and thus enhanced insulin secretion. Furthermore, the nanoparticles were free from toxicity, which was confirmed by the estimation of kidney biomarker. CONCLUSION: The nanoparticles increased the bioavailability of GYM extract and have a great potential for the treatment of diabetes in reduced dose, and so these can be potential candidates for treating diabetes.


Asunto(s)
Gymnema sylvestre , Nanopartículas , Animales , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Gymnema sylvestre/química , Nanopartículas/química , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polímeros/química , Ratas
16.
Sci Prog ; 105(1): 368504211067666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34989256

RESUMEN

INTRODUCTION: Sugar is the main source of energy for nearly all animals. However, consumption of a high amount of sugars can lead to many metabolic disorders hence, balancing calorie intake in the form of sugar is required. Various herbs are in use to control body weight, cure diabetes and control elevated blood sugar levels. One such herb is Gymnema sylvestre commonly called Gurmar (destroyer of sugar). Gurmar selectively inhibits sugar sensation by mechanisms that are still elusive. OBJECTIVES: The primary objective of this study is to understand the effect of gurmar on sweet taste feeding behaviour in insects using the invertebrate model system Drosophila melanogaster. METHODS: For this study, we used feeding assays, spectrophotometry and Proboscis Extension Reflex (PER) assay to determine how flies detect gurmar. Additionally, life span analysis, egg-laying behaviour and developmental profiles were used to probe the role of gurmar on the overall health of the flies. During the whole study, we used only the raw powdered form of gurmar (dried leaves) to examine its effect on sweet taste feeding behaviour. RESULTS: Our data demonstrate that whole gurmar in a raw powdered form is aversive to flies and inhibits sugar evoked PER and feeding responses. Also, we observed it takes at least 24 h of starvation time to reduce the consumption of sugar in flies pre-fed on gurmar. Flies lay a fewer number of eggs on gurmar media and show developmental defects. Our data suggest that flies detect gurmar using both taste and olfactory cues. CONCLUSION: Understanding how gurmar reshapes taste curves to promote reduced consumption of sugars in flies will open up avenues to help people with health issues related to high sugar consumption, but our data also highlights that its consumption should be carefully considered since gurmar is aversive to flies and has detrimental effects on development.


Asunto(s)
Drosophila melanogaster , Gymnema sylvestre , Animales , Drosophila melanogaster/fisiología , Ingestión de Energía , Conducta Alimentaria , Humanos , Gusto/fisiología
17.
Int J Radiat Biol ; 98(2): 212-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34705596

RESUMEN

PURPOSE: Freshwater fish Pangasius sutchi was used in this study as a vertebrate model. We evaluated the induction of certain antioxidant enzymes in various vital organs. The radioprotective efficacy of Gymnema sylvestre leaves extract (GS) [25 mg/kg Body Weight (B.W)] and its bioactive compound Gymnemagenin (GG) [0.3 mg/kg B.W] was compared with Amifostine (Ami), the only radioprotector clinically approved by the US-FDA [Ami- 83.3 mg/kg B.W] against different doses of gamma radiation - 60Co (Lethal Dose: LD30-9.2 Gy, LD50-10.2 Gy and LD70-11.4 Gy). MATERIALS AND METHODS: This study was done via stress marker enzymes, cell cycle analysis (CCA) and DNA damage assay prediction with molecular docking, which are reported here for the first time. The results indicate an elevated LPO level and decreased level of CAT, SOD and GSH due to oxidative stress initiation by 60Co Ionizing Radiation (IR) on 4th day and slightly reduced on 32nd day while the reverse observed when the fishes were pretreated with Ami, GS and GG. Similarly, CCA and dead/live cells counts were conducted with pretreatment of Ami, GS and GG against 60Co IR dose (LD50-10.2 Gy). RESULTS: In CCA, G0/G1 phase was observed to be the highest in Ami and lowest in GG, against 60Co IR doses 10.2 Gy which was 51.76 ± 7.55. The dead cells range observed in pretreated group of Ami, GS and GG was lowest in Ami and highest in GG and live cells (highest in Ami and lowest in GG) as compared to 60Co IR group (86.43 ± 3.42 and 8.77 ± 5.95). Thus, antioxidant profile improvement by oxidative stress reduction and gradual progression of different phases of cell cycle except the apoptotic phase along with the live cells counts indicates that the radio-protective efficacy of GS is similar to Ami. CONCLUSION: Predictive assessment was carried out by docking of Ami, various components of GS with p53, NF-κß cells and Rad51 proteins structures responsible for CCA, apoptosis and repair mechanism. These structural proteins were docked with other structural proteins like USP7, TNF-α and partner and localizer of BRCA2 associated (PALB2/BRCA2) complex which made us perform these systemic efforts to find the functional activity of these known radio-protectants.


Asunto(s)
Amifostina , Bagres , Gymnema sylvestre , Protectores contra Radiación , Amifostina/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Rayos gamma , Gymnema sylvestre/química , Gymnema sylvestre/metabolismo , Dosificación Letal Mediana , Simulación del Acoplamiento Molecular , Protectores contra Radiación/farmacología
18.
Biomolecules ; 11(11)2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34827690

RESUMEN

Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.


Asunto(s)
Simulación del Acoplamiento Molecular , Biología Computacional , Diabetes Mellitus , Gymnema sylvestre
19.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770958

RESUMEN

Gymnema sylvestre (Retz.) Schult is a multi-purpose traditional medicine that has long been used for the treatment of various diseases. To discover the potential bioactive composition of G. sylvestre, a chemical investigation was thus performed. In this research, four new C21 steroidal glycosides sylvepregosides A-D (1-4) were isolated along with four known compounds, gymnepregoside H (5), deacetylkidjoladinin (6), gymnepregoside G (7) and gymnepregoside I (8), from the ethyl acetate fraction of G. sylvestre. The structures of the new compounds were established by extensive 1D and 2D nuclear magnetic resonance (NMR) spectra with mass spectroscopy data. Compounds 1-6 promoted glucose uptake by the range of 1.10- to 2.37-fold, respectively. Compound 1 showed the most potent glucose uptake, with 1.37-fold enhancement. Further study showed that compounds 1 and 5 could promote GLUT-4 fusion with the plasma membrane in L6 cells. The result attained in this study indicated that the separation and characterization of these compounds play an important role in the research and development of new anti-diabetic drugs and pharmaceutical industry.


Asunto(s)
Glucosa/antagonistas & inhibidores , Glicósidos/farmacología , Gymnema sylvestre/química , Hipoglucemiantes/farmacología , Esteroides/farmacología , Animales , Línea Celular , Industria Farmacéutica , Glucosa/metabolismo , Glicósidos/química , Glicósidos/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Conformación Molecular , Ratas , Estereoisomerismo , Esteroides/química , Esteroides/aislamiento & purificación
20.
Phytother Res ; 35(12): 6802-6812, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34467577

RESUMEN

This systematic review and meta-analysis aims to find the effect of Gymnema sylvestre (GS) supplementation on glycemic control in type-2 diabetes mellitus (T2DM). PubMed, Cochrane library, Google Scholar, and Science Direct were searched from inception to June 2020 to identify the studies that reported GS supplementation on glycemic parameters. Standardized mean difference (SMD) was calculated by comparing the post-intervention data with baseline data. SMDs with 95% confidence intervals (CIs) were pooled using a random-effects model. Our meta-analysis consisting of 10 studies with a total of 419 participants showed that GS supplementation significantly reduces fasting blood glucose (FBG) (SMD 1.57 mg/dl, 95% CI 2.22 to -0.93, p < .0001, I2 90%), postprandial blood glucose (PPBG) (SMD 1.04 mg/dl, 95% CI 1.53 to -0.54, p < .0001, I2 80%), and glycated haemoglobin (HbA1c) (SMD 3.91, 95% CI 7.35 to -0.16%, p < .0001, I2 99%) compared to baseline. Further, our study also found that GS significantly reduces triglycerides (SMD 1.81 mg/dl, 95% CI 2.95 to -0.66, p < .0001, I2 : 96%), and total cholesterol (SMD 4.10 mg/dl, 95% CI 7.21 to -0.99, p < .0001, I2 : 98%) compared to baseline. Our study shows that GS supplementation is effective in improving glycemic control and reducing lipid levels in T2DM patients and suggests that such supplementation might be used as an effective therapy for the management of T2DM and its associated complications to an extent.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gymnema sylvestre , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Hemoglobina Glucada/análisis , Control Glucémico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA