Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Nutrients ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892715

RESUMEN

NASH (non-alcoholic steatohepatitis) is a severe liver disease characterized by hepatic chronic inflammation that can be associated with the gut microbiota. In this study, we explored the therapeutic effect of Gynostemma pentaphyllum extract (GPE), a Chinese herbal extract, on methionine- and choline-deficient (MCD) diet-induced NASH mice. Based on the peak area, the top ten compounds in GPE were hydroxylinolenic acid, rutin, hydroxylinoleic acid, vanillic acid, methyl vanillate, quercetin, pheophorbide A, protocatechuic acid, aurantiamide acetate, and iso-rhamnetin. We found that four weeks of GPE treatment alleviated hepatic confluent zone inflammation, hepatocyte lipid accumulation, and lipid peroxidation in the mouse model. According to the 16S rRNA gene V3-V4 region sequencing of the colonic contents, the gut microbiota structure of the mice was significantly changed after GPE supplementation. Especially, GPE enriched the abundance of potentially beneficial bacteria such as Akkerrmansia and decreased the abundance of opportunistic pathogens such as Klebsiella. Moreover, RNA sequencing revealed that the GPE group showed an anti-inflammatory liver characterized by the repression of the NF-kappa B signaling pathway compared with the MCD group. Ingenuity Pathway Analysis (IPA) also showed that GPE downregulated the pathogen-induced cytokine storm pathway, which was associated with inflammation. A high dose of GPE (HGPE) significantly downregulated the expression levels of the tumor necrosis factor-α (TNF-α), myeloid differentiation factor 88 (Myd88), cluster of differentiation 14 (CD14), and Toll-like receptor 4 (TLR4) genes, as verified by real-time quantitative PCR (RT-qPCR). Our results suggested that the therapeutic potential of GPE for NASH mice may be related to improvements in the intestinal microenvironment and a reduction in liver inflammation.


Asunto(s)
Microbioma Gastrointestinal , Gynostemma , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratones , Gynostemma/química , Extractos Vegetales/farmacología , Masculino , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología
2.
J Enzyme Inhib Med Chem ; 39(1): 2360063, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38873930

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Gynostemma , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Gynostemma/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Humanos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Modelos Moleculares , Cristalografía por Rayos X , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación
3.
Biochemistry (Mosc) ; 89(5): 973-986, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880656

RESUMEN

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Gynostemma , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , ARN Circular , Humanos , MicroARNs/metabolismo , MicroARNs/genética , ARN Circular/genética , ARN Circular/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales
4.
PeerJ ; 12: e17538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912051

RESUMEN

Background: Gynostemma pentaphyllum (Thunb.) Makino, a well-known edible and medicinal plant, has anti-aging properties and is used to treataging-associated conditions such as diabetes, metabolic syndrome, and cardiovascular diseases. Gypenosides (GYPs) are the primary constituents of G. pentaphyllum. Increasing evidence indicates that GYPs are effective at preserving mitochondrial homeostasis and preventing heart failure (HF). This study aimed to uncover the cardioprotective mechanisms of GYPs related to mitochondrial regulation. Methods: The bioactive components in GYPs and the potential targets in treating HF were obtained and screened using the network pharmacology approach, followed by drug-disease target prediction and enrichment analyses. The pharmacological effects of GYPs in cardioprotection, mitochondrial function, mitochondrial quality control, and underlying mechanisms were further investigated in Doxorubicin (Dox)-stimulated H9c2 cardiomyocytes. Results: A total of 88 bioactive compounds of GYPs and their respective 71 drug-disease targets were identified. The hub targets covered MAPK, EGFR, PI3KCA, and Mcl-1. Enrichment analysis revealed that the pathways primarily contained PI3K/Akt, MAPK, and FoxO signalings, as well as calcium regulation, protein phosphorylation, apoptosis, and mitophagy process. In Dox-stimulated H9c2 rat cardiomyocytes, pretreatment with GYPs increased cell viability, enhanced cellular ATP content, restored basal oxygen consumption rate (OCR), and improved mitochondrial membrane potential (MMP). Furthermore, GYPs improved PINK1/parkin-mediated mitophagy without influencing mitochondrial fission/fusion proteins and the autophagic LC3 levels. Mechanistically, the phosphorylation of PI3K, Akt, GSK-3ß, and the protein level of Mcl-1 was upregulated by GYP treatment. Conclusion: Our findings reveal that GYPs exert cardioprotective effects by rescuing the defective mitophagy, and PI3K/Akt/GSK-3ß/Mcl-1 signaling is potentially involved in this process.


Asunto(s)
Cardiotónicos , Glucógeno Sintasa Quinasa 3 beta , Gynostemma , Mitofagia , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Gynostemma/química , Mitofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Línea Celular
5.
Biomolecules ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785996

RESUMEN

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Ácido Glutámico , Gynostemma , Animales , Ácido Glutámico/metabolismo , Ratas , Masculino , Gynostemma/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Kaínico/toxicidad , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinapsinas/metabolismo , Fosforilación/efectos de los fármacos , Calcio/metabolismo , Extractos Vegetales
6.
Chem Biol Interact ; 397: 111077, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810818

RESUMEN

Intestinal barrier dysfunction is a significant complication induced by sepsis, yet therapeutic strategies targeting such dysfunction remain inadequate. This study investigates the protective effects of Gypenoside XLIX (Gyp XLIX) against intestinal damage induced by sepsis. Septic intestinal injury in mice was induced by cecum ligation and puncture (CLP) surgery. The biological activity and potential mechanisms of Gyp XLIX were explored through intraperitoneal injection of Gyp XLIX (40 mg/kg). The study demonstrates that Gyp XLIX improves the pathological structural damage of the intestine and increases tight junction protein expression as well as the number of cup cells. Through activation of the nuclear factor erythroid 2-related factor 2 - Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway, Gyp XLIX enhances antioxidant enzyme levels while reducing the excessive accumulation of reactive oxygen species (ROS). In addition, Gyp XLIX effectively alleviates sepsis-induced intestinal inflammation by inhibiting the nuclear factor kappa B (NF-κB) pathway and activation of the NLRP3 inflammasome. Moreover, Gyp XLIX inhibits cell death through modifying phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, further enhancing its ability to shield the intestinal barrier. The combined action of these molecular mechanisms promotes the restoration of immune balance and reduces excessive autophagy activity induced under septic conditions. In summary, Gyp XLIX exhibits a significant preventive action against intestinal damage brought on by sepsis, with its mechanisms involving the improvement of intestinal barrier function, antioxidative stress, inhibition of inflammatory response, and cell apoptosis. This research offers a potential strategy for addressing intestinal barrier impairment brought on by sepsis.


Asunto(s)
Apoptosis , Autofagia , Gynostemma , Inflamación , Ratones Endogámicos C57BL , Estrés Oxidativo , Sepsis , Animales , Estrés Oxidativo/efectos de los fármacos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Ratones , Gynostemma/química , Masculino , Inflamación/tratamiento farmacológico , Inflamación/patología , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inflamasomas/metabolismo
7.
Chin J Nat Med ; 22(5): 466-480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796219

RESUMEN

Sixteen new dammarane-type triterpenoid saponins (1-16) featuring diverse structural variations in the side chain at C-17, along with twenty-one known analogues (17-37), have been isolated from the rhizomes of Gynostemma longipes C. Y. Wu, a plant renowned for its medicinal and edible properties. The structural elucidation of these compounds was accomplished through comprehensive analyses of 1D and 2D NMR and HRMS spectroscopic data, supplemented by comparison with previously reported data. Subsequent assays on the isolates for their protective effects against hypoxia-induced damage in pheochromocytoma cells (PC12 cells) revealed that nine saponins exhibited significant anti-hypoxic activities. Further investigation into the anti-hypoxia mechanisms of the representative saponins demonstrated that compounds 22 and 36 markedly reduced the levels of hypoxia-induced apoptosis. Additionally, these compounds were found to decrease the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), while increasing the activity of superoxide dismutase (SOD), thereby indicating that the saponins could mitigate hypoxia-induced injuries by ameliorating apoptosis and oxidative stress. These findings offer substantial evidence for the future utilization and development of G. longipes, identifying dammarane-type triterpenoid saponins as its active anti-hypoxic constituents.


Asunto(s)
Apoptosis , Damaranos , Gynostemma , Saponinas , Triterpenos , Células PC12 , Triterpenos/farmacología , Triterpenos/química , Gynostemma/química , Ratas , Animales , Apoptosis/efectos de los fármacos , Estructura Molecular , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Rizoma/química , Hipoxia de la Célula/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , L-Lactato Deshidrogenasa/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
8.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613018

RESUMEN

Alopecia, a prevalent yet challenging condition with limited FDA-approved treatments which is accompanied by notable side effects, necessitates the exploration of natural alternatives. This study elucidated the hair growth properties of Gynostemma pentaphyllum leaf hydrodistillate (GPHD) both in vitro and in vivo. Furthermore, damulin B, a major component of GPHD, demonstrated hair growth-promoting properties in vitro. Beyond its established anti-diabetic, anti-obesity, and anti-inflammatory attributes, GPHD exhibited hair growth induction in mice parallel to minoxidil. Moreover, it upregulated the expression of autocrine factors associated with hair growth, including VEGF, IGF-1, KGF, and HGF. Biochemical assays revealed that minoxidil, GPHD, and damulin B induced hair growth via the Wnt/ß-catenin pathway through AKT signaling, aligning with in vivo experiments demonstrating improved expression of growth factors. These findings suggest that GPHD and damulin B contribute to the hair growth-inducing properties of dermal papilla cells through the AKT/ß-catenin signaling pathway.


Asunto(s)
Gynostemma , beta Catenina , Animales , Ratones , Minoxidil , Proteínas Proto-Oncogénicas c-akt , Vía de Señalización Wnt , Cabello
9.
Sci Rep ; 14(1): 8644, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622163

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.


Asunto(s)
Flavonoides , Gynostemma , Flavonoides/metabolismo , Gynostemma/genética , Gynostemma/química , Terpenos/metabolismo , Extractos Vegetales/química , Perfilación de la Expresión Génica
10.
J Cancer Res Ther ; 20(2): 684-694, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687941

RESUMEN

OBJECTIVES: Gypenoside (Gyp) is easily degraded in the gastrointestinal tract, resulting in its low bioavailability. We aimed to develop a tumor-targeted Gyp nanodrug delivery system and to investigate its antitumor effect in vitro. MATERIALS AND METHODS: We used Gyp as the therapeutic drug molecule, mesoporous silica (MSN) and liposome (Lipo) as the drug carrier and protective layers, and aptamer SYL3C as the targeting element to establish a tumor-targeted nanodrug delivery system (i.e., SYL3C-Lipo@Gyp-MSN). The characteristics of SYL3C-Lipo@Gyp-MSN were investigated, and its drug release performance, cell uptake, and antitumor activity in vitro were evaluated. RESULTS: A tumor-targeted Gyp nanodrug delivery system was successfully prepared. The SYL3C-Lipo@Gyp-MSN was spherical or ellipsoidal; had good dispersion, which enabled it to specifically target and kill the liver tumor cell HepG2; and effectively protected the early leakage of Gyp. CONCLUSIONS: We have established a tumor-targeted nanodrug delivery system that can target and kill liver cancer cells and may provide a strategy for preparing new nanodrug-loaded preparations of traditional Chinese medicine.


Asunto(s)
Gynostemma , Liposomas , Humanos , Gynostemma/química , Liposomas/química , Células Hep G2 , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Dióxido de Silicio/química , Liberación de Fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Nanopartículas/química , Nanopartículas/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Sistema de Administración de Fármacos con Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación
11.
BMC Plant Biol ; 24(1): 205, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509465

RESUMEN

BACKGROUND: Gynostemma pentaphyllum, an ancient Chinese herbal medicine, serves as a natural source of gypenosides with significant medicinal properties. Basic helix-loop-helix (bHLH) transcription factors play pivotal roles in numerous biological processes, especially in the regulation of secondary metabolism in plants. However, the characteristics and functions of the bHLH genes in G. pentaphyllum remain unexplored, and their regulatory role in gypenoside biosynthesis remains poorly elucidated. RESULTS: This study identified a total of 111 bHLH members in G. pentaphyllum (GpbHLHs), categorizing them into 26 subgroups based on shared conserved motif compositions and gene structures. Collinearity analysis illustrated that segmental duplications predominately lead to the evolution of GpbHLHs, with most duplicated GpbHLH gene pairs undergoing purifying selection. Among the nine gypenoside-related GpbHLH genes, two GpbHLHs (GpbHLH15 and GpbHLH58) were selected for further investigation based on co-expression analysis and functional prediction. The expression of these two selected GpbHLHs was dramatically induced by methyl jasmonate, and their nuclear localization was confirmed. Furthermore, yeast one-hybrid and dual-luciferase assays demonstrated that GpbHLH15 and GpbHLH58 could bind to the promoters of the gypenoside biosynthesis pathway genes, such as GpFPS1, GpSS1, and GpOSC1, and activate their promoter activity to varying degrees. CONCLUSIONS: In conclusion, our findings provide a detailed analysis of the bHLH family and valuable insights into the potential use of GpbHLHs to enhance the accumulation of gypenosides in G. pentaphyllum.


Asunto(s)
Gynostemma , Extractos Vegetales , Gynostemma/genética , Gynostemma/química , Gynostemma/metabolismo , Extractos Vegetales/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
12.
J Ethnopharmacol ; 328: 118066, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38499259

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY: This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS: A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS: Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION: This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.


Asunto(s)
Microbioma Gastrointestinal , Hiperlipidemias , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Gynostemma , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Triglicéridos/metabolismo , Metabolismo de los Lípidos , LDL-Colesterol/metabolismo , Extractos Vegetales
13.
Kaohsiung J Med Sci ; 40(3): 280-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38294255

RESUMEN

Gypenoside XIII is isolated from Gynostemma pentaphyllum (Thunb.) Makino. In mice, G. pentaphyllum extract and gypenoside LXXV have been shown to improve non-alcoholic steatohepatitis (NASH). This study investigated whether gypenoside XIII can regulate lipid accumulation in fatty liver cells or attenuate NASH in mice. We used HepG2 hepatocytes to establish a fatty liver cell model using 0.5 mM oleic acid. Fatty liver cells were treated with different concentrations of gypenoside XIII to evaluate the molecular mechanisms of lipid metabolism. In addition, a methionine/choline-deficient diet induced NASH in C57BL/6 mice, which were given 10 mg/kg gypenoside XIII by intraperitoneal injection. In fatty liver cells, gypenoside XIII effectively suppressed lipid accumulation and lipid peroxidation. Furthermore, gypenoside XIII significantly increased SIRT1 and AMPK phosphorylation to decrease acetyl-CoA carboxylase phosphorylation, reducing fatty acid synthesis activity. Gypenoside XIII also decreased lipogenesis by suppressing sterol regulatory element-binding protein 1c and fatty acid synthase production. Gypenoside XIII also increased lipolysis and fatty acid ß-oxidation by promoting adipose triglyceride lipase and carnitine palmitoyltransferase 1, respectively. In an animal model of NASH, gypenoside XIII effectively decreased the lipid vacuole size and number and reduced liver fibrosis and inflammation. These findings suggest that gypenoside XIII can regulate lipid metabolism in fatty liver cells and improve liver fibrosis in NASH mice. Therefore, gypenoside XIII has potential as a novel agent for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Gynostemma/química , Gynostemma/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Lípidos/farmacología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Extractos Vegetales
14.
J Cosmet Dermatol ; 23(2): 648-657, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37649302

RESUMEN

BACKGROUND: In traditional Asian medicine, Gynostemma pentaphyllum Makino leaf extract (Gp) is used to treat aging, metabolic syndrome, diabetes, and neurodegenerative diseases. Hair loss and hair-graying are common phenomena that haunt everyone. However, whether Gp activities on inhibition of hair loss and getting gray have been rarely studied. AIM: Study the Gp activity and mechanism by in vivo and in vitro experiments to explore its application on hair health. METHODS: In the present study, we determined the effects of Gp on the expression of hair growth-related genes and proliferation of human dermal papilla cells (hDPCs). Furthermore, Gp was topically applied to the hair-shaved skin of male C57BL/6 mice, and the histological profile of the skin was studied. Because emotional stress may lead to melanocyte disappearance, norepinephrine-exposed mice B16 melanocytes were treated with Gp to elucidate the anti-hair graying capacity of Gp in response to this stress type. RESULTS: Gp stimulated the proliferation of hDPCs and the Wnt signaling pathways associated with hair growth; furthermore, the expression of the hair loss-related gene transforming growth factor-ß1 was suppressed. Gp treatment significantly increased the size of hair follicles in the treated mice and stimulated them. Moreover, Gp not only increased melanin synthesis but also tyrosinase activity in B16 cells. Quantitative real-time polymerase chain reaction revealed that Gp increased melanin synthesis by increasing the expression of tyrosine-related protein-1, tyrosine-related protein-2, tyrosinase, and microphthalmia-associated transcription factor. CONCLUSION: Our study provides preclinical evidence regarding the potential of Gp as a promising hair growth and anti-graying agent.


Asunto(s)
Gynostemma , Melaninas , Masculino , Humanos , Ratones , Animales , Monofenol Monooxigenasa , Ratones Endogámicos C57BL , Cabello , Extractos Vegetales/farmacología , Alopecia/tratamiento farmacológico
15.
Mol Neurobiol ; 61(2): 1140-1156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688709

RESUMEN

Neuroinflammation is closely related to prognosis in ischemic stroke. Microglia are the main immune cells in the nervous system. Under physiological conditions, microglia participate in clearance of dead cells, synapse pruning and regulation of neuronal circuits to maintain the overall health of the nervous system. Once ischemic stroke occurs, microglia function in the occurrence and progression of neuroinflammation. Therefore, the regulation of microglia-mediated neuroinflammation is a potential therapeutic strategy for ischemic stroke. The anti-inflammatory activity of gypenosides (GPs) has been confirmed to be related to the activity of microglia in other neurological diseases. However, the role of GPs in neuroinflammation after ischemic stroke has not been studied. In this study, we investigated whether GPs could reduce neuroinflammation by regulating microglia and the underlying mechanism through qRT-PCR and western blot. Results showed that GPs pretreatment mitigated blood-brain barrier (BBB) damage in the mice subjected to middle cerebral artery occlusion (MCAO) and improved motor function. According to the results of immunofluorescence staining, GPs pretreatment alleviated neuroinflammation in MCAO mice by reducing the number of microglia and promoting their phenotypic transformation from M1 to M2. Furthermore, GPs pretreatment reduced the number of astrocytes in the penumbra and inhibited their polarization into the A1 type. We applied oxygen and glucose deprivation (OGD) on BV2 cells to mimic ischemic conditions in vitro and found similar effect as that in vivo. At the molecular level, the STAT-3/HIF1-α and TLR-4/NF-κB/HIF1-α pathways were involved in the anti-inflammatory effects of GPs in vitro and in vivo. Overall, this research indicates that GPs are potential therapeutic agents for ischemic stroke and has important reference significance to further explore the possibility of GPs application in ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratones , Animales , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo , Antiinflamatorios/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Extractos Vegetales , Gynostemma
16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5235-5243, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114112

RESUMEN

The aim of this study is to investigate the effects of Gynostemma pentaphyllum dried with two different methods(air drying and heating) on inflammation in acute lung injury(ALI) mice in vivo and in vitro. Lipopolysaccharide(LPS) was sprayed into the airway of wild type C57BL/6J male mice to establish the model, and the drug was injected into the tail vein 24 h after modeling. Lung function, lung tissue wet/dry weight(W/D) ratio, the total protein concentration, interleukin 6(IL-6), IL-1ß, and tumor necrosis factor-α(TNF-α) in the bronchoalveolar lavage fluid(BALF), and pathological changes of the lung tissue were used to evaluate the effects of different gypenosides on ALI mice. The results showed that total gypenosides(YGGPs) and the gypenosides substituted with one or two glycosyl(GPs_(1-2)) in the air-dried sample improved the lung function, significantly lowered the levels of IL-1ß and TNF-α in BALF, and alleviated the lung inflammation of ALI mice. Moreover, GPs_(1-2) had a more significant effect on inhibiting NO release in RAW264.7 cells. This study showed that different drying methods affected the anti-inflammatory activity of G. pentaphyllum, and the rare saponins in the air-dried sample without heating had better anti-inflammatory activity.


Asunto(s)
Gynostemma , Factor de Necrosis Tumoral alfa , Masculino , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Pulmón , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología
17.
J Enzyme Inhib Med Chem ; 38(1): 2281263, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965892

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is a key factor and regulator of glucose, lipid metabolism throughout the body, and a promising target for treatment of type 2 diabetes mellitus (T2DM). Gynostemma pentaphyllum is a famous oriental traditional medicinal herbal plant and functional food, which has shown many beneficial effects on glucose and lipid metabolism. The aim of the present study is to assess the inhibitory activity of five new and four known dammarane triterpenoids isolated from the hydrolysate product of total G. pentaphyllum saponins. The bioassay data showed that all the compounds exhibited significant inhibitory activity against PTP1B. The structure-activity relationship showed that the strength of PTP1B inhibitory activity was mainly related to the electron-donating group on its side chain. Molecular docking analysis suggested that its mechanism may be due to the formation of competitive hydrogen bonding between the electron-donating moiety and the Asp48 amino acid residues on the PTP1B protein.


Asunto(s)
Diabetes Mellitus Tipo 2 , Saponinas , Triterpenos , Saponinas/química , Gynostemma/química , Gynostemma/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Simulación del Acoplamiento Molecular , Triterpenos/química , Glucosa , Damaranos
18.
Nutrients ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004115

RESUMEN

This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Leptina , Humanos , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Estudios Cruzados , Gynostemma , Extractos Vegetales/farmacología
19.
J Environ Manage ; 348: 119284, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839203

RESUMEN

Intercropping technology and stabilizing materials are common remediation techniques for soils contaminated with heavy metals. This study investigated the feasibility of the Gynostemma pentaphyllum (G. pentaphyllum)/Helianthus annuus L. (H. annuus) intercropping system on arsenic (As) contaminated farmland through field and pot experiments and the regulation of plant As absorption by the application of mixed stabilizing materials in this intercropping system. Field experiments demonstrated that intercropping with H. annuus increased the As concentration in G. pentaphyllum leaves to 1.79 mg kg-1 but still met the requirements of the national food standard of China (2 mg kg-1) (GB2762-2017). Meanwhile, G. pentaphyllum yield in the intercropping system decreased by 15.09%, but the difference was insignificant (P > 0.05). Additionally, the As bioconcentration (BCA) per H. annuus plant in the intercropping system was significantly higher than that in the monoculture system, increasing by 76.37% (P < 0.05). The pot experiment demonstrated that when granite powder, iron sulfate mineral, and "Weidikang" soil conditioner were applied to the soil collectively, G. pentaphyllum leaf As concentration in the intercropping system could be significantly reduced by 42.17%. Rhizosphere pH is the most crucial factor affecting As absorption by G. pentaphyllum in intercropping systems. When these three stabilizing materials were applied simultaneously, the As bioaccumulation (BCA) per H. annuus plant was significantly higher than that of normal intercropping treatment, which increased by 71.12% (P < 0.05), indicating that the application of these stabilizing materials significantly improved the As removal efficiency of the intercropping system. Dissolved organic carbon (DOC) concentration in the rhizosphere soil is the most pivotal factor affecting As absorption by H. annuus. In summary, the G. pentaphyllum-H. annuus intercropping model is worthy of being promoted in moderately As polluted farmland. The application of granite powder, iron sulfate mineral, and "Weidikang" soil conditioner collectively to the soil can effectively enhance the potential of this intercropping model to achieve "production while repairing" in the As polluted farmland.


Asunto(s)
Arsénico , Helianthus , Contaminantes del Suelo , Arsénico/análisis , Gynostemma , Estudios de Factibilidad , Polvos , Biodegradación Ambiental , Dióxido de Silicio , Suelo , Hierro , Sulfatos , Contaminantes del Suelo/análisis , Cadmio
20.
Molecules ; 28(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37687242

RESUMEN

Ginsenoside Rg3, Rk1, and Rg5, rare ginsenosides from Panax ginseng, have many pharmacological effects, which have attracted extensive attention. They can be obtained through the heat treatment of Gynostemma pentaphyllum. In this study, scanning electron microscopy (SEM) and thermal gravity-differential thermal gravity (TG-DTG) were employed to investigate this process and the content change in ginsenosides was analyzed using liquid chromatography-mass spectrometry (LC-MS). SEM and TG-DTG were used to compare the changes in the ginsenosides before and after treatment. In SEM, the presence of hydrogen bond rearrangement was indicated by the observed deformation of vascular bundles and ducts. The before-and-after changes in the peak patterns and peaks values in TG-DTG indicated that the content of different kinds of compounds produced changes, which all revealed that the formation of new saponins before and after the heat treatment was due to the breakage or rearrangement of chemical bonds. Additionally, the deformation of vascular bundles and vessels indicated the presence of hydrogen bond rearrangement. The glycosidic bond at the 20 positions could be cleaved by ginsenoside Rb3 to form ginsenoside Rd, which, in turn, gave rise to ginsenoside Rg3(S) and Rg3(R). They were further dehydrated to form ginsenoside Rk1 and Rg5. This transformation process occurs in a weak acidic environment provided by G. pentaphyllum itself, without the involvement of endogenous enzymes. In addition, the LC-MS analysis results showed that the content of ginsenoside Rb3 decreased from 2.25 mg/g to 1.80 mg/g, while the contents of ginsenoside Rk1 and Rg5 increased from 0.08 and 0.01 mg/g to 3.36 and 3.35 mg/g, respectively. Ginsenoside Rg3(S) and Rg3(R) were almost not detected in G. pentaphyllum, and the contents of them increased to 0.035 and 0.23 mg/g after heat treatment. Therefore, the rare ginsenosides Rg3(S), Rg3(R), Rk1, and Rg5 can be obtained from G. pentaphyllum via heat treatment.


Asunto(s)
Ginsenósidos , Gynostemma , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...