RESUMEN
The mechanisms involved with the pathogenesis of carcinoma ex pleomorphic adenoma (CXPA) seem to be associated with the accumulation of molecular alterations in the pleomorphic adenoma (PA). In this sense, using array-based comparative genomic hybridization (aCGH) a rare series of 27 cases of CXPA and 14 residual PA (rPA) adjacent to the transformation area, we investigated the profile of the copy number alterations (CNAs) comparing benign residual and transformed areas. The main findings were correlated with the histopathological classification by histologic subtype and degree of invasion. The distribution of losses (p = 0.187) and amplifications (p = 0.172) was not statistically different between rPA and CXPA. The number of gains was increased in the transformed areas compared to the benign residual areas (p = 0.005). PLAG1 gain was maintained along the malignant transformation, as it was observed in both residual PA and CXPA samples, likely being an earlier event during transformation. The amplification of GRB7 and ERBB2 may also be an initial step in the malignant transformation of PA to CXPA (salivary duct carcinoma subtype). Furthermore, the amplification of HMGA2 and RPSAP52 were the most prevalent alterations among the studied samples. It was noteworthy that amplified genes in the transformed areas of the tumors were enriched for biological processes related to immune signaling. In conclusion, our results underscored for the first-time crucial CNAs in CXPA, some of them shared with the residual benign area adjacent to the transformation site. These CNAs included PLAG1 gain, as well as amplification of GRB7, ERBB2, HMGA2, and RPSAP52.
Asunto(s)
Adenoma Pleomórfico , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Humanos , Adenoma Pleomórfico/genética , Adenoma Pleomórfico/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Transformación Celular Neoplásica/genética , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Adulto , Proteína HMGA2/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas de Unión al ADN/genéticaRESUMEN
BACKGROUND: Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS: HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by ß-aminopropionitrile. RESULTS: HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION: HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.
Asunto(s)
Disección Aórtica , Apoptosis , Proliferación Celular , MicroARNs , ARN Largo no Codificante , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Disección Aórtica/genética , Disección Aórtica/metabolismo , Humanos , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Masculino , Ratas , Músculo Liso Vascular/metabolismo , Regulación hacia Abajo , Ratas Sprague-Dawley , Regulación hacia Arriba , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Modelos Animales de EnfermedadRESUMEN
Purpose: Ciliary epithelium (CE) of adult mammalian eyes contains quiescent retinal progenitor/stem cells that generate neurospheres in vitro and differentiate into retinal neurons. This ability doesn't evolve efficiently probably because of regulatory mechanisms, such as microRNAs (miRNAs) that control pluripotent, progenitor, and differentiation genes. Here we investigate the presence of Let-7 miRNAs and its regulator and target, Lin28 and Hmga2, in CE cells from neurospheres, newborns, and adult tissues. Methods: Newborn and adult rats CE cells were dissected into pigmented and nonpigmented epithelium (PE and NPE). Newborn PE cells were cultured with growth factors to form neurospheres and we analyzed Let-7, Lin28a, and Hmga2 expression. During the neurospheres formation, we added chemically modified single-stranded oligonucleotides designed to bind and inhibit or mimic endogenous mature Let-7b and Let-7c. After seven days in culture, we analyzed neurospheres size, number and expression of Let-7, Lin28, and Hmga2. Results: Let-7 miRNAs were expressed at low rates in newborn CE cells with significant increase in adult tissues, with higher levels on NPE cells, that does not present the stem cells reprogramming ability. The Lin28a and Hmga2 protein and transcripts were more expressed in newborns than adults cells, opposed to Let-7. Neurospheres presented higher Lin28 and Hmga2 expression than newborn and adult, but similar Let-7 than newborns. Let-7b inhibitor upregulated Hmga2 expression, whereas Let-7c mimics upregulated Lin28 and downregulated Hmga2. Conclusions: This study shows the dynamic of Lin28-Let-7-Hmga regulatory axis in CE cells. These components may develop different roles during neurospheres formation and postnatal CE cells.
Asunto(s)
Cuerpo Ciliar/metabolismo , Proteína HMGA2/genética , MicroARNs/genética , Epitelio Pigmentado Ocular/metabolismo , Proteínas de Unión al ARN/genética , Retina/metabolismo , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Técnica del Anticuerpo Fluorescente Indirecta , Regulación de la Expresión Génica/fisiología , ARN Mensajero/genética , Ratas , Ratas WistarRESUMEN
Endometrioid endometrial carcinomas (EEC) are the most common malignant gynecologic tumors. Despite the increase in EEC molecular knowledge, the identification of new biomarkers involved in disease's development and/or progression would represent an improvement in its course. High-mobility group A protein (HMGA) family members are frequently overexpressed in a wide range of malignancies, correlating with a poor prognosis. Thus, the aim of this study was to analyze HMGA1 and HMGA2 expression pattern and their potential role as EEC biomarkers. HMGA1 and HMGA2 expression was initially evaluated in a series of 46 EEC tumors (stages IA to IV), and the findings were then validated in The Cancer Genome Atlas (TCGA) EEC cohort, comprising 381 EEC tumors (stages IA to IV). Our results reveal that HMGA1 and HMGA2 mRNA and protein are overexpressed in ECC, but only HMGA1 expression is associated with increased histological grade and tumor size. Moreover, HMGA1 but not HMGA2 overexpression was identified as a negative prognostic factor to EEC patients. Finally, a positive correlation between expression of HMGA1 pseudogenes-HMGA1-P6 and HMGA1-P7-and HMGA1 itself was detected, suggesting HMGA1 pseudogenes may play a role in HMGA1 expression regulation in EEC. Thus, these results indicate that HMGA1 overexpression possesses a potential role as a prognostic biomarker for EEC.
Asunto(s)
Carcinoma Endometrioide/genética , Neoplasias Endometriales/genética , Proteína HMGA1a/genética , Proteína HMGA2/genética , Adulto , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma Endometrioide/metabolismo , Neoplasias Endometriales/metabolismo , Femenino , Proteína HMGA1a/biosíntesis , Proteína HMGA2/biosíntesis , Humanos , Persona de Mediana Edad , Pronóstico , TranscriptomaRESUMEN
Defining biomarkers for invasive pituitary neuroendocrine tumors (PitNETs) is highly desirable. The high mobility group A (HMGA) proteins are among the most widely expressed cancer-associated proteins. Indeed, their overexpression is a frequent feature of human malignancies, including PitNETs. We show that nonfunctioning PitNETs (NF-PitNETs) express significantly higher levels of HMGA1 than somatotropinomas (GHs) and corticotropinomas (ACTHs). Furthermore, HMGA2 expression was detected only in NF-PitNETs and was significantly higher in larger tumors than in smaller tumors. HMGA expression analysis generally focuses on nuclear staining. Here, cytoplasmic HMGA staining was also found. PitNETs displayed strong nuclear HMGA1 and strong cytoplasmic HMGA2 immunoreactivity. Interestingly, the HMGA1 and HMGA2 nuclear expression levels were significantly higher in invasive adenomas than in noninvasive adenomas. The highest levels of nuclear HMGA2 were found in GHs. In conclusion, we show that overexpression of nuclear HMGA proteins could be a potential biomarker of invasive PitNETs, particularly HMGA2 for GHs. HMGA2 might be a reliable biomarker for NF-PitNETs.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína HMGA1a/genética , Proteína HMGA2/genética , Tumores Neuroendocrinos/genética , Neoplasias Hipofisarias/genética , Adolescente , Adulto , Anciano , Núcleo Celular/metabolismo , Femenino , Proteína HMGA1a/metabolismo , Proteína HMGA2/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Accumulating studies have demonstrated that high-mobility group A2 (HMGA2), an oncofetal protein, plays a role in tumor development and progression. However, the molecular role of HMGA2 in ovarian carcinoma is yet to be established. MicroRNAs (miRNAs), a group of small noncoding RNAs, negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. The aim of this study was to investigate the potential involvement of a specific miRNA, miR-219-5p, in HMGA2-induced ovarian cancer. METHODS: The ovarian cancer cell line, SKOV3, was employed, and miR-219-5p and HMGA2 overexpression vectors constructed. The CCK-8 kit was used to determine cell proliferation and the Transwell® assay used to measure cell invasion and migration. RT-PCR and western blot analyses were applied to analyze the expression of miR-219-5p and HMGA2, and the luciferase reporter assay used to examine the interactions between miR-219-5p and HMGA2. Nude mice were employed to characterize in vivo tumor growth regulation. RESULTS: Expression of miR-219-5p led to suppression of proliferation, invasion and migration of the ovarian cancer cell line, SKOV3, by targeting HMGA2. The inhibitory effects of miR-219-5p were reversed upon overexpression of HMGA2. Data from the luciferase reporter assay showed that miR-219-5p downregulates HMGA2 via direct integration with its 3'-UTR. Consistent with in vitro findings, expression of miR-219-5p led to significant inhibition of tumor growth in vivo. CONCLUSION: Our results collectively suggest that miR-219-5p inhibits tumor growth and metastasis by targeting HMGA2.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Proteína HMGA2/metabolismo , MicroARNs/fisiología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Proteína HMGA2/genética , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Ováricas/genéticaRESUMEN
STUDY QUESTION: Can the mediator complex subunit 12 (MED12) mutation and high mobility group AT-hook 2 (HMGA2) overexpression co-occurrence be explained by the alternative mechanism of HMGA2 dysregulation in uterine leiomyomas (UL)? SUMMARY ANSWER: The co-occurrence of MED12 mutation and HMGA2 overexpression, and a negative correlation of five validated or predicted microRNAs that target HMGA2 were reported. WHAT IS KNOWN ALREADY: The recent stratification of UL, according to recurrent and mutually exclusive genomic alterations affecting HMGA2, MED12, fumarate hydratase (FH) and collagen type IV alpha 5-alpha 6 (COL4A5-COL4A6) pointed out the involvement of distinct molecular pathways. However, the mechanisms of regulation involving these drivers are poorly explored. STUDY DESIGN, SIZE, DURATION: A total of 78 UL and 34 adjacent normal myometrium (NM) tissues was collected from 56 patients who underwent hysterectomies at a single institution. The patients were treated at the Department of Gynecology and Obstetrics, School of Medicine, Sao Paulo State University, Botucatu, SP, Brazil, from October 1995 to February 2004. PARTICIPANTS/MATERIALS, SETTING, METHODS: Gene expression profiling was evaluated from fresh frozen tissues and compared with MED12 mutations at exon 2. In addition, RT-qPCR was applied to evaluate the expression levels of HMGA2 and their predictive miRNA regulators: hsa-let-7a, miR-26a, miR-26b, mir-93 and mir-106b. MAIN RESULTS AND THE ROLE OF CHANCE: An unsupervised hierarchical clustering analysis revealed two main clusters with one of them (26 of 42 UL) showing an enrichment of MED12 mutated cases (18 of 26 UL). Increased expression levels of HMGA2 were observed in both clusters, including cases with MED12 mutation (cluster 1:18 UL). A significant HMGA2 overexpression (P < 0.001) in UL in comparison with NM was found. Five miRNAs predicted to regulate HMGA2 were significantly downregulated (P < 0.001) and negatively correlated to HMGA2 expression levels (P < 0.05) in UL. LIMITATIONS REASONS FOR CAUTION: An in vivo functional study was not performed to validate the microRNAs and HMGA2 interaction due to technical limitations. WIDER IMPLICATIONS OF THE FINDINGS: HMGA2 overexpression was detected in a significant number of MED12 mutated ULs, suggesting that these alterations coexist. Furthermore, five miRNAs were described as potential regulators of HMGA2 expression in UL. LARGE-SCALE DATA: Data available in the Gene Expression Omnibus GSE42939. STUDY FUNDING AND COMPETING INTEREST(S): This study was supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (# 2008/58835-2) and Conselho Nacional de Pesquisa (# 485032/2007-4), Brazil. The authors declared having no conflicts of interest.
Asunto(s)
Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Leiomioma/metabolismo , MicroARNs/metabolismo , Neoplasias Uterinas/metabolismo , Adulto , Exones/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Leiomioma/genética , MicroARNs/genética , Persona de Mediana Edad , Mutación , Neoplasias Uterinas/genéticaRESUMEN
We hypothesized that there is a relationship between the preexisting pleomorphic adenoma [PA]), histologic grade of epithelial-myoepithelial carcinomas (EMCAs), and genetic alterations. EMCAs (n=39) were analyzed for morphologic and molecular evidence of preexisting PA (PLAG1, HMGA2 status by fluorescence in situ hybridization, FISH, and FGFR1-PLAG1 fusion by next-generation sequencing, NGS). Twenty-three EMCAs were further analyzed by NGS for mutations and copy number variation in 50 cancer-related genes. On the basis of combined morphologic and molecular evidence of PA, the following subsets of EMCA emerged: (a) EMCAs with morphologic evidence of preexisting PA, but intact PLAG1 and HMGA2 (12/39, 31%), (b) Carcinomas with PLAG1 alterations (9/39, 23%), or (c) HMGA2 alterations (10/39, 26%), and (d) de novo carcinomas, without morphologic or molecular evidence of PA (8/39, 21%). Twelve high-grade EMCAs (12/39, 31%) occurred across all subsets. The median disease-free survival was 80 months (95% confidence interval, 77-84 mo). Disease-free survival and other clinicopathologic parameters did not differ by the above defined subsets. HRAS mutations were more common in EMCAs with intact PLAG1 and HMGA2 (7/9 vs. 1/14, P<0.001). Other genetic abnormalities (TP53 [n=2], FBXW7 [n=1], SMARCB1 deletion [n=1]) were seen only in high-grade EMCAs with intact PLAG1 and HMGA2. We conclude that most EMCAs arose ex PA (31/39, 80%) and the genetic profile of EMCA varies with the absence or presence of preexisting PA and its cytogenetic signature. Progression to higher grade EMCA with intact PLAG1 and HMGA2 correlates with the presence of TP53, FBXW7 mutations, or SMARCB1 deletion.
Asunto(s)
Adenoma Pleomórfico/patología , Biomarcadores de Tumor/genética , Mutación , Mioepitelioma/patología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias de las Glándulas Salivales/patología , Adenoma Pleomórfico/diagnóstico , Adenoma Pleomórfico/genética , Adenoma Pleomórfico/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al ADN/genética , Supervivencia sin Enfermedad , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Femenino , Estudios de Seguimiento , Proteína HMGA2/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mioepitelioma/diagnóstico , Mioepitelioma/genética , Mioepitelioma/cirugía , Clasificación del Tumor , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/cirugía , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína SMARCB1/genética , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/cirugía , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/genéticaRESUMEN
AIMS: Malignant tumours from the upper aerodigestive tract are grouped collectively in the class of head and neck squamous cell carcinoma (HNSCC). The head and neck tumours were responsible for more than 500 000 cancer cases in 2012, accounting for the sixth highest incidence rate and mortality worldwide among all tumour types. Laryngeal squamous cell carcinoma (LSCC) possesses the second highest incidence rate among all HNSCC. Despite significant advances in surgery and radiotherapy during the last few decades, no treatment has been shown to achieve a satisfactory therapeutic outcome and the mortality rate of LSCC is still high, with a 5-year survival rate of 64%. Therefore, further investigations are required to identify the pathogenesis of LSCC. METHODS AND RESULTS: In order to search for new LSCC biomarkers, we have analysed the expression of the HMGA family members, HMGA1 and HMGA2, by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. HMGA proteins are usually absent in the healthy adult tissues. In contrast, their constitutive expression is a feature of several neoplasias, being associated with a highly malignant phenotype and reduced survival. Here, we report HMGA2 overexpression in larynx carcinomas. Conversely, HMGA1 does not show any differences in its expression between normal and carcinoma tissues. Interestingly, HMGA2 overexpression appears associated with that of two HMGA1-pseudogenes, HMGA1P6 and HMGA1P7, acting as a sponge for HMGA1- and HMGA2-targeting microRNAs and involved in several human cancers. CONCLUSIONS: Therefore, HMGA2 overexpression appears to be a strong feature of larynx carcinoma, supporting its detection as a valid tool for the diagnosis of these malignancies.
Asunto(s)
Carcinoma/genética , Regulación Neoplásica de la Expresión Génica , Proteína HMGA1a/genética , Proteína HMGA2/genética , Neoplasias Laríngeas/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma/metabolismo , Carcinoma/patología , Femenino , Proteína HMGA1a/metabolismo , Proteína HMGA2/metabolismo , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Laringe/metabolismo , Laringe/patología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana EdadRESUMEN
BACKGROUND: Accumulating studies have demonstrated that high-mobility group A2 (HMGA2), an oncofetal protein, plays a role in tumor development and progression. However, the molecular role of HMGA2 in ovarian carcinoma is yet to be established. MicroRNAs (miRNAs), a group of small noncoding RNAs, negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. The aim of this study was to investigate the potential involvement of a specific miRNA, miR-219-5p, in HMGA2-induced ovarian cancer. METHODS: The ovarian cancer cell line, SKOV3, was employed, and miR-219-5p and HMGA2 overexpression vectors constructed. The CCK-8 kit was used to determine cell proliferation and the Transwell® assay used to measure cell invasion and migration. RT-PCR and western blot analyses were applied to analyze the expression of miR-219-5p and HMGA2, and the luciferase reporter assay used to examine the interactions between miR-219-5p and HMGA2. Nude mice were employed to characterize in vivo tumor growth regulation. RESULTS: Expression of miR-219-5p led to suppression of proliferation, invasion and migration of the ovarian cancer cell line, SKOV3, by targeting HMGA2. The inhibitory effects of miR-219-5p were reversed upon overexpression of HMGA2. Data from the luciferase reporter assay showed that miR-219-5p downregulates HMGA2 via direct integration with its 3'-UTR. Consistent with in vitro findings, expression of miR-219-5p led to significant inhibition of tumor growth in vivo. CONCLUSION: Our results collectively suggest that miR-219-5p inhibits tumor growth and metastasis by targeting HMGA2.
Asunto(s)
Humanos , Animales , Femenino , Ratones , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Regulación Neoplásica de la Expresión Génica/genética , Proteína HMGA2/metabolismo , MicroARNs/fisiología , Neoplasias Ováricas/genética , Movimiento Celular/genética , Proteína HMGA2/genética , Línea Celular Tumoral , Proliferación Celular/genética , Invasividad Neoplásica , Metástasis de la NeoplasiaRESUMEN
Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin's finches on Daphne Major in the Galápagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin's finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin's finches.
Asunto(s)
Pico/anatomía & histología , Sequías , Pinzones/anatomía & histología , Pinzones/genética , Sitios de Carácter Cuantitativo , Selección Genética , Animales , Tamaño Corporal/genética , Ecuador , Femenino , Pinzones/clasificación , Genómica , Genotipo , Proteína HMGA2/genética , Haplotipos , Tamaño de los Órganos/genética , FilogeniaRESUMEN
Esophageal Squamous Cell Carcinoma (ESCC) is the most common esophageal tumor worldwide. However, there is still a lack of deeper knowledge about biological alterations involved in ESCC development. High Mobility Group A (HMGA) protein family has been related with poor outcome and malignant cell transformation in several tumor types. In this way, the aim of this study was to analyze the expression of HMGA1 and HMGA2 expression in ESCC and their role in crucial cellular features. We evaluated HMGA1 and HMGA2 mRNA expression in 52 paired ESCC and normal surrounding tissue samples by qRT-PCR. Here, we show that HMGA2, but not HMGA1, is overexpressed in ESCC samples. This result was further confirmed by the immunohistochemical analysis. Indeed, accordingly to mRNA expression data, HMGA2, but not HMGA1, was overexpressed in approximately 90% of ESCC samples, while it was barely expressed in the respective control. Conversely, HMGA1, but not HMGA2, was overexpressed in esophageal adenocarcinoma samples. Interestingly, HMGA2 abrogation attenuated the malignant phenotype of two ESCC cell lines, suggesting that HMGA2 overexpression is involved in ESCC progression.
Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Proteína HMGA2/metabolismo , Adulto , Anciano , Área Bajo la Curva , Biomarcadores de Tumor/análisis , Progresión de la Enfermedad , Carcinoma de Células Escamosas de Esófago , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROCRESUMEN
CONTEXT: Thyroid nodules are common in adult population and papillary thyroid carcinoma (PTC) is the most frequent malignant finding. The natural history of PTC remains poorly understood and current diagnostic methods limitations are responsible for a significant number of potentially avoidable surgeries. OBJECTIVE: This study aimed to identify molecular markers to improve the diagnosis of thyroid lesions. DESIGN: Gene expression profiling was performed using microarray in 61 PTC and 13 surrounding normal tissues (NT). A reliable gene list was established using cross-study validation (138 matched PTC/NT from external databases). Results were collectively interpreted by in silico analysis. A panel of 28 transcripts was evaluated by RT-qPCR, including benign thyroid lesions (BTL) and other follicular cell-derived thyroid carcinomas (OFDTC). A diagnostic algorithm was developed (training set: 23 NT, 8 BTL, and 86 PTC), validated (independent set: 10 NT, 140 BTL, 120 PTC, and 12 OFDTC) and associated with clinical features. RESULTS: GABRB2 was ranked as the most frequently up-regulated gene in PTC (cross-study validation). Altered genes in PTC suggested a loss of T4 responsiveness and dysregulation of retinoic acid metabolism, highlighting the putative activation of EZH2 and histone deacetylases (predicted in silico). An algorithm combining CLDN10, HMGA2, and LAMB3 transcripts was able to discriminate tumors from BTL samples (94% sensitivity and 96% specificity in validation set). High algorithm scores were associated with regional lymph node metastases. CONCLUSIONS: A promising tool with high performance for PTC diagnosis based on three transcripts was designed with the potential to predict lymph node metastasis risk.