Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Sci Rep ; 14(1): 10386, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710740

The high mobility group nucleosome binding (HMGN) family, constitutes a large family of non-histone protein family known to bind the acidic patch of the nucleosomes with various key cellular functions. Several studies have highlighted the pivotal roles of HMGNs in the pathogenic process of various cancer types. However, the roles of HMGN family in lung adenocarcinoma (LUAD) have not been fully elucidated. Herein, integrative analyses of multiple-omics data revealed that HMGNs frequently exhibit dysregulation in LUAD. Subsequent analysis of the clinical relevance of HMGN1 demonstrated its association with poor prognosis in LUAD and its potential as a diagnostic marker to differentiate LUAD from healthy controls. Additionally, functional enrichment analysis suggested that HMGN1 was mainly involved in DNA repair. To corroborate these findings, cellular experiments were conducted, confirming HMGN1's crucial involvement in homologous recombination repair and its potential to enhance the sensitivity of LUAD cells to standard chemotherapeutic drugs. This study proposes HMGN1 as a novel prognostic biomarker and a promising target for chemotherapy in lung adenocarcinoma.


Adenocarcinoma of Lung , HMGN1 Protein , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , HMGN1 Protein/metabolism , HMGN1 Protein/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Repair
2.
J Endocrinol Invest ; 47(4): 1015-1027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38409569

BACKGROUND: Renal tubular injury, accompanied by damaging inflammation, has been identified to drive diabetic kidney disease (DKD) toward end-stage renal disease. However, it is unclear how damage-associated molecular patterns (DAMPs) activate innate immunity to mediate tubular epithelial cell (TEC) injury, which in turn causes with subsequent sterile inflammation in diabetic kidneys. High mobility group nucleosome-binding protein 1 (HMGN1) is a novel DAMP that contributes to generating the innate immune response. In this study, we focused on determining whether HMGN1 is involved in DKD progression. METHODS: Streptozotocin (STZ)-induced diabetic mice model was established. Then we downrergulated HMGN1 expression in kidney with or without HMGN1 administration. The renal dysfunction and morphological lesions in the kidneys were evaluated. The expressions of KIM-1, MCP-1, F4/80, CD68, and HMGN1/TLR4 signaling were examined in the renal tissue. In vitro, HK2 cells were exposed in the high glucose with or without HMGN1, and further pre-incubated with TAK242 was applied to elucidate the underlying mechanism. RESULTS: We demonstrated that HMGN1 was upregulated in the tubular epithelial cells of streptozotocin (STZ)-induced type 1 and type 2 diabetic mouse kidneys compared to controls, while being positively correlated with increased TLR4, KIM-1, and MCP-1. Down-regulation of renal HMGN1 attenuated diabetic kidney injury, decreased the TLR4, KIM-1, and MCP-1 expression levels, and reduced interstitial infiltrating macrophages. However, these phenotypes were reversed after administration of HMGN1. In HK-2 cells, HMGN1 promoted the expression of KIM-1 and MCP-1 via regulating MyD88/NF-κB pathway; inhibition of TLR4 effectively diminished the in vitro response to HMGN1. CONCLUSIONS: Our study provides novel insight into HMGN1 signaling mechanisms that contribute to tubular sterile injury and low-grade inflammation in DKD. The study findings may help to develop new HMGN1-targeted approaches as therapy for immune-mediated kidney damage rather than as an anti-infection treatments.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , HMGN1 Protein , Mice , Animals , Diabetic Nephropathies/metabolism , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Toll-Like Receptor 4/metabolism , Diabetes Mellitus, Experimental/pathology , Down-Regulation , Streptozocin/metabolism , Kidney/metabolism , Inflammation/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology
3.
Antiviral Res ; 221: 105796, 2024 01.
Article En | MEDLINE | ID: mdl-38181856

BACKGROUND AND AIMS: Direct elimination of cccDNA remains a formidable obstacle due to the persistent and stable presence of cccDNA in hepatocyte nuclei. The silencing of cccDNA transcription enduringly is one of alternative strategies in the treatment of hepatitis B. Protein binding to cccDNA plays an important role in its transcriptional regulation; thus, the identification of key factors involved in this process is of great importance. APPROACHES AND RESULTS: In the present study, high mobility group nucleosome binding domain 1 (HMGN1) was screened out based on our biotin-avidin enrichment system. First, chromatin immunoprecipitation and fluorescent in situ hybridization assays confirmed the binding of HMGN1 with cccDNA in the nucleus. Second, functional experiments in HBV-infected cells showed that the promoting effect of HMGN1 on HBV transcription and replication depended on the functional region of the nucleosomal binding domain, while transfection of the HMGN1 mutant showed no influence on HBV compared with the vector. Third, further mechanistic exploration revealed that the silencing of HMGN1 increased the level of phosphorylase CLK2 and promoted H3 phosphorylation causing the reduced accessibility of cccDNA. Moreover, silenced HMGN1 was mimicked in HBV (r) cccDNA mouse model of HBV infection in vivo. The results showed that silencing HMGN1 inhibited HBV replication in vivo. CONCLUSIONS: In summary, our study identified that a host protein can bind to cccDNA and promote its transcription, providing a candidate strategy for anti-HBV targeting to interfere with the transcriptional activity of cccDNA microchromosomes.


HMGN1 Protein , Hepatitis B , Animals , Mice , Histones/metabolism , Hepatitis B virus/physiology , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Chromatin , Carrier Proteins/genetics , Phosphorylation , In Situ Hybridization, Fluorescence , Virus Replication/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription Factors/genetics , Hepatitis B/metabolism , DNA, Viral/genetics
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 135-141, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38284254

Objective To explore the effects and mechanism of high-mobility group nucleosome-binding protein 1 (HMGN1) on the inflammatory response of mouse BV2 microglia. Methods BV2 cells were incubated with recombinant HMGN1 at different concentrations (0, 100, 200, 500, 1000, 2000 ng/mL) for 6 hours, and the morphological changes were observed under a microscope. The mRNA levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and monocyte chemotactic protein 1 (MCP-1) were detected by real time quantitative PCR. Microglial cells were then randomly divided into a control group, model group, inhibitor group and antagonist group. The cells in the model group were treated with 500 ng/mL HMGN1, while the antagonist group was treated with 500 ng/mL TAK-242 (resatorvid), a Toll-like receptor 4 (TLR4) antagonist, in addition to HMGN1. Real time quantitative PCR and immunofluorescence were used to detect the expression of M1/M2 markers in the four groups, and Western blot analysis was used to measure the protein expression levels of inducible nitric-oxide synthase (iNOS), TLR4, myeloid differentiation factor88 (MyD88), nuclear factor κB p65 (NF-κB p65) and inhibitor of NF-κB(IκB)kinase ß(IKK-ß). Results After the treatment of HMGN1, the morphology of BV2 cells changed significantly, showing an amoeba-like appearance. The mRNA levels of TNF-α, IL-6, IL-1ß and MCP-1 increased with the HMGN1 concentration, with a statistically significant difference compared to the 0 ng/mL HMGN1 group. At the same time, the mRNA level of iNOS, a M1 phenotype marker, increased with the HMGN1 concentration, while the level of CD206, a M2 phenotype marker, decreased with HMGN1 concentration, showing a statistically significant difference compared to the 0 ng/mL HMGN1 group. Compared with the model group, the mRNA level of M1 phenotypic marker iNOS in the antagonist group was significantly lower, and the level of M2 phenotypic marker CD206 was significantly higher. The results of immunofluorescence cytochemistry also showed that the expression of M1 phenotypic marker iNOS in the antagonist group was lower. The results of Western blot suggested that the protein expression levels of iNOS, TLR4, MyD88, NF-κB p65 and IKK-ß decreased significantly in the antagonist group. Conclusion HMGN1 may induce the activation of BV2 microglial cells by upregulating pro-inflammatory mediators through activating the TLR4/MyD88/NF-κB p65/IKK-ß signaling pathway.


HMGN1 Protein , NF-kappa B , Animals , Mice , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Microglia , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Nucleosomes/metabolism , RNA, Messenger/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
J Dent Res ; 103(1): 51-61, 2024 01.
Article En | MEDLINE | ID: mdl-37950483

Dental enamel formation is coordinated by ameloblast differentiation, production of enamel matrix proteins, and crystal growth. The factors regulating ameloblast differentiation are not fully understood. Here we show that the high mobility group N (HMGN) nucleosomal binding proteins modulate the rate of ameloblast differentiation and enamel formation. We found that HMGN1 and HMGN2 proteins are downregulated during mouse ameloblast differentiation. Genetically altered mice lacking HMGN1 and HMGN2 proteins show faster ameloblast differentiation and a higher rate of enamel deposition in mice molars and incisors. In vitro differentiation of induced pluripotent stem cells to dental epithelium cells showed that HMGN proteins modulate the expression and chromatin accessibility of ameloblast-specific genes and affect the binding of transcription factors epiprofin and PITX2 to ameloblast-specific genes. Our results suggest that HMGN proteins regulate ameloblast differentiation and enamel mineralization by modulating lineage-specific chromatin accessibility and transcription factor binding to ameloblast regulatory sites.


Dental Enamel Proteins , HMGN1 Protein , HMGN2 Protein , Animals , Mice , Ameloblasts/metabolism , HMGN2 Protein/genetics , HMGN2 Protein/metabolism , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Epigenesis, Genetic , Cell Differentiation/genetics , HMGN Proteins/genetics , HMGN Proteins/metabolism , Transcription Factors/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Chromatin/metabolism , Amelogenin/metabolism
6.
Dis Model Mech ; 16(4)2023 04 01.
Article En | MEDLINE | ID: mdl-36995257

Trisomy 21 and mutations in the Sonic hedgehog (SHH) signaling pathway cause overlapping and pleiotropic phenotypes including cerebellar hypoplasia, craniofacial abnormalities, congenital heart defects and Hirschsprung disease. Trisomic cells derived from individuals with Down syndrome possess deficits in SHH signaling, suggesting that overexpression of human chromosome 21 genes may contribute to SHH-associated phenotypes by disrupting normal SHH signaling during development. However, chromosome 21 does not encode any known components of the canonical SHH pathway. Here, we sought to identify chromosome 21 genes that modulate SHH signaling by overexpressing 163 chromosome 21 cDNAs in a series of SHH-responsive mouse cell lines. We confirmed overexpression of trisomic candidate genes using RNA sequencing in the cerebella of Ts65Dn and TcMAC21 mice, model systems for Down syndrome. Our findings indicate that some human chromosome 21 genes, including DYRK1A, upregulate SHH signaling, whereas others, such as HMGN1, inhibit SHH signaling. Individual overexpression of four genes (B3GALT5, ETS2, HMGN1 and MIS18A) inhibits the SHH-dependent proliferation of primary granule cell precursors. Our study prioritizes dosage-sensitive chromosome 21 genes for future mechanistic studies. Identification of the genes that modulate SHH signaling may suggest new therapeutic avenues for ameliorating Down syndrome phenotypes.


Down Syndrome , HMGN1 Protein , Mice , Humans , Animals , Down Syndrome/genetics , Hedgehog Proteins/metabolism , Chromosomes, Human, Pair 21/genetics , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Signal Transduction
7.
PeerJ ; 11: e14765, 2023.
Article En | MEDLINE | ID: mdl-36691481

Purpose: Acteoside (Act), a phenylethanoid compound that was first isolated from mullein, has been widely used for the investigation of anti-inflammatory and anti-fibrotic effect. However, the mechanism of Act against unilateral ureteral obstruction (UUO)-mediated renal injury is largely unknown. Therefore, this study aimed to explore the effects of Act on UUO rats and possible mechanisms. Methods: A total of 20 Sprague-Dawley (SD) rats were divided randomly into three groups (n ≥ 6): (i) sham-operated group (Sham); (ii) UUO group (UUO+Saline); and (iii) UUO + Act 40 mg/kg/day, (UUO+Act); Continuous gavage administration for 2 weeks postoperatively, while the rats in Sham and UUO+saline groups were given equal amounts of saline. All rats were sacrificed after 14 days, the urine and blood samples were collected for biochemical analysis, the renal tissues were collected for pathological staining and immunohistochemistry. Correlations between individual proteins were analyzed by Pearson correlation analysis. Results: The results of renal function indexes and histopathological staining showed that Act could improve renal function by reducing serum creatinine, blood urea nitrogen and urine protein at the same time, Act could alleviate renal inflammation and fibrosis. In addition, the results of immunohistochemistry showed that Act could reduce the expression of inflammation and kidney injury-related proteins F4/80, Mcp-1, KIM-1 proteins, as well as the expression of fibrosis-related protein α-SMA and ß-catenin. More importantly, Act can also reduce the expression of HMGN1, TLR4 and TREM-1 proteins. Conclusion: These data demonstrate that Act can ameliorate UUO-induced renal inflammation and fibrosis in rats probably through triggering HMGN1/TLR4/TREM-1 pathway.


HMGN1 Protein , Kidney Diseases , Ureteral Obstruction , Animals , Rats , Fibrosis , HMGN1 Protein/metabolism , Inflammation , Kidney Diseases/metabolism , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Transcription Factors/pharmacology , Triggering Receptor Expressed on Myeloid Cells-1 , Ureteral Obstruction/metabolism
8.
Int Immunopharmacol ; 101(Pt A): 108345, 2021 Dec.
Article En | MEDLINE | ID: mdl-34794079

Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) promote tumor immune evasion and thus targeting of Tregs has become an strategy in cancer immunotherapy. Tumor necrosis factor receptor 2 (TNFR2) is highly expressed and important for the immunosuppressive function of Tregs in humans and mice. Thus, the benefit of targeting TNFR2 in cancer immunotherapy merits more investigation. A previous report identified a new murine monoclonal anti-TNFR2 antibody (designated TY101), which showed therapeutic efficacy in murine cancer models, but its mechanism of action was less understood. In this study, the capacity of a combination of immunostimulants to enhance the effect of this inhibitor of Tregs was investigated. We examined the efficacy of TY101 as an anti-tumor immune reagent combined with HMGN1 (N1, a dendritic cell activating TLR4 agonist) and R848 (a synthetic TLR7/8 agonist). This immunotherapeutic combination exerted synergistic antitumor effects as compared with any single treatment. The antitumor response was mainly mediated by the depletion of Tregs and stimulation of cytotoxic CD8 T cell activation. The result also suggested that the effect of TY101 was similar to that of anti-PD-L1 when used in combination with these immunostimulants. Therefore, we propose that treatment strategies of antagonizing TNFR2 on Tregs would behave as potent checkpoint inhibitors and can potentially be utilized to develop a novel antitumor immunotherapy.


Adjuvants, Immunologic/therapeutic use , Antibodies/immunology , Colonic Neoplasms/therapy , HMGN1 Protein/metabolism , Imidazoles/therapeutic use , Immunosuppression Therapy/methods , Receptors, Tumor Necrosis Factor, Type II/immunology , Animals , Colonic Neoplasms/immunology , Female , Flow Cytometry , HMGN1 Protein/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Transplantation , T-Lymphocytes, Regulatory/immunology
9.
Nat Commun ; 11(1): 1790, 2020 04 14.
Article En | MEDLINE | ID: mdl-32286296

Treating large established tumors is challenging for dendritic cell (DC)-based immunotherapy. DC activation with tumor cell-derived exosomes (TEXs) carrying multiple tumor-associated antigen can enhance tumor recognition. Adding a potent adjuvant, high mobility group nucleosome-binding protein 1 (HMGN1), boosts DCs' ability to activate T cells and improves vaccine efficiency. Here, we demonstrate that TEXs painted with the functional domain of HMGN1 (TEX-N1ND) via an exosomal anchor peptide potentiates DC immunogenicity. TEX-N1ND pulsed DCs (DCTEX-N1ND) elicit long-lasting antitumor immunity and tumor suppression in different syngeneic mouse models with large tumor burdens, most notably large, poorly immunogenic orthotopic hepatocellular carcinoma (HCC). DCTEX-N1ND show increased homing to lymphoid tissues and contribute to augmented memory T cells. Importantly, N1ND-painted serum exosomes from cancer patients also promote DC activation. Our study demonstrates the potency of TEX-N1ND to strengthen DC immunogenicity and to suppress large established tumors, and thus provides an avenue to improve DC-based immunotherapy.


Alarmins/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Exosomes/metabolism , HMGN1 Protein/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Animals , Carcinoma, Hepatocellular/therapy , Cell Line , HMGN1 Protein/genetics , HeLa Cells , Humans , Immunohistochemistry , Immunotherapy , Liver Neoplasms/therapy , Mice , Mice, Inbred C57BL , Mice, Nude , T-Lymphocytes/metabolism
10.
Nat Commun ; 11(1): 1406, 2020 03 16.
Article En | MEDLINE | ID: mdl-32179749

Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes. In vivo, HMGN1 overexpression is linked to decreased quiescence and increased HSC activity in bone marrow transplantation. HMGN1 overexpression also cooperates with the AML-ETO9a fusion oncoprotein to impair myeloid differentiation and enhance leukemia stem cell (LSC) activity. Inhibition of histone acetyltransferases CBP/p300 relieves the HMGN1-associated differentiation block. These data nominate factors that modulate chromatin accessibility as regulators of HSCs and LSCs, and suggest that targeting HMGN1 or its downstream effects on histone acetylation could be therapeutically active in AML.


Chromatin/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Acetylation , Animals , Cell Differentiation , Cell Survival , Female , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Hematopoietic Stem Cells/cytology , Histones/genetics , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
11.
Sci Rep ; 10(1): 4332, 2020 03 09.
Article En | MEDLINE | ID: mdl-32152397

Transcription-coupled repair (TCR) removes DNA lesions from the transcribed strand of active genes. Stalling of RNA polymerase II (RNAPII) at DNA lesions initiates TCR through the recruitment of the CSB and CSA proteins. The full repertoire of proteins required for human TCR - particularly in a chromatin context - remains to be determined. Studies in mice have revealed that the nucleosome-binding protein HMGN1 is required to enhance the repair of UV-induced lesions in transcribed genes. However, whether HMGN1 is required for human TCR remains unaddressed. Here, we show that knockout or knockdown of HMGN1, either alone or in combination with HMGN2, does not render human cells sensitive to UV light or Illudin S-induced transcription-blocking DNA lesions. Moreover, transcription restart after UV irradiation was not impaired in HMGN-deficient cells. In contrast, TCR-deficient cells were highly sensitive to DNA damage and failed to restart transcription. Furthermore, GFP-tagged HMGN1 was not recruited to sites of UV-induced DNA damage under conditions where GFP-CSB readily accumulated. In line with this, HMGN1 did not associate with the TCR complex, nor did TCR proteins require HMGN1 to associate with DNA damage-stalled RNAPII. Together, our findings suggest that HMGN1 and HMGN2 are not required for human TCR.


DNA Repair , HMGN1 Protein/genetics , HMGN2 Protein/genetics , Transcription, Genetic , Cell Line , DNA Damage/genetics , DNA Damage/radiation effects , Gene Knockout Techniques , HMGN1 Protein/metabolism , HMGN2 Protein/metabolism , Humans , Radiation Tolerance , Telomerase/genetics , Telomerase/metabolism , Transcription, Genetic/radiation effects , Ultraviolet Rays
12.
Epigenetics Chromatin ; 12(1): 73, 2019 12 12.
Article En | MEDLINE | ID: mdl-31831052

BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.


Chromatin/metabolism , HMGN2 Protein/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Self Renewal , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , HMGN2 Protein/genetics , Histones/metabolism , Mice , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Processing, Post-Translational
13.
Theranostics ; 9(14): 4006-4018, 2019.
Article En | MEDLINE | ID: mdl-31281528

It is a daunting therapeutic challenge to completely eradicate hepatocellular carcinoma (HCC) from patients. Alpha-fetoprotein (AFP) -based vaccines appear promising, however the efficacy needs to be improved. Methods: Here, we explore if fusing high-mobility group nucleosome binding protein 1 (HMGN1), a potent immunoadjuvant, to AFP (lenti-HA) can augment the antitumor immunity of AFP-expressing lentiviral vector (lenti-AFP), a vehicle extensively employed for genetic immunization with high transduction efficacy and good safety profiles. The antitumor immunity of Lenti-HA was systemically assessed in ectopic, orthotopic and autochthonous HCC models. Results: Lenti-HA elicited strong anti-HCC effects in mice and amplified the antitumor immunity of lenti-AFP by reducing effective dose 6-fold. Importantly, lenti-HA induced a robust antitumor immune response with prolonged survival rate and improved the immune and tumor microenvironment in mice with carcinogen-induced autochthonous HCC. Lenti-HA localized primarily to lymphoid organs with no preference for specific immune cell types. Activated dendritic cells (DCs), particularly CD103+CD11b- DCs, were also actively recruited to lymph nodes in lenti-HA-treated HCC mice. Moreover, lenti-HA-transduced human DCs elicited stronger immune response than lenti-AFP against HCC cells in vitro. Conclusion: Our study demonstrates that HMGN1 augments the antitumor immunity of AFP-expressing lentiviral vaccines in HCC mice and human cells in vitro and thus provides a new therapeutic strategy for HCC.


Alarmins/therapeutic use , Cancer Vaccines/therapeutic use , Carcinoma, Hepatocellular/therapy , Lentivirus/genetics , Liver Neoplasms/therapy , Adjuvants, Immunologic/therapeutic use , Animals , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Dendritic Cells/metabolism , Female , HMGN1 Protein/metabolism , Humans , Immunotherapy , Liver Neoplasms/immunology , Male , Mice , Mice, Inbred C57BL , alpha-Fetoproteins/metabolism
14.
CRISPR J ; 2: 51-63, 2019 02.
Article En | MEDLINE | ID: mdl-31021236

Bacterial-derived CRISPR-Cas9 nucleases have become a common tool in genome engineering. However, the editing efficiency by even the best-crafted Cas9 nucleases varies considerably with different genomic sites, and efforts to explore the vast natural Cas9 diversity have often met with mixed or little success. Here, we show that modification of the widely used Streptococcus pyogenes Cas9 by fusion with chromatin-modulating peptides (CMPs), derived from high mobility group proteins HMGN1 and HMGB1, histone H1, and chromatin remodeling complexes, improves its activity by up to several fold, particularly on refractory target sites. We further show that this CMP fusion strategy (termed CRISPR-chrom) is also effective in improving the activities of smaller Cas9 nucleases from Streptococcus pasteurianus and Campylobacter jejuni, as well as four newly characterized Cas9 orthologs from Bacillus smithii, Lactobacillus rhamnosus, Mycoplasma canis, and Parasutterella excrementihominis. Our findings suggest that this CRISPR-chrom strategy can be used to improve established Cas9 nucleases and facilitate exploration of novel Cas9 orthologs for genome modification.


CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Chromatin/genetics , Endonucleases/genetics , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Humans , K562 Cells , Peptides/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Streptococcus pyogenes/genetics
15.
Nat Commun ; 9(1): 5240, 2018 12 07.
Article En | MEDLINE | ID: mdl-30532006

The dynamic nature of the chromatin epigenetic landscape plays a key role in the establishment and maintenance of cell identity, yet the factors that affect the dynamics of the epigenome are not fully known. Here we find that the ubiquitous nucleosome binding proteins HMGN1 and HMGN2 preferentially colocalize with epigenetic marks of active chromatin, and with cell-type specific enhancers. Loss of HMGNs enhances the rate of OSKM induced reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs), and the ASCL1 induced conversion of fibroblast into neurons. During transcription factor induced reprogramming to pluripotency, loss of HMGNs accelerates the erasure of the MEF-specific epigenetic landscape and the establishment of an iPSCs-specific chromatin landscape, without affecting the pluripotency potential and the differentiation potential of the reprogrammed cells. Thus, HMGN proteins modulate the plasticity of the chromatin epigenetic landscape thereby stabilizing, rather than determining cell identity.


Cell Membrane/metabolism , Fibroblasts/metabolism , HMGN1 Protein/metabolism , HMGN2 Protein/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/cytology , Epigenesis, Genetic , Fibroblasts/cytology , HEK293 Cells , HMGN1 Protein/genetics , HMGN2 Protein/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice, Knockout , Mice, Nude , Protein Binding
16.
Cell Rep ; 25(7): 1898-1911.e5, 2018 11 13.
Article En | MEDLINE | ID: mdl-30428356

Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted.


Down Syndrome/genetics , HMGN1 Protein/genetics , Transcription, Genetic , Trisomy/genetics , Acetylation , Animals , B-Lymphocytes/metabolism , Cell Line , Genome , HMGN1 Protein/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Mice, Inbred C57BL , Models, Genetic , Nucleosomes/metabolism , Phenotype , RNA/genetics , Transcriptome/genetics , Up-Regulation/genetics
17.
Semin Immunol ; 38: 49-53, 2018 08.
Article En | MEDLINE | ID: mdl-29503123

High-mobility group (HMG) nucleosome binding domain 1 (HMGN1), which previously was thought to function only as a nucleosome-binding protein that regulates chromatin structure, histone modifications, and gene expression, was recently discovered to be an alarmin that contributes extracellularly to the generation of innate and adaptive immune responses. HMGN1 promotes DC recruitment through interacting with a Gαi protein-coupled receptor (GiPCR) and activates DCs predominantly through triggering TLR4. HMGN1 preferentially promotes Th1-type immunity, which makes it relevant for the fields of vaccinology, autoimmunity, and oncoimmunology. Here, we discuss the alarmin properties of HMGN1 and update recent advances on its roles in immunity and potential applications for immunotherapy of tumors.


Alarmins/immunology , HMGN1 Protein/immunology , Immunity/immunology , Th1 Cells/immunology , Alarmins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , HMGN1 Protein/metabolism , Humans , Neoplasms/immunology , Neoplasms/metabolism , Signal Transduction/immunology , Th1 Cells/metabolism
18.
Article En | MEDLINE | ID: mdl-29384065

OBJECTIVE: This study was established to investigate the contribution of high mobility group nucleosome-binding protein 1 (HMGN1)/ Toll-like receptor 4 (TLR4) pathway in diabetic nephropathy (DN). And as an intervention of the potential mechanism above, the insulin growth factor 1 receptor (IGF-1R) inhibitor was examined for its therapeutic effect in the diabetic mice. METHOD: Male C57BL/6J mice were administered streptozotocin(STZ) to induce diabetes and thus divided into 5 groups: the untreated group (DN group), the benazepril-treated group (BEN-DN group), the insulin-treated group (INS-DN group) and the IGF-1R inhibitor-treated group (IGF-DN group). Immunohistochemistry and in situ hybrization were performed to detect the expression of HMGN1 and TLR4 in renal tissue. To evaluate the effect of IGF-1R inhibitor, levels of blood glucose and kidney/ body weight (KW/BW) were measured. And morphological changes and mesangial matrix expansion in kidneys were also detected. RESULTS: Increased expression of HMGN1 and TLR4 in renal tissue of STZ-induced type1 diabetic mellitus (T1DM) mice models was observed. IGF-1R inhibitor attenuate the established nephropathy with reduced expression of TLR4 protein, as revealed by a decrease in mesangial index. CONCLUSION: IGF-1R inhibitor might have therapeutic potential in DN through inhibition of HMGN1/TLR4 pathway.


Benzazepines/therapeutic use , Diabetic Nephropathies/drug therapy , HMGN1 Protein/antagonists & inhibitors , Receptor, IGF Type 1/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Benzazepines/pharmacology , Diabetic Nephropathies/metabolism , HMGN1 Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism
19.
Nucleic Acids Res ; 45(17): 9917-9930, 2017 Sep 29.
Article En | MEDLINE | ID: mdl-28973435

The structure of the nucleosome, the basic building block of the chromatin fiber, plays a key role in epigenetic regulatory processes that affect DNA-dependent processes in the context of chromatin. Members of the HMGN family of proteins bind specifically to nucleosomes and affect chromatin structure and function, including transcription and DNA repair. To better understand the mechanisms by which HMGN 1 and 2 alter chromatin, we analyzed their effect on the organization of histone tails and linker histone H1 in nucleosomes. We find that HMGNs counteract linker histone (H1)-dependent stabilization of higher order 'tertiary' chromatin structures but do not alter the intrinsic ability of nucleosome arrays to undergo salt-induced compaction and self-association. Surprisingly, HMGNs do not displace H1s from nucleosomes; rather these proteins bind nucleosomes simultaneously with H1s without disturbing specific contacts between the H1 globular domain and nucleosomal DNA. However, HMGNs do alter the nucleosome-dependent condensation of the linker histone C-terminal domain, which is critical for stabilizing higher-order chromatin structures. Moreover, HMGNs affect the interactions of the core histone tail domains with nucleosomal DNA, redirecting the tails to more interior positions within the nucleosome. Our studies provide new insights into the molecular mechanisms whereby HMGNs affect chromatin structure.


DNA/chemistry , HMGN1 Protein/chemistry , HMGN2 Protein/chemistry , Histones/chemistry , Nucleosomes/chemistry , Amino Acid Sequence , Animals , Binding Sites , Chickens , DNA/genetics , DNA/metabolism , Gene Expression , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , HMGN2 Protein/genetics , HMGN2 Protein/metabolism , Histones/genetics , Histones/metabolism , Humans , Nucleic Acid Conformation , Nucleosomes/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus laevis
20.
Oncotarget ; 7(37): 59957-59964, 2016 Sep 13.
Article En | MEDLINE | ID: mdl-27494867

BACKGROUND: Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have been shown, the cause of the TIL influx is unclear. Here, we investigated whether extracellular secretion of HMGN1 is associated with TIL influx, as well as increased endoplasmic reticulum stress (ERS), in human TNBC. METHODS: We reviewed the slides of 767 patients with TNBC and evaluated the TIL levels. We also assessed the expression of HMGs and several ERS-associated molecules using immunohistochemical staining. Western blot analysis of human TNBC cell lines and pharmacological ERS inducers was used to determine if HMGN1 migrates from the nucleus to the extracellular space in response to ERS. RESULTS: On immunohistochemical staining, either higher nuclear or cytoplasmic expression of both HMGB1 and HMGN1 was significantly associated with ERS. TILs showed a positive correlation with the cytoplasmic expression of the HMGs. Western blot analysis of TNBC cell lines showed that ERS induction resulted in the secretion of HMG proteins. CONCLUSIONS: This is the first study to elucidate the associations among ERS, secretion of HMGs, and degree of TILs in TNBCs. Understanding the mechanisms of TIL influx will help in the development of effective immunotherapeutic agents for TNBC.


Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , HMGN1 Protein/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress , Female , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Neoplasm Staging , Predictive Value of Tests , Prognosis , Protein Transport , Triple Negative Breast Neoplasms/mortality
...