Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.778
1.
Am Soc Clin Oncol Educ Book ; 44(3): e433330, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718318

The treatment for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (anti-PD1) with or without chemotherapy has led to an improvement in survival. Yet, despite this therapeutic advancement, only 15%-19% of patients remain alive at four years, highlighting the poor survival and unmet need for improved therapies for this patient population. Some of the key evolving novel therapeutics beyond anti-PD1 in R/M HNSCC have included therapeutic vaccine therapies, bispecific antibodies/fusion proteins and multitargeted kinase inhibitors, and antibody-drug conjugates (ADCs). Multiple concurrent investigations of novel therapeutics for patients with R/M HNSCC beyond anti-PD(L)1 inhibition are currently underway with some promising early results. Beyond immune checkpoint inhibition, novel immunotherapeutic strategies including therapeutic vaccines ranging from targeting human papillomavirus-specific epitopes to personalized neoantigen vaccines are ongoing with some early efficacy signals and large, randomized trials. Other novel weapons including bispecific antibodies, fusion proteins, and multitargeted kinase inhibitors leverage multiple concurrent targets and modulation of the tumor microenvironment to harness antitumor immunity and inhibition of protumorigenic signaling pathways with emerging promising results. Finally, as with other solid tumors, ADCs remain a promising therapeutic intervention either alone or in combination with immunotherapy for patients with R/M HNSCC. With early enthusiasm across novel therapies in R/M HNSCC, results of larger randomized trials in R/M HNSCC are eagerly awaited.


Immunotherapy , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Immunotherapy/methods , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/drug therapy , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasm Recurrence, Local , Cancer Vaccines/therapeutic use
2.
J Cancer Res Clin Oncol ; 150(5): 240, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713284

PURPOSE: Head and neck cancer is the sixth most common type of cancer worldwide, wherein the immune responses are closely associated with disease occurrence, development, and prognosis. Investigation of the role of immunogenic cell death-related genes (ICDGs) in adaptive immune response activation may provide cues into the mechanism underlying the outcome of HNSCC immunotherapy. METHODS: ICDGs expression patterns in HNSCC were analyzed, after which consensus clustering in HNSCC cohort conducted. A 4-gene prognostic model was constructed through LASSO and Cox regression analyses to analyze the prognostic index using the TCGA dataset, followed by validation with two GEO datasets. The distribution of immune cells and the response to immunotherapy were compared between different risk subtypes through multiple algorithms. Moreover, immunohistochemical (IHC) analyses were conducted to validate the prognostic value of HSP90AA1 as a predictor of HNSCC patient prognosis. In vitro assays were performed to further detect the effect of HSP90AA1 in the development of HNSCC. RESULTS: A novel prognostic index based on four ICDGs was constructed and proved to be useful as an independent factor of HNSCC prognosis. The risk score derived from this model grouped patients into high- and low-risk subtypes, wherein the high-risk subtype had worse survival outcomes and poorer immunotherapy response. IHC analysis validated the applicability of HSP90AA1 as a predictor of prognosis of HNSCC patients. HSP90AA1 expression in tumor cells promotes the progression of HNSCC. CONCLUSIONS: Together, these results highlight a novel four-gene prognostic signature as a valuable tool to assess survival status and prognosis of HNSCC patients.


HSP90 Heat-Shock Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Prognosis , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Female , Male , Immunogenic Cell Death , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Immunotherapy/methods , Gene Expression Regulation, Neoplastic
3.
Sci Rep ; 14(1): 12234, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806556

Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.


Biomarkers, Tumor , Head and Neck Neoplasms , Immunotherapy , Procollagen-Proline Dioxygenase , Humans , Biomarkers, Tumor/metabolism , Prognosis , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/diagnosis , Immunotherapy/methods , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/mortality
4.
Laryngorhinootologie ; 103(S 01): S167-S187, 2024 May.
Article En, De | MEDLINE | ID: mdl-38697147

The neoadjuvant immunotherapy approach marks a significant shift in the treatment paradigm of potentially curable HNSCC. Here, current therapies, despite being highly individualized and advanced, often fall short in achieving satisfactory long-term survival rates and are frequently associated with substantial morbidity.The primary advantage of this approach lies in its potential to intensify and enhance treatment regimens, offering a distinct modality that complements the existing triad of surgery, radiotherapy, and chemotherapy. Checkpoint inhibitors have been at the forefront of this evolution. Demonstrating moderate yet significant survival benefits in the recurrent-metastatic setting with a relatively better safety profile compared to conventional treatments, these agents hold promise when considered for earlier stages of HNSCC.On the other hand, a significant potential benefit of introducing immunotherapy in the neoadjuvant phase is the possibility of treatment de-escalation. By reducing the tumor burden before surgery, this strategy could lead to less invasive surgical interventions. The prospect of organ-sparing protocols becomes a realistic and highly valued goal in this context. Further, the early application of immunotherapy might catalyze a more effective and durable immune response. The induction of an immune memory may potentially lead to a more effective surveillance of residual disease, decreasing the rates of local, regional, and distant recurrences, thereby enhancing overall and recurrence-free survival.However, neoadjuvant immunotherapy is not without its challenges. One of the primary concerns is the safety and adverse events profile. While data suggest that adverse events are relatively rare and manageable, the long-term safety profile in the neoadjuvant setting, especially in the context of curative intent, remains a subject for ongoing research. Another unsolved issue lies in the accurate assessment of treatment response. The discrepancy between radiographic assessment using RECIST criteria and histological findings has been noted, indicating a gap in current imaging techniques' ability to accurately reflect the true efficacy of immunotherapy. This gap underscores the necessity for improved imaging methodologies and the development of new radiologic and pathologic criteria tailored to evaluate the response to immunotherapy accurately.Treatment combinations and timing represent another layer of complexity. There is a vast array of possibilities in combining immunotherapy agents with conventional chemotherapy, targeted therapy, radiation, and other experimental treatments. Determining the optimal treatment regimen for individual patients becomes an intricate task, especially when comparing small, single-arm, non-randomized trials with varying regimens and outcome measures.Moreover, one needs to consider the importance of pre- and intraoperative decision-making in the context of neoadjuvant immunotherapy. As experience with this treatment paradigm grows, there is potential for more tailored surgical approaches based on the patient's remaining disease post-neoadjuvant treatment. This consideration is particularly relevant in extensive surgeries, where organ-sparing protocols could be evaluated.In practical terms, the multi-modal nature of this treatment strategy introduces complexities, especially outside clinical trial settings. Patients face challenges in navigating the treatment landscape, which involves coordination across multiple medical disciplines, highlighting the necessity for streamlined care pathways at specialized centers to facilitate effective treatment management if the neoadjuvant approach is introduced to the real-world.These potential harms and open questions underscore the critical need for meticulously designed clinical trials and correlational studies to ensure patient safety and efficacy. Only these can ensure that this new treatment approach is introduced in a safe way and fulfils the promise it theoretically holds.


Immunotherapy , Neoadjuvant Therapy , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/immunology , Combined Modality Therapy
5.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730256

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


B7-H1 Antigen , Oncolytic Viruses , Proto-Oncogene Proteins c-myc , Signal Transduction , Animals , Mice , Proto-Oncogene Proteins c-myc/metabolism , Humans , Adenosine/analogs & derivatives , Down-Regulation , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Oncolytic Virotherapy/methods , PTEN Phosphohydrolase , Mice, Knockout , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Simplexvirus , Cell Line, Tumor
6.
Cancer Biol Ther ; 25(1): 2350249, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38722731

Head and Neck Squamous Cell Carcinoma (HNSCC) comprises a diverse group of tumors with variable treatment response and prognosis. The tumor microenvironment (TME), which includes microbiome and immune cells, can impact outcomes. Here, we sought to relate the presence of specific microbes, gene expression, and tumor immune infiltration using tumor transcriptomics from The Cancer Genome Atlas (TCGA) and associate these with overall survival (OS). RNA sequencing (RNAseq) from HNSCC tumors in TCGA was processed through the exogenous sequences in tumors and immune cells (exotic) pipeline to identify and quantify low-abundance microbes. The detection of the Papillomaviridae family of viruses assessed HPV status. All statistical analyses were performed using R. A total of 499 RNAseq samples from TCGA were analyzed. HPV was detected in 111 samples (22%), most commonly Alphapapillomavirus 9 (90.1%). The presence of Alphapapillomavirus 9 was associated with improved OS [HR = 0.60 (95%CI: 0.40-0.89, p = .01)]. Among other microbes, Yersinia pseudotuberculosis was associated with the worst survival (HR = 3.88; p = .008), while Pseudomonas viridiflava had the best survival (HR = 0.05; p = .036). Microbial species found more abundant in HPV- tumors included several gram-negative anaerobes. HPV- tumors had a significantly higher abundance of M0 (p < .001) and M2 macrophages (p = .035), while HPV+ tumors had more T regulatory cells (p < .001) and CD8+ T-cells (p < .001). We identified microbes in HNSCC tumor samples significantly associated with survival. A greater abundance of certain anaerobic microbes was seen in HPV tumors and pro-tumorigenic macrophages. These findings suggest that TME can be used to predict patient outcomes and may help identify mechanisms of resistance to systemic therapies.


Head and Neck Neoplasms , Microbiota , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Female , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/complications , Male , Microbiota/genetics , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/mortality , Prognosis , Middle Aged , Papillomaviridae/genetics , Aged
8.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702144

BACKGROUND: Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS: Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS: We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS: Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.


Disease Models, Animal , Head and Neck Neoplasms , Killer Cells, Natural , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Cell Line, Tumor , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Immunocompetence , Killer Cells, Natural/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics
9.
Med Oncol ; 41(6): 133, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703250

Head and neck cancer accounts for about one-fifth of all malignant tumors, and the incidence is increasing year by year. The overall mortality rate was high and the 5-year survival rate was low. At present, the combination of surgery, radiotherapy, and chemotherapy is the main treatment in clinical practice, but the treatment of recurrent or metastatic advanced head and neck cancer is still a challenge. With the rise of immunotherapy, more and more studies on immune checkpoint inhibitors have been conducted. This review summarizes the mechanism, clinical application and safety of immunotherapy for advanced head and neck cancer.


Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Immunotherapy , Humans , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use
10.
Cancer Med ; 13(9): e7212, 2024 May.
Article En | MEDLINE | ID: mdl-38686626

BACKGROUND: A phase I clinical study for patients with locally advanced H&N cancer with a new class of botanical drug APG-157 provided hints of potential synergy with immunotherapy. We sought to evaluate the efficacy of the combination of APG-157 and immune checkpoint inhibitors. METHODS: CCL23, UM-SCC1 (human), and SCCVII (HPV-), MEER (HPV+) (murine) H&N cancer cell lines were utilized for in vitro and in vivo studies. We measured tumor growth by treating the mice with APG-157, anti-PD-1, and anti-CTLA-4 antibody combinations (8 groups). The tumor microenvironments were assessed by multi-color flow cytometry, immunohistochemistry, and RNA-seq analysis. Fecal microbiome was analyzed by 16S rRNA sequence. RESULTS: Among the eight treatment groups, APG-157 + anti-CTLA-4 demonstrated the best tumor growth suppression (p = 0.0065 compared to the control), followed by anti-PD-1 + anti-CTLA-4 treatment group (p = 0.48 compared to the control). Immunophenotype showed over 30% of CD8+ T cells in APG-157 + anti-CTLA-4 group compared to 4%-5% of CD8+ T cells for the control group. Differential gene expression analysis revealed that APG-157 + anti-CTLA-4 group showed an enriched set of genes for inflammatory response and apoptotic signaling pathways. The fecal microbiome analysis showed a substantial difference of lactobacillus genus among groups, highest for APG-157 + anti-CTLA-4 treatment group. We were unable to perform correlative studies for MEER model as there was tumor growth suppression with all treatment conditions, except for the untreated control group. CONCLUSIONS: The results indicate that APG-157 and immune checkpoint inhibitor combination treatment could potentially lead to improved tumor control.


CTLA-4 Antigen , Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Tumor Microenvironment , Animals , Mice , CTLA-4 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Female , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Disease Models, Animal
11.
Sci Rep ; 14(1): 9914, 2024 04 30.
Article En | MEDLINE | ID: mdl-38688945

Macrophages are immune cells in the TME that can not only inhibit angiogenesis, extracellular matrix remodeling, cancer cell proliferation, and metastasis but also mediate the phagocytosis and killing of cancer cells after activation, making them key targets in anti-tumor immunotherapy. However, there is little research on macrophages and their relation to disease prognosis in HNSCC. Initially, we collected scRNA-seq, bulk RNA-seq, and clinical data. Subsequently, we identified macrophages and distinguished MRGs. Using the K-means algorithm, we performed consensus unsupervised clustering. Next, we used ssGSEA analysis to assess immune cell infiltration in MRG clusters. A risk model was established using multivariate Cox analysis. Then, Kaplan-Meier, ROC curves, univariate and multivariate COX analyses, and C-index was used to validate the predictive power of the signature. The TIDE method was applied to assess the response to immunotherapy in patients diagnosed with HNSCC. In addition, drug susceptibility predictions were made for the GDSC database using the calcPhenotype function. We found that 8 MRGs had prognostic potential. Patients in the MRG group A had a higher probability of survival, and MRG clusters A and B had different characteristics. Cluster A had a higher degree of expression and infiltration in MRG, indicating a closer relationship with MRG. The accuracy of the signature was validated using univariate and multivariate Cox analysis, C-index, and nomogram. Immune landscape analysis found that various immune functions were highly expressed in the low-risk group, indicating an improved response to immunotherapy. Finally, drugs with high sensitivity to HNSCC (such as 5-Fluorouracil, Temozolomide, Carmustine, and EPZ5676) were explored and analyze the malignant characteristics of HNSCC. We constructed a prognostic model using multivariate Cox analysis, consisting of 8 MRGs (TGM2, STC1, SH2D3C, PIK3R3, MAP3K8, ITGA5, ARHGAP4, and AQP1). Patients in the low-risk group may have a higher response to immunotherapy. The more prominent drugs for drug selection are 5-fluorouracil, temozolomide and so on. Malignant features associated with HNSCC include angiogenesis, EMT, and the cell cycle. This study has opened up new prospects for the prognosis, prediction, and clinical treatment strategy of HNSCC.


Head and Neck Neoplasms , Macrophages , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Prognosis , Macrophages/immunology , Macrophages/metabolism , Tumor Microenvironment/immunology , Male , Female , Middle Aged , Immunotherapy/methods , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics
12.
Int Immunopharmacol ; 132: 112054, 2024 May 10.
Article En | MEDLINE | ID: mdl-38608477

γδT cells are unconventional T cells only accounting for 1-5 % of circulating T lymphocytes. Their potent anti-tumor capability has been evidenced by accumulating studies. However, the prognostic value of γδT cells remains not well documented in head and neck squamous cell carcinoma (HNSCC). In this study, we utilized the TCGA HNSCC database to evaluate the infiltration of γδT cells and the association between γδT cells and clinicopathological factors by related gene signature, which were then validated by a total of 100 collected tumor samples from HNSCC patient cohort. Heterogeneity and functional characteristics of distinct infiltrating γδT cell profiles in HNSCC were then investigated based on the scRNA-seq data from the GEO database. We found higher γδT cell gene signature score was significantly associated with longer survival. Cox regression models showed that γδT cell gene signature could serve as an independent prognostic indicator for HNSCC patients. A high level of γδT cell-related gene signature was positively correlated with the infiltration of tumor-infiltrating lymphocytes and immune score. Through scRNA-seq analysis, we identified that γδ+ Trm cells and γδ+ CTL cells possessed anti-tumor and immunoregulatory properties. Notably, we found a significant association between the presence of these cells and improved survival outcomes. In our cell-cell communication analyses, we identified that γδT cells have the potential to eliminate tumor cells through the secretion of interferon-gamma and granzyme. Collectively, the infiltration of γδT cells may serve as a promising prognostic tool, prompting the consideration of treatment options for patients with HNSCC.


Head and Neck Neoplasms , Lymphocytes, Tumor-Infiltrating , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/mortality , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Female , Male , Middle Aged , Transcriptome , Intraepithelial Lymphocytes/immunology , Gene Expression Regulation, Neoplastic , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Aged
13.
Cancer Immunol Immunother ; 73(6): 110, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662248

Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.


Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Interleukin-33 , Lymphocyte Activation , Interleukin-33/metabolism , Humans , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Animals , Lymphocyte Activation/immunology , Neoplasm Invasiveness , Mice , Cell Line, Tumor , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Female
14.
Oral Oncol ; 152: 106795, 2024 May.
Article En | MEDLINE | ID: mdl-38599127

OBJECTIVES: Understanding head and neck tissue specific immune responses is important for elucidating immunotherapy resistance mechanisms to head and neck squamous cell carcinoma (HNSCC). In this study, we aimed to investigate HNSCC-specific immune response differences between oral and subcutaneous flank tumor transplantation in preclinical models. MATERIALS AND METHODS: The MOC1 syngeneic mouse oral carcinoma cell line or versions expressing either the H2Kb-restricted SIINFEKL peptide from ovalbumin (MOC1OVA) or ZsGreen (MOC1ZsGreen) were inoculated into mouse oral mucosa (buccal space) or subcutaneous flank and compared for immune cell kinetics in tumors and tumor-draining lymph nodes (TDLNs) and for anti-PD1 response. RESULTS: Compared to subcutaneous flank tumors, orthotopic oral MOC1OVA induced a higher number of OVA-specific T cells, PD1 + or CD69 + activated OVA-specific T cells in both primary tumors and TDLNs. Tumors were also larger in the flank site and CD8 depletion eliminated the difference in tumor weight between the two sites. Oral versus flank SIINFEKL peptide vaccination showed enhanced TDLN lymphocyte response in the former site. Notably, cDC1 from oral TDLN showed enhanced antigen uptake and co-stimulatory marker expression, resulting in elicitation of an increased antigen specific T cell response and increased activated T cells. Parental MOC1 in the oral site showed increased endogenous antigen-reactive T cells in TDLNs and anti-PD1 blockade rejected oral MOC1 tumors but not subcutaneous flank MOC1. CONCLUSION: Collectively, we find distinct immune responses between orthotopic oral and heterotopic subcutaneous models, including priming by cDC1 in TDLN, revealing important implications for head and neck cancer preclinical studies.


Head and Neck Neoplasms , Lymph Nodes , Programmed Cell Death 1 Receptor , Animals , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Lymph Nodes/immunology , Head and Neck Neoplasms/immunology , Cell Line, Tumor , T-Lymphocytes/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice, Inbred C57BL , Humans , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology
15.
Front Immunol ; 15: 1337129, 2024.
Article En | MEDLINE | ID: mdl-38650924

Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.


Head and Neck Neoplasms , Macrophages , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/diagnosis , Tumor Microenvironment/immunology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/immunology , Macrophages/immunology , Animals , Immunotherapy/methods , Cell Plasticity/immunology
16.
Aging (Albany NY) ; 16(8): 7426-7436, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38663941

Head and neck tumors are malignant tumors that appear in the head and neck. Although much progress has been made in the treatment of head and neck tumors, many challenges remain. The prognosis of some advanced cases remains poor and survival and quality of life after treatment face certain limitations. Therefore, further research into the pathogenesis and treatment options for head and neck tumors is important in order to improve the prognosis and quality of life of patients. The Protein Arginine Methyltransferase (PRMT) family is a class of enzymes that are responsible for adding methyl groups to arginine residues in proteins. PRMT family members play important roles in regulating many cellular processes, such as transcriptional regulation, signaling, and cell cycle regulation. Recent studies have shown that the PRMT family also plays an important function in tumorigenesis and development. Here, we found that PRMT family members are significantly overexpressed in head and neck tumors and that PRMT5 may serve as an independent prognostic factor in head and neck tumors. We found that PRMT5-regulated differential genes were significantly enriched in tumor-associated signaling pathways such as IL-17 and p53. And we also found that the expression of PRMT5 in head and neck tumors was significantly correlated with immune cell infiltration, m6A as well as the expression of ferroptosis-related genes, and drug sensitivity. These results suggest that PRMT may play an important role in the development of head and neck tumors.


Ferroptosis , Head and Neck Neoplasms , Protein-Arginine N-Methyltransferases , Squamous Cell Carcinoma of Head and Neck , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ferroptosis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Male , Female , Prognosis , Middle Aged , Signal Transduction
17.
Eur Arch Otorhinolaryngol ; 281(6): 3143-3156, 2024 Jun.
Article En | MEDLINE | ID: mdl-38507078

PURPOSE: To look at the diagnostic value of the CELSR receptor 3 (CELSR3) gene in head and neck squamous cell carcinoma (HNSCC) and its effect on tumor immune invasion, which is important for enhancing HNSCC treatment. METHODS: Several bioinformatics tools were employed to investigate CELSR3's putative oncogenic pathway in HNSCC, and datasets from The Tumor Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Gene Expression Profile Interaction Analysis (GEPIA) and LinkedOmics were extracted and evaluated. CELSR3 has been linked to tumor immune cell infiltration, immunological checkpoints, and immune-related genes. CELSR3's putative roles were investigated using Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and pathway enrichment analysis. The expression level of CELSR3 in HNSCC tissues and cells was detected by RT-qPCR. The effects of CELSR3 on proliferation of HNSCC cells were detected by CCK-8 assay. RESULTS: CELSR3 was shown to be expressed differently in different types of cancer and normal tissues. CELSR3 gene expression was linked to pN-stage and pM-stage. Patients with high CELSR3 expression also have a well prognosis. CELSR3 expression was found to be an independent predictive factor for HNSCC in both univariate and multivariate Cox regression analyses. We discovered the functional network of CELSR3 in HNSCC using GO and KEGG analysis. CELSR3 expression levels were found to be favorably associated with immune cell infiltration levels. Furthermore, CELSR3 expression levels were significantly correlated with the expression levels of many immune molecules, such as MHC genes, immune activation genes, chemokine receptors, and chemokines. CELSR3 is highly expressed in HNSCC tissues and cells. CELSR3 overexpression significantly inhibited the proliferation of HNSCC cells. CELSR3 expression may affect the immune microenvironment and, as a result, the prognosis of HNSCC. CONCLUSION: CELSR3 expression is elevated in HNSCC tumor tissues, and high CELSR3 expression is associated with well prognosis, which inhibited the proliferation of NHSCC cells. CELSR3 has the potential to influence tumor formation by controlling tumor-infiltrating cells in the tumor microenvironment (TME). As a result, CELSR3 may have diagnostic significance in HNSCC.


Biomarkers, Tumor , Cadherins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Female , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cadherins/genetics , Cadherins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
18.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Article En | MEDLINE | ID: mdl-38457288

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Head and Neck Neoplasms , Neoadjuvant Therapy , Squamous Cell Carcinoma of Head and Neck , Humans , Male , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Middle Aged , Female , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoadjuvant Therapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Adult , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
19.
Cancer Res ; 84(10): 1560-1569, 2024 May 15.
Article En | MEDLINE | ID: mdl-38479434

Genomic analysis of the T-cell receptor (TCR) reveals the strength, breadth, and clonal dynamics of the adaptive immune response to pathogens or cancer. The diversity of the TCR repertoire, however, means that sequencing is technically challenging, particularly for samples with low-quality, degraded nucleic acids. Here, we developed and validated FUME-TCRseq, a robust and sensitive RNA-based TCR sequencing methodology that is suitable for formalin-fixed paraffin-embedded samples and low amounts of input material. FUME-TCRseq incorporates unique molecular identifiers into each molecule of cDNA, allowing correction for sequencing errors and PCR bias. Using RNA extracted from colorectal and head and neck cancers to benchmark the accuracy and sensitivity of FUME-TCRseq against existing methods demonstrated excellent concordance between the datasets. Furthermore, FUME-TCRseq detected more clonotypes than a commercial RNA-based alternative, with shorter library preparation time and significantly lower cost. The high sensitivity and the ability to sequence RNA of poor quality and limited amount enabled quantitative analysis of small numbers of cells from archival tissue sections, which is not possible with other methods. Spatially resolved FUME-TCRseq analysis of colorectal cancers using macrodissected archival samples revealed the shifting T-cell landscapes at the transition to an invasive phenotype and between tumor subclones containing distinct driver alterations. In summary, FUME-TCRseq represents an accurate, sensitive, and low-cost tool for the characterization of T-cell repertoires, particularly in samples with low-quality RNA that have not been accessible using existing methodology. SIGNIFICANCE: FUME-TCRseq is a TCR sequencing methodology that supports sensitive and spatially resolved detection of TCR clones in archival clinical specimens, which can facilitate longitudinal tracking of immune responses through disease course and treatment.


Colorectal Neoplasms , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , RNA/genetics , RNA Stability
20.
Head Neck ; 46(6): 1310-1321, 2024 Jun.
Article En | MEDLINE | ID: mdl-38436502

OBJECTIVE: Establish an in situ model for investigating HNSCC, focusing on tumor growth, metastasis, and the immune microenvironment. METHODS: Generated a monoclonal SCCVII-ZsGreen cell line through lentiviral transfection. Selected monoclonal lines with growth rates similar to the original SCCVII for in vivo tumorigenesis. Monitored tumor development and metastasis through fluorescence in vivo imaging. Employed immunohistochemistry to assess immune cell distribution in the tumor microenvironment. RESULTS: SCCVII-ZsGreen exhibited comparable proliferation and in vivo tumorigenicity to SCCVII. In situ tumor formation on day 10, with cervical metastasis in C57BL/6 mice by day 16. No significant fluorescence signals in organs like liver and lungs, while SCCVII-ZsGreen presence confirmed in cervical lymph node metastases. Immunohistochemistry revealed CD4+ T, CD8+ T, B, and dendritic cells distribution, with minimal macrophages. CONCLUSION: Our model is a valuable tool for studying HNSCC occurrence, metastasis, and immune microenvironment. It allows dynamic observation of tumor development, aids preclinical drug experiments, and facilitates exploration of the tumor immune contexture.


Disease Models, Animal , Head and Neck Neoplasms , Mice, Inbred C57BL , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Tumor Microenvironment/immunology , Animals , Mice , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , Immunohistochemistry , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Humans , Female
...