Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.812
1.
Nat Commun ; 15(1): 3893, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719799

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Food Microbiology , Food Preservation , Animals , Cattle , Food Preservation/methods , Food Microbiology/methods , Meat/microbiology , Hot Temperature , Red Meat/microbiology , Heating , Food Safety/methods
2.
Food Res Int ; 186: 114348, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729721

During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.


Digestion , Hot Temperature , Peptides , Soybean Proteins , Tandem Mass Spectrometry , Humans , Soybean Proteins/immunology , Soybean Proteins/chemistry , Peptides/immunology , Peptides/chemistry , Infant , Infant Formula/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Cross Reactions , Heating , Chromatography, Liquid
3.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38691930

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Hot Temperature , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Charcoal/chemistry , Zea mays , Soil/chemistry , Adsorption , Heating
4.
PLoS One ; 19(5): e0298077, 2024.
Article En | MEDLINE | ID: mdl-38743764

Geothermal energy is increasingly employed across diverse applications, with bridge deck snow melting emerging as a notable utilization scenario. In Jinan city, China, a project is underway to utilize ground source heat pumps (GSHPS) for heating bridges. However, essential operational parameters, including fluid medium, temperature, and heat exchange details, are currently lacking. This study addresses the thermal design challenges associated with ground heat exchangers (GHE) for bridge heating through a combination of numerical modeling and field experiments. Utilizing software Fluent, a refined three-dimensional multi-condition heat transfer numerical analysis was carried out. Field tests based on actual operating conditions were also conducted and the design parameters were verified. The results indicate that an inlet temperature of 5°C and an aqueous solution of ethylene glycol with a mass concentration of 35% as the heat exchange medium are suitable for the GSHPS in Jinan; Moreover, the influence of backfill material and operation time on the heat transfer efficiency was revealed and the suitable material with 10% bentonite and 90% SiO2 was suggested; Finally, based on the influence of the pipe spacing on the heating characteristics of bridge deck, the transition spacing of 0.2 m is given for the temperature response of the bridge deck. This comprehensive study contributes valuable insights through simulation and experimental analysis of the thermal environment variation, aiming to advance the development of GSHPS for bridge deck heating in Jinan, China.


Heating , Hot Temperature , China , Models, Theoretical , Geothermal Energy
5.
PLoS One ; 19(4): e0296845, 2024.
Article En | MEDLINE | ID: mdl-38635742

Electron cyclotron resonance heating method of Particle-in-Cell code was used to analyze heating phenomena, axial kinetic energy, and self-consistent electric field of confined electron plasma in ELTRAP device by hydrogen and helium background gases. The electromagnetic simulations were performed at a constant power of 3.8 V for different RF drives (0.5 GHz- 8 GHz), as well as for 1 GHz constant frequency at these varying amplitudes (1 V-3.8 V). The impacts of axial and radial temperatures were found maximum at 1.8 V and 5 GHz as compared to other amplitudes and frequencies for both background gases. These effects are higher at varying radio frequencies due to more ionization and secondary electrons production and maximum recorded radial temperature for hydrogen background gas was 170.41 eV. The axial kinetic energy impacts were found more effective in the outer radial part (between 0.03 and 0.04 meters) of the ELTRAP device due to applied VRF through C8 electrode. The self-consistent electric field was found higher for helium background gas at 5 GHz RF than other amplitudes and radio frequencies. The excitation and ionization rates were found to be higher along the radial direction (r-axis) than the axial direction (z-axis) in helium background gas as compared to hydrogen background gas. The current studies are advantageous for nuclear physics applications, beam physics, microelectronics, coherent radiation devices and also in magnetrons.


Cyclotrons , Electrons , Heating , Helium , Hydrogen
6.
Skin Res Technol ; 30(4): e13687, 2024 Apr.
Article En | MEDLINE | ID: mdl-38566505

BACKGROUND: The physical appearance of an individual plays a primary role as it influences the opinion of the viewer. For this reason, orthodontic therapy to improve perceived aesthetics is in high demand among patients. This factor, combined with the increase in the number of non-invasive facial aesthetic treatments, has led to the need to understand potential risk factors in the application of medical devices to the perioral skin in patients with fixed orthodontic appliances. The aim of this study was to evaluate in vitro heating of the orthodontic bracket following electromagnetic fields and negative pressure (V-EMF) used as an anti-aging treatment. METHODS: Two different types of titanium alloy wires, one made of "beta-Titanium" alloy and the other "Ni-Ti" (DW Lingual Systems GmbH-Bad Essen-Germany) were used. The orthodontic wires and brackets mounted on a resin mouth were covered with porcine muscle tissue, then subjected to anti-aging therapy with a Bi-one LifeTouchTherapy medical device (Expo Italia Srl-Florence-Italy) which generates a combination of vacuum and electromagnetic fields (V-EMF) already adopted for antiaging therapy. During administration of the therapy, the orthodontic brackets and porcine tissue were thermally monitored using a Wavetek Materman TMD90 thermal probe (Willtek Communications GmbH-Germany). In total 20 orthodontic mouths were used, 10 with Beta Titanium wires and 10 with Nickel Titanium wires. RESULTS: A temperature increase of about 1°C was recorded in each group. The outcome of the present research shows that the absolute temperatures measured on orthodontic appliances, which, despite having a slightly different curve, both show an increase in temperature of 1.1°C at the end of the session, thus falling well within the safety range of 2°C as specified by the standard CENELEC EN 45502-1. Therefore, V-EMF therapy can be considered safe for the entire dental system and for metal prostheses, which tend to heat up at most as much as biological tissue (+0.9°C/1.1°C vs. 1.1°C/1.1°C). CONCLUSION: In conclusion, anti-aging therapy with V-EMF causes a thermal increase on orthodontic brackets that is not harmful to pulp health.


Electromagnetic Fields , Nickel , Titanium , Humans , Animals , Swine , Vacuum , Heating , Orthodontic Wires , Alloys , Materials Testing
7.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 490-497, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38678343

Objective: To research the association between exposure to solid fuels for heating and its duration and the risk of respiratory diseases morbidity. Methods: Data from the China Kadoorie Biobank project sited in Pengzhou City, Sichuan Province. Cox proportional hazard regression model was used to analyze the association between exposure to solid fuels for heating and its duration and the risk of total respiratory diseases and the association between exposure to solid fuels for heating and the risk of chronic obstructive pulmonary disease (COPD) and pneumonia among respiratory diseases. Results: A total of 46 082 participants aged 30-79 years were enrolled, with 11 634 (25.25%) heating during the winter, of whom 8 885 (19.28%) used clean fuels and 2 749 (5.97%) used solid fuels, of whom 34 448 (74.75%) did not heat. After controlling for multiple confounding factors, Cox proportional hazard regression model was used, which revealed that compared with clean fuels, unheating could reduce the risk of total respiratory disease (HR=0.81,95%CI:0.77-0.86), COPD (HR=0.86,95%CI:0.78-0.95) and pneumonia (HR=0.80,95%CI:0.74-0.86), respectively. Exposure to solid fuels increased the risk of total respiratory disease (HR=1.10, 95%CI:1.01-1.20) and were not associated with COPD and pneumonia. Compared with no solid fuel exposure, the risk of total respiratory disease (1-19 years:HR=1.23, 95%CI:1.10-1.37; 20-39 years:HR=1.25, 95%CI:1.16-1.35; ≥40 years:HR=1.26, 95%CI:1.15-1.39) and COPD (1-19 years: HR=1.21, 95%CI:1.03-1.42; 20-39 years: HR=1.30, 95%CI:1.16-1.46; ≥40 years:HR=1.35, 95%CI:1.18-1.54) increased with the length of exposure of solid fuels (trend test P<0.001). Solid fuels exposure for 1-19 years and 20-39 years increased the risk of COPD by 23% (HR=1.23,95%CI:1.02-1.49) and 16% (HR=1.16, 95%CI:1.00-1.35). Conclusion: Heating solid fuels exposure increases the risk of total respiratory disease, COPD, and pneumonia.


Heating , Proportional Hazards Models , Pulmonary Disease, Chronic Obstructive , Humans , Middle Aged , Adult , Aged , Prospective Studies , China/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Male , Air Pollution, Indoor/adverse effects , Female , Environmental Exposure/adverse effects , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/etiology , Pneumonia/epidemiology
8.
Environ Int ; 186: 108630, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593691

Residents themselves are responsible for controlling their living environment, and their perception of coldness is important to protect their health. Although previous studies examined the association between perceived coldness and indoor temperature, they did not consider the spatial-temporal differences in indoor temperatures. This study, conducted in Japan, measured indoor temperatures in 1,553 houses across several rooms (living room, changing room, and bedroom) and heights (at 1 m above the floor and near the floor) over two weeks and obtained the perceived coldness from 2,793 participants during winter. Results showed substantial temperature differences between rooms (horizontal differences): 3.8 °C between living and changing rooms, and 4.1 °C between living rooms and bedrooms. The average vertical and diel (evening-morning) temperature differences in the living room were 3.1 °C and 3.0 °C, respectively. Regional analysis revealed that the Tohoku region experienced larger horizontal and diel indoor temperature differences, primarily due to its practice of intermittent and partial heating in living rooms only, in contrast to Hokkaido's approach of heating the entire house continuously. Despite Hokkaido's comprehensive heating system, it exhibited the largest vertical temperature difference of 5.1 °C in living rooms, highlighting the insufficiency of heating alone and the necessity for enhanced thermal insulation. The multivariate logistic regression analyses showed that average temperatures and vertical temperature differences were associated with perceived coldness, while horizontal and diel differences did not show a significant association, further emphasizing the importance of improved thermal insulation. Moreover, factors like individual attributes (age and gender), and lifestyle choices (meal quantity, exercise habits, alcohol consumption, and clothing amount) were significantly associated with coldness perception. Notably, older adults were less likely to perceive coldness but more vulnerable to the health impacts of low temperatures, underscoring the necessity of not solely relying on human perception for indoor temperature management to protect cold-related health problems.


Cold Temperature , Housing , Seasons , Japan , Humans , Cross-Sectional Studies , Male , Female , Adult , Middle Aged , Aged , Young Adult , Temperature , Heating , Perception
9.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38587406

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Heating , Magnetics , Swine , Animals , Cryopreservation , Ferrosoferric Oxide , Magnetic Fields
10.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629521

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Adult , Female , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Heating , Environmental Monitoring/methods , Risk Assessment , Coal/analysis , China
11.
Sci Rep ; 14(1): 9222, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649433

Microwave (MW) heating has gained significant attention in food industries and biomass-to-biofuels through pyrolysis over conventional heating. However, constraints for promoting MW heating related to the use of different MW absorbers are still a major concern that needs to be investigated. The present study was conducted to explore the MW heating performance of biochar as a low-cost MW absorber for performing pyrolysis. Experiments were performed on biochar under different biochar dosing (25 g, 37.5 g, 50 g), MW power (400 W, 700 W, 1000 W), and particle sizes (6 mm, 8 mm, 10 mm). Results showed that MW power and biochar dosing significantly impacted average heating rate (AHR) from 17.5 to 65.4 °C/min at 400 W and 1000 W at 50 g. AHR first increased, and then no significant changes were obtained, from 37.5 to 50 g. AHR was examined by full factorial design, with 94.6% fitting actual data with predicted data. The model suggested that the particle size of biochar influenced less on AHR. Furthermore, microwave absorption efficiency and biochar weight loss were investigated, and microwave absorption efficiency decreased as MW power increased, which means 17.16% of microwave absorption efficiency was achieved at 400 W rather than 700 W and 1000 W. Biochar weight loss estimated by employing mass-balance analysis, 2-10.4% change in biochar weight loss was obtained owing to higher heating rates at higher powers and biochar dosing.


Charcoal , Microwaves , Pyrolysis , Charcoal/chemistry , Heating , Particle Size , Hot Temperature
12.
Int J Biol Macromol ; 266(Pt 2): 131414, 2024 May.
Article En | MEDLINE | ID: mdl-38582481

This research investigated the impact of ohmic heating (OH) on the physicochemical properties and resistant starch formation in native corn starch. Electric field strengths (EFS) of 50, 75, and 100 V/cm were applied to native starch, at a starch-water ratio of 1:1 w/v. The conductivity of the medium is a crucial factor in ohmic heating. In this study, the conductivity values at 120 °C were measured at 1.5 mS/m. The study revealed two distinct outcomes resulting from the application of different EFS. Firstly, a thermal effect induced gelatinization, resulting in a reduction in the enthalpy of corn starch, an increase in the water absorption index (WAI) and the water solubility index (WSI), and a decrease in peak viscosity. Secondly, a non-thermal effect of OH was observed, leading to the electrolysis of certain starch compounds and water. This electrolysis process generated radicals (-OH) that interacted with starch components, augmenting the percentage of resistant starch. This increase was associated with elevated levels of carbonyl and carboxyl groups at 75 and 100 V/cm.


Electricity , Solubility , Starch , Water , Zea mays , Zea mays/chemistry , Starch/chemistry , Viscosity , Water/chemistry , Heating , Chemical Phenomena , Hot Temperature , Electric Conductivity
13.
Chemosphere ; 356: 141914, 2024 May.
Article En | MEDLINE | ID: mdl-38588899

In this study, electrokinetically-delivered persulfate (PS) coupled with thermal conductive heating (TCH) method was proposed for the remediation of petroleum hydrocarbons (PHs) contaminated low-permeability soil, based on the investigation of PS injection and activation by different electric field form, effective heating radius of TCH to activate PS, and their influencing factors. The uniform delivery and effective activation of PS were unrealizable by one-dimensional electric field (1 V/cm) with the operation of cathode injection, anode injection, bipolar injection, polarity-reversal, or bipolar injection coupled polarity-reversal, which would result in large spatial difference of soil pH and PHs residual. Similar results were obtained under the two-dimensional symmetric electric field (TEF) due to the large spatial difference in electric field intensity. Superimposed electric field (SEF, 1 V/cm) that based on the intermittent worked electrode groups coupled with polarity-reversal (every 3 h) and bipolar injection (10% PS solution) operation could achieve homogenized mass transfer of PS (53.8-65.7 g/kg, average 60.0 g/kg) in 15 days, due to the positive correlation between electric field intensity and transport of ionic substance. Meanwhile, the difference in decontamination efficiency caused by difference in PS activation efficiency could be reduced, since the heating rod was placed at the position where the concentrations of PS was the lowest, whereat the removal of PHs could not rely on alkali activated PS (cathode), anodic oxidation (anode), and electrochemical activated PS (cathode and anode). The residual concentration of PHs in soil remediated by SEF/PS-TCH was in the range of 640.7-763.8 mg/kg (average 701.5 mg/kg), and the corresponding removal efficiency was 73.3%-77.6% (average75.4%). The research can provide an in-situ remediation method for organic contaminants in low permeability soil featured with more uniform PS injection and activation, and small spatial differences in remediation efficiency.


Environmental Restoration and Remediation , Hydrocarbons , Petroleum , Soil Pollutants , Environmental Restoration and Remediation/methods , Hydrocarbons/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Sulfates/chemistry , Permeability , Electrodes , Heating
14.
Curr Environ Health Rep ; 11(2): 204-209, 2024 Jun.
Article En | MEDLINE | ID: mdl-38468075

PURPOSE OF REVIEW: Almost 3 billion people worldwide use solid fuel for cooking and heating. This review examines (i) household energy practices and infrastructures and their influence on fuel usage in different contexts; (ii) barriers in adoption of household clean energy technologies and uses in diverse settings and population groups and (iii) potential air pollution exposure reduction in homes through using processed fuel. RECENT FINDINGS: Population health burden from solid fuel combustion-derived particulate air pollution has been estimated in several low- and middle-income countries. However, such studies have not been carried out in high income countries (e.g., UK). Irrespective of the region, fuel prices are the most dominant factor influencing the choice of fuel. Laboratory studies suggest processed fuel - pellets and briquettes - reduce particulate matter emissions by 70-80% and can be a promising alternative. Adoption of clean fuels for domestic energy needs facilitates progress towards five of the UN Sustainable Development Goals (SDGs). There is evidence that a variety of factors, including cost savings, encourage and hinder such uptake. These factors include price fluctuations, expenses, and the usage of clean fuels. Due to their distinct development scenarios, more expansive policy frameworks, and political economies of energy, these determinants are localized in character and differ significantly amongst economies. Therefore, in order to create innovative plans for the adoption of clean fuel use, strategies centred on local settings must be developed while keeping broad socio-technical and socio-economic issues in mind. Solid fuel processing - pelletization and briquetting - have the potential to reach Liquefied Petroleum Gas (LPG)-like emissions, and could be a potential strategy to mitigate exposure to household air pollution.


Air Pollution, Indoor , Cooking , Heating , Humans , Cooking/methods , Air Pollution, Indoor/prevention & control , Particulate Matter/analysis , Housing , Air Pollutants/analysis
15.
Chem Biol Interact ; 394: 110977, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548214

The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFe2O4) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V5+ centres. However, the toxicity of this material has not been yet studied in detail enough to grant biomedical safety. In this work, we have extensively measured the structural, compositional, and magnetic properties of a series of VxFe3-xO4 spinel ferrite MNPs to assess the surface composition and oxidation state of V atoms, and also performed systematic and extensive in vitro cytotoxicity and genotoxicity testing required to assess their safety in potential clinical applications. We could establish the presence of V5+ at the particle surface even in water-based colloidal samples at pH 7, as well as different amounts of V2+ and V3+ substitution at the A and B sites of the spinel structure. All samples showed large heating efficiency with Specific Loss Power values up to 400 W/g (H0 = 30 kA/m; f = 700 kHz). Samples analysed for safety in human hepatocellular carcinoma (HepG2) cell line with up to 24h of exposure showed that these MNPs did not induce major genomic abnormalities such as micronuclei, nuclear buds, or nucleoplasmic bridges (MNIs, NBUDs, and NPBs), nor did they cause DNA double-strand breaks (DSBs) or aneugenic effects-types of damage considered most harmful to cellular genetic material. The present study is an essential step towards the use of these type of nanomaterials in any biomedical or clinical application.


Ferric Compounds , Humans , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Hep G2 Cells , DNA Damage/drug effects , Cell Survival/drug effects , Hot Temperature , Vanadium/chemistry , Vanadium/toxicity , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Heating , Nanoparticles/chemistry , Nanoparticles/toxicity
16.
Pol J Vet Sci ; 27(1): 53-60, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38511602

The aim of this study was to determine the effects of an ohmic heating (OH) process with different electric field intensities on Listeria monocytogenes inactivation in protein-enriched cow milk. Protein powder was added at rates of 2.5%, 5% and 7.5% in 1.5% fat content milk, and L. monocytogenes (ATCC 13932) strain was then inoculated into the samples. The OH process was carried out in a laboratory-type pilot unit created using stainless steel electrodes, a K-type thermocouple, a datalogger and power supply providing AC current at 0-250 V, 10 A. The inoculated milk samples were heated to 63°C by applying an electric field intensity of 10V/cm and 20V/cm. L. monocytogenes counts, pH, color measurement and hydroxymethylfurfurol levels were then determined. OH applied with an electric field intensity of 10 V/cm caused an average decrease of 5 logs in L. monocytogenes level in the samples containing 2.5% protein and decreased below the detection limit (<1 log) at the 9th minute (p<0.05). Similarly, application of an electric field intensity of 20 V/cm in milk containing 2.5% and 5% protein caused the L.monocytogenes level to decrease below the detection limit (<1 log) at 2 minutes 30 seconds (p<0.05). No change was observed in the L* (brightness) values of the samples but it was determined that there was a slight increase in pH, a* (redness) and b* (yellowness) values compared to the control group. It was observed that the inactivation of L. monocytogenes by OH depends on the duration of the OH process, protein concentration in the milk and the applied voltage gradient.


Listeria monocytogenes , Animals , Listeria monocytogenes/physiology , Milk/chemistry , Heating , Hot Temperature , Food Microbiology
17.
Sci Total Environ ; 927: 171999, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38554951

This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.


Air Pollutants , Biomass , Particulate Matter , Particulate Matter/toxicity , Air Pollutants/toxicity , Heating , Humans , Oxidative Stress
18.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38512116

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Biocompatible Materials , Ferric Compounds , Magnetite Nanoparticles , Biocompatible Materials/chemistry , Silicon Dioxide/chemistry , Ferrosoferric Oxide , Heating , Ceramics/pharmacology , Ceramics/chemistry
19.
Phys Med Biol ; 69(8)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38471172

Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.


Hyperthermia, Induced , Neoplasms , Animals , Mice , Heating , Neoplasms/therapy , Hyperthermia, Induced/methods , Hot Temperature , Software
20.
Food Res Int ; 181: 114075, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448093

Directional and rapid formation of the Amadori rearrangement product (ARP) from the glutamic acid and xylose was achieved through intermittent microwave heating. The yield of ARP reached 58.09 % by subjecting the system to intermittent microwave heating at a power density of 10 W/g for 14 min. Dehydration rate and microwave effects were found to be key factors to optimize the conditions for directional and rapid preparation of the ARP. Through a comprehensive analysis of the ARP degradation and further browning under both conductive and microwave thermal processing, it was observed that microwave processing significantly accelerated the browning degree of systems, leading to a tenfold reduction in the heating time required for browning. This research presented a promising avenue for the development of novel and expedited methods for the production of ARP and highlighted the potential of ARP in enhancing color quality in fast-cooking applications utilizing microwave.


Glutamic Acid , Heating , Microwaves , Xylose , Cooking
...