Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Nature ; 595(7865): 85-90, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33981037

RESUMEN

The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Mutación , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Células Clonales/citología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Feto/citología , Feto/embriología , Feto/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Salud , Sistema Hematopoyético/citología , Humanos , Cariotipificación , Masculino , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Tasa de Mutación , Especificidad de Órganos/genética , Factores de Tiempo , Secuenciación Completa del Genoma , Flujo de Trabajo
2.
Sci Rep ; 9(1): 11434, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391476

RESUMEN

The highly conserved SNARE protein SEC22B mediates diverse and critical functions, including phagocytosis, cell growth, autophagy, and protein secretion. However, these characterizations have thus far been limited to in vitro work. Here, we expand our understanding of the role Sec22b plays in vivo. We utilized Cre-Lox mice to delete Sec22b in three tissue compartments. With a germline deletion of Sec22b, we observed embryonic death at E8.5. Hematopoietic/endothelial cell deletion of Sec22b also resulted in in utero death. Notably, mice with Sec22b deletion in CD11c-expressing cells of the hematopoietic system survive to adulthood. These data demonstrate Sec22b contributes to early embryogenesis through activity both in hematopoietic/endothelial tissues as well as in other tissues yet to be defined.


Asunto(s)
Desarrollo Embrionario , Células Endoteliales/metabolismo , Sistema Hematopoyético/embriología , Proteínas R-SNARE/metabolismo , Animales , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas R-SNARE/genética
3.
Genesis ; 57(7-8): e23306, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31111645

RESUMEN

One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Tretinoina/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Transducción de Señal
4.
Development ; 145(2)2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358215

RESUMEN

Hematopoietic stem cells (HSCs) develop in discrete anatomical niches, migrating during embryogenesis from the aorta-gonad-mesonephros (AGM) region to the fetal liver, and finally to the bone marrow, where most HSCs reside throughout adult life. These niches provide supportive microenvironments that specify, expand and maintain HSCs. Understanding the constituents and molecular regulation of HSC niches is of considerable importance as it could shed new light on the mechanistic principles of HSC emergence and maintenance, and provide novel strategies for regenerative medicine. However, controversy exists concerning the cellular complexity of the bone marrow niche, and our understanding of the different HSC niches during development remains limited. In this Review, we summarize and discuss what is known about the heterogeneity of the HSC niches at distinct stages of their ontogeny, from the embryo to the adult bone marrow, drawing predominantly on data from mouse studies.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Nicho de Células Madre/fisiología , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Aorta/embriología , Linaje de la Célula , Femenino , Gónadas/embriología , Neoplasias Hematológicas/patología , Sistema Hematopoyético/embriología , Humanos , Masculino , Mesonefro/embriología , Ratones , Placenta/citología , Placenta/fisiología , Embarazo , Células del Estroma/citología , Células del Estroma/fisiología , Sistema Nervioso Simpático/embriología , Sistema Nervioso Simpático/fisiología
5.
Curr Top Dev Biol ; 124: 125-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28335858

RESUMEN

Zebrafish are one of the preeminent model systems for the study of blood development (hematopoiesis), hematopoietic stem and progenitor cell (HSPC) biology, and hematopathology. The zebrafish hematopoietic system shares strong similarities in functional populations, genetic regulators, and niche interactions with its mammalian counterparts. These evolutionarily conserved characteristics, together with emerging technologies in live imaging, compound screening, and genetic manipulation, have been employed to successfully identify and interrogate novel regulatory mechanisms and molecular pathways that guide hematopoiesis. Significantly, perturbations in many of the key developmental signals controlling hematopoiesis are associated with hematological disorders and disease, including anemia, bone marrow failure syndromes, and leukemia. Thus, understanding the regulatory pathways controlling HSPC production and function has important clinical implications. In this review, we describe how the blood system forms and is maintained in zebrafish, with particular focus on new insights into vertebrate hematological regulation gained using this model. The interplay of factors controlling development and disease in the hematopoietic system combined with the unique attributes of the zebrafish make this a powerful platform to discover novel targets for the treatment of hematological disease.


Asunto(s)
Neoplasias Hematológicas/patología , Hematopoyesis , Pez Cebra/fisiología , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/citología , Sistema Hematopoyético/embriología , Pez Cebra/embriología
6.
PLoS One ; 12(2): e0172227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28192479

RESUMEN

Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALENs, and we have gone on to establish a viable homozygous tmem88aΔ8 mutant line. Although tmem88aΔ8 mutants have reduced expression of some key haematopoietic genes, differentiation of erythrocytes and neutrophils is unaffected, contradicting our previous study using antisense morpholino oligonucleotides. We find that expression of the tmem88a paralogue tmem88b is not significantly changed in tmem88aΔ8 mutants and injection of the tmem88a splice-blocking morpholino oligonucleotide into tmem88aΔ8 mutants recapitulates the reduction of erythrocytes observed in morphants using o-Dianisidine. This suggests that there is a partial, but inessential, requirement for tmem88a during haematopoiesis and that morpholino injection exacerbates this phenotype in tmem88a morpholino knockdown embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Proteínas de la Membrana/genética , Mutación , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Hibridación in Situ , Proteínas de la Membrana/clasificación , Morfolinos/genética , Fenotipo , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Pez Cebra/embriología , Proteínas de Pez Cebra/clasificación
7.
Mutat Res Rev Mutat Res ; 767: 1-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27036061

RESUMEN

Genotoxic sensitivity seems to vary during ontogenetic development. Animal studies have shown that the spontaneous mutation rate is higher during pregnancy and infancy than in adulthood. Human and animal studies have found higher levels of DNA damage and mutations induced by mutagens in fetuses/newborns than in adults. This greater susceptibility could be due to reduced DNA repair capacity. In fact, several studies indicated that some DNA repair pathways seem to be deficient during ontogenesis. This has been demonstrated also in murine hematopoietic stem cells. Genotoxicity in the hematopoietic system has been widely studied for several reasons: it is easy to assess, deals with populations cycling also in the adults and may be relevant for leukemogenesis. Reviewing the literature concerning the application of the micronucleus test (a validated assay to assess genotoxicity) in fetus/newborns and adults, we found that the former show almost always higher values than the latter, both in animals treated with genotoxic substances and in those untreated. Therefore, we draw the conclusion that the genotoxic sensitivity of the hematopoietic system is more pronounced during fetal life and decreases during ontogenic development.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Hematopoyesis/genética , Sistema Hematopoyético/embriología , Mutágenos/toxicidad , Animales , Femenino , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Pruebas de Micronúcleos , Embarazo
8.
FEBS J ; 283(15): 2779-810, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26881825

RESUMEN

Members of the Bcl-2 protein family regulate cell fate decisions following a variety of developmental cues or stress signals, with the outcomes of cell death or survival, thus shaping multiple mammalian tissues. This review describes in detail how anti- and proapoptotic Bcl-2 proteins contribute to the development and functioning of the fetal and adult hematopoietic systems and how they influence the generation and maintenance of different hematopoietic lineages. An overview on how stress signals such as genotoxic stress or inflammation can compromise blood cell production, partially by engaging the intrinsic apoptosis pathway, is presented. Finally, the review describes how Bcl-2 protein deregulation-either leading to increased apoptosis resistance or excessive cell death-contributes to many hematological disorders, with specific focus on rare disorders of hematopoiesis and how this knowledge may be used therapeutically.


Asunto(s)
Apoptosis , Hematopoyesis , Sistema Hematopoyético/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Animales , Linaje de la Célula , Supervivencia Celular , Enfermedades Hematológicas/etiología , Trasplante de Células Madre Hematopoyéticas , Sistema Hematopoyético/embriología , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estrés Fisiológico
11.
Development ; 142(15): 2719-24, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26243871

RESUMEN

Endothelial-to-hematopoietic transition (EHT) occurs within a population of hemogenic endothelial cells during embryogenesis, and leads to the formation of the adult hematopoietic system. Currently, the prospective identification of specific endothelial cells that will undergo EHT, and the cellular events enabling this transition, are not known. We set out to define precisely the morphological events of EHT, and to correlate cellular morphology with the expression of the transcription factors RUNX1 and SOX17. A novel strategy was developed to allow for correlation of immunofluorescence data with the ultrastructural resolution of scanning electron microscopy. The approach can identify single endothelial cells undergoing EHT, as identified by the ratio of RUNX1 to SOX17 immunofluorescence levels, and the morphological changes associated with the transition. Furthermore, this work details a new technical resource that is widely applicable for correlative analyses of single cells in their native tissue environments.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hemangioblastos/citología , Sistema Hematopoyético/embriología , Factores de Transcripción SOXF/metabolismo , Análisis de la Célula Individual/métodos , Animales , Técnica del Anticuerpo Fluorescente , Sistema Hematopoyético/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Electrónica de Rastreo , Microscopía Fluorescente
12.
J Clin Invest ; 125(5): 2032-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25866967

RESUMEN

Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.


Asunto(s)
Aorta/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Gónadas/embriología , Sistema Hematopoyético/embriología , Mesonefro/embriología , Receptor Notch1/fisiología , Receptor Notch2/fisiología , Nicho de Células Madre/fisiología , Animales , Antígenos CD/análisis , Cadherinas/análisis , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Endotelio Vascular/citología , Femenino , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Péptidos y Proteínas de Señalización Intracelular/fisiología , Antígenos Comunes de Leucocito/análisis , Masculino , Proteínas de la Membrana/fisiología , Ratones Congénicos , Ratones Endogámicos C57BL , Quimera por Radiación , Transducción de Señal , Células del Estroma/fisiología
13.
Exp Hematol ; 42(3): 230-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24316337

RESUMEN

Trans-membrane (or T cell) immunoglobulin and mucin (TIM) molecules are known regulators of immune response whose function in hematopoiesis is unknown. Earlier, we found that tim-1 and tim-4 are expressed by CD45(+) cells in the para-aortic region of chicken embryo. Because the para-aortic region is a known site for hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) differentiation and expansion, we hypothesize that TIM molecules have a role in hematopoiesis. To study this role further, we analyzed TIM expression more precisely in chicken para-aortic region and mouse fetal liver hematopoietic cells. Additionally, we examined the hematopoietic potential of TIM-4(+) mouse fetal liver cells with a colony-forming assay. tim-1 gene expression was detected in chicken and mouse embryos in the aorta-gonads-mesonephros-region at the time of HSC emergence, whereas tim-3 mRNA was widely expressed in different tissues. tim-4 expression was restricted to fetal liver CD45(+)F4/80(+) cells. Moreover, two TIM-4(+) populations were distinguished: F4/80(hi)TIM-4(hi) and F4/80(lo)TIM-4(lo). F4/80(hi)TIM-4(hi) cells had no hematopoietic potential and were morphologically similar to mature macrophages, suggesting that they are yolk sac-derived macrophages. Instead, many of the F4/80(lo)TIM-4(lo) cells were c-kit(+) and Sca-1(+) and had primitive morphology and multilineage colony-forming ability. In addition, F4/80(lo)TIM-4(lo) cells included a considerable population expressing ER-MP12, a known marker for macrophage colony-forming cells and other myeloid progenitors. We conclude that TIM molecules are expressed in embryonic hematopoietic tissues in chicken and mouse and that in fetal liver, TIM-4 is expressed by myeloid progenitor cells.


Asunto(s)
Proteínas Aviares/genética , Sistema Hematopoyético/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Antígenos de Diferenciación/metabolismo , Proteínas Aviares/metabolismo , Embrión de Pollo , Pollos , Ensayo de Unidades Formadoras de Colonias , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Sistema Hematopoyético/embriología , Antígenos Comunes de Leucocito/metabolismo , Hígado/citología , Hígado/embriología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/citología , Células Mieloides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
14.
Blood ; 122(24): 3929-39, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24100450

RESUMEN

The developmental relationship between the blood and endothelial cell (EC) lineages remains unclear. In the extra-embryonic blood islands of birds and mammals, ECs and blood cells are closely intermixed, and blood island precursor cells in the primitive streak express many of the same molecular markers, leading to the suggestion that both lineages arise from a common precursor, called the hemangioblast. Cells within the blood island of Xenopus also coexpress predifferentiation markers of the blood and EC lineages. However, using multiple assays, we find that precursor cells in the Xenopus blood island do not normally differentiate into ECs, suggesting that classic hemangioblasts are rare or nonexistent in Xenopus. What prevents these precursor cells from developing into mature ECs? We have found that bone morphogenetic protein (BMP) signaling is essential for erythroid differentiation, and in the absence of BMP signaling, precursor cells adopt an EC fate. Furthermore, inhibition of the erythroid transcription pathway leads to endothelial differentiation. Our results indicate that bipotential endothelial/erythroid precursor cells do indeed exist in the Xenopus blood island, but BMP signaling normally acts to constrain EC fate. More generally, these results provide evidence that commitment to the erythroid lineage limits development of bipotential precursors toward an endothelial fate.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Células Endoteliales/metabolismo , Endotelio/metabolismo , Células Precursoras Eritroides/metabolismo , Hemangioblastos/metabolismo , Proteínas de Xenopus/genética , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Movimiento Celular/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Células Endoteliales/citología , Endotelio/citología , Endotelio/embriología , Células Precursoras Eritroides/citología , Eritropoyesis/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemangioblastos/citología , Sistema Hematopoyético/citología , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Hibridación in Situ , Microscopía Fluorescente , Pirazoles/farmacología , Pirimidinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética
15.
Blood ; 122(24): 3918-28, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24128862

RESUMEN

Granulocyte colony-stimulating factor (Gcsf) drives the proliferation and differentiation of granulocytes, monocytes, and macrophages (mφs) from hematopoietic stem and progenitor cells (HSPCs). Analysis of the zebrafish genome indicates the presence of 2 Gcsf ligands, likely resulting from a duplication event in teleost evolution. Although Gcsfa and Gcsfb share low sequence conservation, they share significant similarity in their predicted ligand/receptor interaction sites and structure. Each ligand displays differential temporal expression patterns during embryogenesis and spatial expression patterns in adult animals. To determine the functions of each ligand, we performed loss- and gain-of-function experiments. Both ligands signal through the Gcsf receptor to expand primitive neutrophils and mφs, as well as definitive granulocytes. To further address their functions, we generated recombinant versions and tested them in clonal progenitor assays. These sensitive in vitro techniques indicated similar functional attributes in supporting HSPC growth and differentiation. Finally, in addition to supporting myeloid differentiation, zebrafish Gcsf is required for the specification and proliferation of hematopoietic stem cells, suggesting that Gcsf represents an ancestral cytokine responsible for the broad support of HSPCs. These findings may inform how hematopoietic cytokines evolved following the diversification of teleosts and mammals from a common ancestor.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/genética , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor Estimulante de Colonias de Granulocitos/metabolismo , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Hibridación in Situ , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Confocal , Mielopoyesis/genética , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
16.
PLoS One ; 8(8): e71782, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990987

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome that is characterized by pure red-cell aplasia and associated physical deformities. It has been proven that defects of ribosomal proteins can lead to this disease and that RPS19 is the most frequently mutated gene in DBA patients. Previous studies suggest that p53-dependent genes and pathways play important roles in RPS19-deficient embryos. However, whether there are other vital factors linked to DBA has not been fully clarified. In this study, we compared the whole genome RNA-Seq data of zebrafish embryos injected with RPS19 morpholino (RPS19 MO), RPS19 and p53 morpholino simultaneously (RPS19+p53 MO) and control morpholino (control). We found that genes enriched in the functions of hematological systems, nervous system development and skeletal and muscular disorders had significant differential expression in RPS19 MO embryos compared with controls. Co-inhibition of p53 partially alleviates the abnormalities for RPS19-deficient embryos. However, the hematopoietic genes, which were down-regulated significantly in RPS19 MO embryos, were not completely recovered by the co-inhibition of p53. Furthermore, we identified the genome-wide p53-dependent and -independent genes and pathways. These results indicate that not only p53 family members but also other factors have important impacts on RPS19-deficient embryos. The detection of potential pathogenic genes and pathways provides us a new paradigm for future research on DBA, which is a systematic and complex hereditary disease.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Humanos , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/deficiencia , Transducción de Señal/genética , Pez Cebra/embriología
17.
Int J Dev Biol ; 57(5): 407-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23873372

RESUMEN

Hippo signaling is a conserved pathway that regulates cell proliferation and organ size control. Mst1 and Mst2 were identified as homologs of hippo and as core kinases of the Hippo pathway in mammals. Here, we have characterized the role of Mst1 and Mst2 during Xenopus primitive hematopoiesis. We showed that Mst1 and Mst2 were strongly expressed in the Xenopus ventral blood island, where primitive hematopoiesis is initiated. Loss-of-function analysis of Mst1/2 revealed morphogenetic defects, including short axis, smaller eyes and abnormal epidermis, and decreased phosphorylation of Yap. Mst1/2 morphants did not exhibit any change in the expression of hematopoietic and endothelial progenitor markers in early hematopoietic development. In addition, we have shown that such progenitor markers were continuously expressed through to the late hematopoietic development stage. As a result, the expression of erythroid, myeloid and endothelial differentiation markers were decreased in Mst1/2 morphants. Our results indicate that Mst1/2 act as a differentiation switch in Xenopus hematopoietc and endothelial progenitors.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Células Madre/metabolismo , Proteínas de Xenopus/genética , Xenopus/genética , Animales , Secuencia de Bases , Western Blotting , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endotelio/citología , Endotelio/embriología , Endotelio/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sistema Hematopoyético/citología , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Mioblastos/citología , Mioblastos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasa 3 , Transactivadores/genética , Transactivadores/metabolismo , Xenopus/embriología , Proteínas de Xenopus/metabolismo , Proteínas Señalizadoras YAP
18.
Cell Stem Cell ; 12(5): 587-601, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23642367

RESUMEN

Mesp1 is regarded as the master regulator of cardiovascular development, initiating the cardiac transcription factor cascade to direct the generation of cardiac mesoderm. To define the early embryonic cell population that responds to Mesp1, we performed pulse inductions of gene expression over tight temporal windows following embryonic stem cell differentiation. Remarkably, instead of promoting cardiac differentiation in the initial wave of mesoderm, Mesp1 binds to the Tal1 (Scl) +40 kb enhancer and generates Flk-1+ precursors expressing Etv2 (ER71) and Tal1 that undergo hematopoietic differentiation. The second wave of mesoderm responds to Mesp1 by differentiating into PDGFRα+ precursors that undergo cardiac differentiation. Furthermore, in the absence of serum-derived factors, Mesp1 promotes skeletal myogenic differentiation. Lineage tracing revealed that the majority of yolk sac and many adult hematopoietic cells derive from Mesp1+ precursors. Thus, Mesp1 is a context-dependent determination factor, integrating the stage of differentiation and the signaling environment to specify different lineage outcomes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Corazón/embriología , Sistema Hematopoyético/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Células Madre/citología , Envejecimiento/metabolismo , Animales , Emparejamiento Base/genética , Células de la Médula Ósea/citología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Hematopoyesis , Sistema Hematopoyético/citología , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos , Músculo Esquelético/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Células Madre/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Tiempo , Factores de Transcripción/metabolismo , Saco Vitelino/metabolismo
19.
Blood ; 121(15): 2902-13, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23390196

RESUMEN

The first site exhibiting hematopoietic activity in mammalian development is the yolk-sac blood island, which originates from the hemangioblast. Here we performed differentiation assays, as well as genome-wide molecular and functional studies in blast colony-forming cells to gain insight into the function of the essential Ldb1 factor in early primitive hematopoietic development. We show that the previously reported lack of yolk-sac hematopoiesis and vascular development in Ldb1(-/-) mouse result from a decreased number of hemangioblasts and a block in their ability to differentiate into erythroid and endothelial progenitor cells. Transcriptome analysis and correlation with the genome-wide binding pattern of Ldb1 in hemangioblasts revealed a number of direct-target genes and pathways misregulated in the absence of Ldb1. The regulation of essential developmental factors by Ldb1 defines it as an upstream transcriptional regulator of hematopoietic/endothelial development. We show the complex interplay that exists between transcription factors and signaling pathways during the very early stages of hematopoietic/endothelial development and the specific signaling occurring in hemangioblasts in contrast to more advanced hematopoietic developmental stages. Finally, by revealing novel genes and pathways not previously associated with early development, our study provides novel candidate targets to manipulate the differentiation of hematopoietic and/or endothelial cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Hematopoyesis/genética , Proteínas con Dominio LIM/genética , Transducción de Señal/genética , Saco Vitelino/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Hemangioblastos/citología , Hemangioblastos/metabolismo , Sistema Hematopoyético/irrigación sanguínea , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saco Vitelino/irrigación sanguínea , Saco Vitelino/embriología
20.
Exp Hematol ; 41(6): 567-581.e9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23438573

RESUMEN

Hematopoietic cells (HPCs) develop from hemogenic endothelial cells (ECs), a specialized type of ECs undergoing hematopoietic transition. However, the mesoderm origin for hemogenic ECs or HPCs has not been clarified. To examine the origin for hemogenic mesoderm, we inactivated Etv2, a master regulator for EC/HPC commitment, in specific regions. Region-specific Etv2 ablation in early mesoderm caused local EC differentiation block, resulting in the loss of specific vascular beds without compensatory migration of residual ECs into avascular area. This feature of local EC/HPC differentiation block was correlated to the hemogenic potential of each mesoderm subset. We found that caudal-lateral mesoderm of E7.5-8.5 embryos represent the pre-committed population critical for generating hemogenic ECs. Etv2 ablation in caudal-lateral mesoderm by Hoxb6 Cre or Hoxb6CreER transgene affected vitelline plexus formation and intra-aortic hematopoietic clusters. In differentiated embryonic stem cells, this mesoderm subset marked by Hoxb6-lateral mesoderm promoter showed enriched T lymphopoietic potential among Flk-1(+) cells, which could be regarded as a characteristic for definitive HPCs. These findings indicate that critical mesoderm precursors possibly for definitive type hemogenic ECs are regionally specified in primitive mesoderm, suggesting that Hoxb6(+) caudal-lateral mesoderm represents the critical source of HPCs, which are potentially useful to enrich definitive HPCs from embryonic stem cells.


Asunto(s)
Vasos Sanguíneos/embriología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Sistema Hematopoyético/embriología , Mesodermo/fisiología , Factores de Transcripción/antagonistas & inhibidores , Animales , Movimiento Celular , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Linfocitos/citología , Linfocitos/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA