Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.713
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132041, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705315

RESUMEN

Hemocyanin, an oxygen-transport protein, is widely distributed in the hemolymph of marine arthropods and mollusks, playing an important role in their physiological processes. Recently, hemocyanin has been recognized as a multifunctional glycoprotein involved in the immunological responses of aquatic invertebrates. Consequently, the link between hemocyanin functions and their potential applications has garnered increased attention. This review offers an integrated overview of hemocyanin's structure, physicochemical characteristics, and bioactivities to further promote the utilization of hemocyanin derived from marine products. Specifically, we review its implication in two aspects of food and aquaculture industries: quality and health. Hemocyanin's inducible phenoloxidase activity is thought to be an inducer of melanosis in crustaceans. New anti-melanosis agents targeted to hemocyanin need to be explored. The red-color change observed in shrimp shells is related to hemocyanin, affecting consumer preferences. Hemocyanin's adaptive modification in response to the aquatic environment is available as a biomarker. Additionally, hemocyanin is endowed with bioactivities encompassing anti-microbial, antiviral, and therapeutic activities. Hemocyanin is also a novel allergen and its allergenic features remain incompletely characterized.


Asunto(s)
Hemocianinas , Hemocianinas/química , Animales , Industria de Alimentos , Organismos Acuáticos/química , Humanos
2.
Mar Drugs ; 22(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786612

RESUMEN

The development of antitumor drugs and therapy requires new approaches and molecules, and products of natural origin provide intriguing alternatives for antitumor research. Gastropodan hemocyanins-multimeric copper-containing glycoproteins have been used in therapeutic vaccines and antitumor agents in many cancer models. MATERIALS AND METHODS: We established a murine model of melanoma by challenging C57BL/6 mice with a B16F10 cell line for solid tumor formation in experimental animals. The anticancer properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) were evaluated in this melanoma model using various schemes of therapy. Flow cytometry, ELISA, proliferation, and cytotoxicity assays, as well as histology investigations, were also performed. RESULTS: Beneficial effects on tumor growth, tumor incidence, and survival of tumor-bearing C57BL/6 mice after administration of the RtH or HaH were observed. The generation of high titers of melanoma-specific IgM antibodies, pro-inflammatory cytokines, and tumor-specific CTLs, and high levels of tumor-infiltrated M1 macrophages enhanced the immune reaction and tumor suppression. DISCUSSION: Both RtH and HaH exhibited promising properties for applications as antitumor therapeutic agents and future experiments with humans.


Asunto(s)
Hemocianinas , Melanoma Experimental , Ratones Endogámicos C57BL , Animales , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Ratones , Hemocianinas/farmacología , Hemocianinas/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Moluscos/química , Modelos Animales de Enfermedad , Citocinas/metabolismo , Caracoles , Proliferación Celular/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/inmunología
3.
J Med Chem ; 67(9): 7458-7469, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38634150

RESUMEN

Adjuvant is an integral part of all vaccine formulations but only a few adjuvants with limited efficacies or application scopes are available. Thus, developing more robust and diverse adjuvants is necessary. To this end, a new class of adjuvants having α- and ß-rhamnose (Rha) attached to the 1- and 6'-positions of monophosphoryl lipid A (MPLA) was designed, synthesized, and immunologically evaluated in mice. The results indicated a synergistic effect of MPLA and Rha, two immunostimulators that function via interacting with toll-like receptor 4 and recruiting endogenous anti-Rha antibodies, respectively. All the tested MPLA-Rha conjugates exhibited potent adjuvant activities to promote antibody production against both protein and carbohydrate antigens. Overall, MPLA-α-Rha exhibited better activities than MPLA-ß-Rha, and 6'-linked conjugates were slightly better than 1-linked ones. Particularly, MPLA-1-α-Rha and MPLA-6'-α-Rha were the most effective adjuvants in promoting IgG antibody responses against protein antigen keyhole limpet hemocyanin and carbohydrate antigen sTn, respectively.


Asunto(s)
Lípido A , Ramnosa , Lípido A/análogos & derivados , Lípido A/química , Lípido A/farmacología , Lípido A/inmunología , Animales , Ramnosa/química , Ramnosa/inmunología , Ramnosa/farmacología , Ratones , Adyuvantes de Vacunas/química , Adyuvantes de Vacunas/farmacología , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/síntesis química , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Hemocianinas/química , Hemocianinas/inmunología
4.
Toxicol Appl Pharmacol ; 486: 116918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570042

RESUMEN

Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.


Asunto(s)
Analgésicos Opioides , Anticuerpos Monoclonales , Fentanilo , Hemocianinas , Fentanilo/inmunología , Animales , Analgésicos Opioides/farmacología , Anticuerpos Monoclonales/farmacología , Ratones , Hemocianinas/inmunología , Humanos , Ratones Endogámicos BALB C , Masculino , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/inmunología , Distribución Tisular , Femenino , Haptenos/inmunología
5.
Structure ; 32(6): 812-823.e4, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38513659

RESUMEN

Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown. This study reports two sequence fragments of CCH, representing three complete functional units (FUs). We also determined the high-resolution (1.5 Å) X-ray crystal structure of an "FU-g type" from the CCHB subunit. This structure enables in-depth analysis of chemical interactions at the copper-binding center and unveils an unusual, truncated N-glycosylation pattern. These features are linked to eliciting more robust immunological responses in animals, offering insights into CCH's enhanced immunostimulatory properties and opening new avenues for its potential applications in biomedical research and therapies.


Asunto(s)
Secuencia de Aminoácidos , Hemocianinas , Modelos Moleculares , Hemocianinas/química , Hemocianinas/inmunología , Animales , Cristalografía por Rayos X , Glicosilación , Sitios de Unión , Gastrópodos/inmunología , Gastrópodos/química , Cobre/química , Moluscos/inmunología , Unión Proteica
6.
Methods Mol Biol ; 2789: 217-228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507007

RESUMEN

Adverse drug effects on immune system function represent a significant concern in the pharmaceutical industry, because 10-20% of drug withdrawal from the market is attributed to immunotoxicity. Immunosuppression is one such adverse effect. The traditional immune function test used to estimate materials' immunosuppression is T cell dependent antibody response (TDAR). This method involves a 28-day in vivo study evaluating the animal's antibody titer to a known antigen (Keyhole Limpet Hemocyanin; KLH) with and without challenge. Due to the limited quantities of novel drug candidates, an in vitro method called human lymphocyte activation (HuLA) assay has been developed to substitute the traditional TDAR assay during early preclinical development. In this test, leukocytes isolated from healthy donors vaccinated with the current year's flu vaccine are incubated with Fluzone in the presence or absence of nanoparticles. The antigen-specific lymphocyte proliferation is then measured by ELISA analyzing incorporation of BrdU into DNA of the proliferating cells. Here we describe the experimental procedures for investigating immunosuppressive properties of nanoparticles by both TDAR and HuLA assays, discuss the in vitro-in vivo correlation of these methods, and show a case study using the iron oxide nanoparticle formulation, Feraheme.


Asunto(s)
Formación de Anticuerpos , Nanopartículas , Animales , Humanos , Inmunosupresores/farmacología , Terapia de Inmunosupresión , Leucocitos , Antígenos/farmacología , Hemocianinas
7.
Fish Shellfish Immunol ; 147: 109435, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336144

RESUMEN

Pseudohemocyanin is a member of the hemocyanin superfamily, but little research is available on its function in immunology. In this study, a Portunus trituberculatus pseudohemocyanin gene, named PtPhc1, was obtained by gene cloning. The PtPhc1 cDNA was 2312 bp in length, encoding 684 amino acids while exhibiting a characteristic hemocyanin structural domain. Tissue expression analysis revealed ubiquitous expression of PtPhc1 across all tissues, with the highest level of expression observed in the hepatopancreas. The expression pattern of PtPhc1 in response to Vibrio parahaemolyticus infection was clarified using RT-qPCR in swimming crabs. Notably, the expression peaked at 24 h, and increased 1435-fold compared to the control group in the hepatopancreas. While the expression level reached the maximum value at 72 h, which was 3.24 times higher than that of the control group in hemocytes. Remarkably, the reduction in PtPhc1 expression led to a noteworthy 30% increase in the mortality rate of P. trituberculatus when exposed to V. parahaemolyticus. In addition, in vitro bacterial inhibition assays exhibited a dose-dependent suppression of bacterial proliferation by recombinant PtPhc1 protein, with a notable inhibition rate of 48.33% against V. parahaemolyticus at a concentration of 0.03 mg/mL. To the best of our knowledge, the results establish the function of pseudohaemocyanin in immunity for the first time, contributing to a deeper comprehension of innate immune regulatory mechanisms in aquatic organisms and advancing strategies for disease-resistant breeding.


Asunto(s)
Braquiuros , Vibrio parahaemolyticus , Animales , Secuencia de Bases , Secuencia de Aminoácidos , Vibrio parahaemolyticus/genética , Hemocianinas/genética , Natación , Filogenia
8.
Fish Shellfish Immunol ; 146: 109409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325593

RESUMEN

Hemocyanin is a multifunctional protein present in arthropods and mollusks, responsible for oxygen transport and participating in multiple roles of immune defense including antibacterial activity. However, the molecular basis of how hemocyanin recognizes pathogens and exerts antibacterial activity remains poorly understood. In the present study, the pull-down assay was used to isolate Vibrio parahaemolyticus outer membrane proteins (OMPs) that bind to Litopenaeus vannamei hemocyanin. Two interacting OMPs bands were determined as OmpC and OmpU, and the heterogeneous interaction between hemocyanin and the two OMPs was further confirmed by far-Western blot. After construction of ompC and ompU deletion mutants, we found that the agglutinating activity and antibacterial activity of hemocyanin significantly decreased compared to the wild-type strain. After hemocyanin treatment, we identified four intracellular proteins of V. parahaemolyticus, including fructose-bisphosphate aldolase and ribosomal proteins could interact with rOmpC and rOmpU, respectively. Furthermore, we found that the mRNA levels of ompC, ompU, fbaA, rpsB and rpsC significantly decreased after hemocyanin treatment. These findings indicated that OmpC and OmpU are the key targets for L. vannamei hemocyanin recognize pathogens and exert its antibacterial activity.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Hemocianinas , Secuencia de Aminoácidos , Antibacterianos
9.
Dev Comp Immunol ; 151: 105087, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37898353

RESUMEN

Hemocyanin is a respiratory protein, it is also a multifunctional immune molecule that plays a vital role against pathogen invasion in shrimp. However, the regulation of hemocyanin gene expression in shrimp hemocytes and the mechanisms involved during pathogen infection remains unclear. Here, we used DNA pull-down followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the Yin Yang 1 transcription factor homolog in Penaeus vannamei (PvYY1) as a key factor that modulates transcription of the small subunit hemocyanin gene of P. vannamei (PvHMCs) in hemocytes during Vibrio parahaemolyticus AHPND (VPAHPND) infection. Bioinformatics analysis revealed that the core promoter region of PvHMCs contains two YY1 motifs. Mutational and oligoprecipitation analyses confirmed that PvYY1 could bind to the YY1 motifs in the PvHMCs core promoter region, while truncation of PvYY1 revealed that the N-terminal domain of PvYY1 is essential for the transactivation of PvHMCs core promoter. Besides, the REPO domain of PvYY1 could repress the activity of the PvHMCs core promoter. Overexpression of PvYY1 significantly activates the promoter activity of PvHMCs core promoter, while PvYY1 knockdown significantly decreases the expression level of PvHMCs in shrimp hemocytes and survival rate of shrimp upon infection with VPAHPND. Our present study provides new insights into the transcriptional regulation of PvHMCs by PvYY1 in shrimp hemocytes during bacteria (VPAHPND) infection.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Hemocianinas , Proteínas de Artrópodos/genética , Cromatografía Liquida , Yin-Yang , Espectrometría de Masas en Tándem , Inmunidad Innata/genética
10.
Chemosphere ; 349: 140739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000557

RESUMEN

2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is widespread in the environment and biological samples. Its association with health risks is an increasing concern, yet information on BDE-47 immunotoxicity remains limited. This study investigated the impact of BDE-47 on innate and adaptive immune responses through in vitro and in vivo approaches. BDE-47's capacity to directly induce cell responses and modulate responses induced by known stimuli was studied in vitro using the RAW 264.7 murine macrophage cell line and spleen-derived lymphocytes, and in vivo using keyhole limpet hemocyanin (KLH)-immunized BALB/c mice orally administered (28 d) at dose levels (7.5, 15.0 and 30 mg/kg/bw/d) derived from relevant toxicokinetic data from rodent models. RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and exposed to BDE-47 exhibited unchanged cell viability but decreased release of interleukin (IL)-6. Primary splenocytes from naïve mice stimulated with anti-CD3/anti-CD28 antibodies and exposed to BDE-47 showed a significant decrease of IL-17 A and IFNγ production. In vivo data showed that BDE-47 significantly reduced the KLH-specific antibody response. A generally decreasing trend of IFNγ, IL-10 and IL-5 production was observed after in vitro antigen-specific restimulation of spleen cells. Histopathological effects on liver, spleen, small intestine and thyroid were detected at the highest dose in the absence of general toxicity. In addition, the expression of Mm_mir155 and Mm_let7a was induced in livers of exposed mice. The data obtained in this study suggest that exposure to BDE-47 may perturb innate and adaptive immune responses, thus possibly decreasing resistance to bacterial and viral infections.


Asunto(s)
Inmunidad , Interleucina-6 , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Hemocianinas
11.
Fish Shellfish Immunol ; 145: 109347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160900

RESUMEN

Hemocyanin is the main respiratory protein of arthropods and is formed by hexameric and/or oligomeric subunits. Due to changes in the living environment and gene rearrangement, various hemocyanin subtypes and subunits evolved in crustaceans. This paper reviews the various hemocyanin subtypes and isoforms in shrimp and analyses published genomic data of sixteen hemocyanin family genes from Litopenaeus vannamei to explore the evolution of hemocyanin genes, subunits, and protein structure. Analysis of hemocyanin subtypes distribution and structure in various tissues was also performed and related to multiple and tissue-specific functions, i.e., immunological activity, immune signaling, phenoloxidase activity, modulation of microbiota homeostasis, and energy metabolism. The functional diversity of shrimp hemocyanin due to molecular polymorphism, transcriptional regulation, alternative splicing, degradation into functional peptides, interaction with other proteins or genes, and structural differences will also be highlighted for future research. Inferences would be drawn from other crustaceans to explain how evolution has changed the structure-function of hemocyanin and its implication for evolutionary research into the multifunctionality of hemocyanin and other related proteins in shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Isoformas de Proteínas/genética , Péptidos/genética , Empalme Alternativo
12.
Front Immunol ; 14: 1186188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790926

RESUMEN

The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-ß adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Hemocianinas/metabolismo , Streptococcus agalactiae , Ligandos , Proteínas de la Membrana/metabolismo , Adyuvantes de Vacunas , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
13.
Sci Total Environ ; 905: 167073, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37714341

RESUMEN

Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Estrés Fisiológico , Hemocianinas/metabolismo , Hemocianinas/farmacología , Penaeidae/fisiología , Amoníaco/metabolismo , Ecosistema , Superóxido Dismutasa/metabolismo , Péptidos/metabolismo
14.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511256

RESUMEN

The seafood industry plays a huge role in the blue economy, exploiting the advantage of the enriched protein content of marine organisms such as shrimps and molluscs, which are cultured in aquafarms. Diseases greatly affect these aquatic organisms in culture and, hence, there is need to study, in detail, their innate immune mechanisms. Hemocyanin is a non-specific innate defense molecule present in the blood cells of several invertebrates, especially molluscs, arthropods, and annelids. It is concerned with oxygen transport, blood clotting, and immune enhancement. In the present study, this macromolecular metalloprotein was isolated from the hemolymph of the marine snail Hemifusus pugilinus (Born, 1778) using Sephadex G-100 gel filtration column chromatography. It occurred as a single band (MW 80 kDa) on SDS-PAGE. High-performance liquid chromatography (HPLC) of the purified hemocyanin showed a single peak with a retention time of 4.3 min. The secondary structure and stability of the protein were detected using circular dichroism (CD), and the spectra demonstrated negative ellipticity bands close to 208 nm and 225 nm, indicating ß-sheets. Further exploration of the purified hemocyanin revealed remarkable antimicrobial and antibiofilm activities against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Proteus vulgaris) at a concentration of 1-5 µg/mL. Spectrophotometric and in situ microscopic analyses (CLSM) unveiled the potential of the purified hemocyanin to inhibit biofilm formation in these bacteria with a minimal inhibitory concentration of 40 µg/mL. Furthermore, H. pugilinus hemocyanin (10 µg/mL concentration) displayed antifungal activity against Aspergillus niger. The purified hemocyanin was also assessed for cytotoxicity against human cancer cells using cell viability assays. Altogether, the present study shows that molluscan hemocyanin is a potential antimicrobial, antibiofilm, antifungal, anticancer, and immunomodulatory agent, with great scope for application in the enhancement of the immune system of molluscs, thereby facilitating their aquaculture.


Asunto(s)
Antiinfecciosos , Hemocianinas , Animales , Humanos , Hemocianinas/farmacología , Antifúngicos , Antiinfecciosos/farmacología , Bacterias/metabolismo , Pruebas de Sensibilidad Microbiana , Biopelículas , Antibacterianos/química
15.
PLoS One ; 18(6): e0287294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347755

RESUMEN

Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer 'building blocks' formed of 5 dimer 'plates', routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a 'tail-tail' configuration, forming a partially capped cylinder, with an additional decamer adding on in 'head-tail' configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.


Asunto(s)
Artrópodos , Gastrópodos , Animales , Hemocianinas/metabolismo , Microscopía por Crioelectrón , Moluscos/química , Modelos Moleculares , Artrópodos/metabolismo , Gastrópodos/metabolismo , Polímeros
16.
Food Chem ; 424: 136422, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37229897

RESUMEN

Hemocyanin in crustaceans is an allergen for humans. However, little information was available on its molecular, structural and allergenic properties. In this study, the purified natural protein was identified as Eriocheir sinensis HC by LC-MS/MS, which was allergenic because its reaction with the serum IgE of crustacean patients. Results of the molecular properties showed that, HC was resistant to trypsin digestion, but not a heat-stable protein. Boiling (55.05 ± 3.50 %) and steaming (66.84 ± 1.65 %) induced an increase in ß-sheet and decreased allergenicity of HC. By comparing the amino acid sequences of eight crustaceans, HC was found to be highly conserved. Five epitopes of HC were identified and validated by murine sensitization model, and two of them (P3 and P10) were exactly as the predicted by six types of bioinformatics. Multiple bioinformatics analysis combining with murine sensitization model seemed to be effective way for identification of allergenic epitopes.


Asunto(s)
Braquiuros , Hemocianinas , Humanos , Animales , Ratones , Hemocianinas/metabolismo , Alérgenos/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Epítopos , Braquiuros/genética , Braquiuros/metabolismo
17.
Dev Comp Immunol ; 145: 104723, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37120045

RESUMEN

Hemocyanin, a copper-containing respiratory protein, is abundantly present in hemolymph of arthropods and mollusks and performs a variety of immunological functions. However, the regulatory mechanisms of hemocyanin gene transcription remain largely unclear. Our previous work showed that knockdown of the transcription factor CSL, a component of the Notch signaling pathway, downregulated the expression of Penaeus vannamei hemocyanin small subunit gene (PvHMCs), indicating the involvement of CSL in regulating the PvHMCs transcription. In this study, we identified a CSL binding motif ("GAATCCCAGA", +1675/+1684 bp) in the core promoter of PvHMCs (designated as HsP3). Dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA) demonstrated that the CSL homolog in P. vannamei (PvCSL) could directly bind and activate the HsP3 promoter. Moreover, in vivo silencing of PvCSL significantly attenuated the mRNA and protein expression of PvHMCs. Finally, in response to Vibrio parahaemolyticus, Streptococcus iniae and white spot syndrome virus (WSSV) challenge, the transcript of PvCSL and PvHMCs showed a positive correlation, suggesting that PvCSL could also modulate the expression of PvHMCs upon pathogen stimulation. Taken together, our present finding is the first to demonstrate that PvCSL is a crucial factor in transcriptional control of PvHMCs.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Hemocianinas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica , Virus del Síndrome de la Mancha Blanca 1/fisiología
18.
Mar Drugs ; 21(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976213

RESUMEN

Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.


Asunto(s)
Penaeidae , Proteínas de Unión a los Elementos Reguladores de Esteroles , Animales , Hemocianinas/genética , Hemocianinas/metabolismo , Penaeidae/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ecosistema , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Bacterias/metabolismo , Proteínas de Choque Térmico/metabolismo
19.
J Immunol ; 210(9): 1396-1407, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971684

RESUMEN

Posttranslational modifications expand the functions of immune-related proteins, especially during infections. The respiratory glycoprotein, hemocyanin, has been implicated in many other functions, but the role of phosphorylation modification in its functional diversity is not fully understood. In this study, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes phosphorylation modification during bacterial infection. Dephosphorylation of PvHMC mediated by P. vannamei protein phosphatase 2A catalytic increases its in vitro antibacterial activity, whereas phosphorylation by P. vannamei casein kinase 2 catalytic subunit α decreases its oxygen-carrying capacity and attenuates its in vitro antibacterial activity. Mechanistically, we show that Thr517 is a critical phosphorylation modification site on PvHMC to modulate its functions, which when mutated attenuates the action of P. vannamei casein kinase 2 catalytic subunit α and P. vannamei protein phosphatase 2A catalytic, and hence abolishes the antibacterial activity of PvHMC. Our results reveal that phosphorylation of PvHMC modulates its antimicrobial functions in penaeid shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Hemocianinas/metabolismo , Penaeidae/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína Fosfatasa 2/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
20.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36790097

RESUMEN

Genome assemblies are growing at an exponential rate and have proved indispensable for studying evolution but the effort has been biased toward vertebrates and arthropods with a particular focus on insects. Onychophora or velvet worms are an ancient group of cryptic, soil dwelling worms noted for their unique mode of prey capture, biogeographic patterns, and diversity of reproductive strategies. They constitute a poorly understood phylum of exclusively terrestrial animals that is sister group to arthropods. Due to this phylogenetic position, they are crucial in understanding the origin of the largest phylum of animals. Despite their significance, there is a paucity of genomic resources for the phylum with only one highly fragmented and incomplete genome publicly available. Initial attempts at sequencing an onychophoran genome proved difficult due to its large genome size and high repeat content. However, leveraging recent advances in long-read sequencing technology, we present here the first annotated draft genome for the phylum. With a total size of 5.6Gb, the gigantism of the Epiperipatus broadwayi genome arises from having high repeat content, intron size inflation, and extensive gene family expansion. Additionally, we report a previously unknown diversity of onychophoran hemocyanins that suggests the diversification of copper-mediated oxygen carriers occurred independently in Onychophora after its split from Arthropoda, parallel to the independent diversification of hemocyanins in each of the main arthropod lineages.


Asunto(s)
Artrópodos , Hemocianinas , Animales , Filogenia , Intrones , Hemocianinas/genética , Artrópodos/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...