Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.116
1.
Orphanet J Rare Dis ; 19(1): 193, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741157

BACKGROUND: Adeno-associated virus (AAV)-based gene therapy for haemophilia has advanced substantially in the last 13 years; recently, three products have received approvals from regulatory authorities. Although the impact on quality of life seems promising, some limitations remain, such as the presence of pre-existing anti-AAV neutralising antibodies and the occurrence of hepatotoxicity. This review follows the CSL Behring-sponsored symposium at the 27th Congress of the European Hematology Association (EHA) 2022 that examined the haemophilia gene therapy process from a 360-degree multidisciplinary perspective. Here, the faculty (haematologist, nurse and haemophilia patient) summarised their own viewpoints from the symposium, with the aim of highlighting the key considerations required to engage with gene therapy effectively, for both patients and providers, as well as the importance of multidisciplinary collaboration, including with industry. RESULTS: When considering these new therapies, patients face a complex decision-making process, which includes whether gene therapy is right for them at their current stage of life. The authors agreed that collaboration and tailored education across the multidisciplinary team (including patients and their carers/families), starting early in the process and continuing throughout the long-term follow-up period, is key for the success of gene therapy. Additionally, patient expectations, which may surround eligibility, follow-up requirements and treatment outcomes, should be continually explored. During these ongoing discussions, transparent communication of the unknown factors, such as anticipated clotting factor levels, long-term factor expression and safety, and psychological changes, is critical. To ensure efficiency and comprehensiveness, clearly­defined protocols should outline the whole process, which should include the recording and management of long-term effects. CONCLUSION: In order to engage effectively, both patients and providers should be familiar with these key considerations prior to their involvement with the haemophilia gene therapy process. The future after the approval of haemophilia gene therapies remains to be seen and real-world evidence is eagerly awaited.


Dependovirus , Genetic Therapy , Hemophilia A , Humans , Genetic Therapy/methods , Hemophilia A/therapy , Hemophilia A/genetics , Dependovirus/genetics , Physicians , Nurses , Quality of Life
2.
J Viral Hepat ; 31 Suppl 1: 21-25, 2024 04.
Article En | MEDLINE | ID: mdl-38606938

Attempts to achieve a functional cure or amelioration of the severe X linked bleeding disorders haemophilia A (factor VIII deficiency) and haemophilia B (factor IX deficiency) using AAV-based vectors have been frustrated by immune responses that limit efficacy and durability. The immune responses include adaptive and innate pathways as well as cytokine mediated inflammation, especially of the target organ cells-hepatocytes. Immune suppression has only been partly effective in clinical trials at ameliorating the immune response and the lack of good animal models has delayed progress in identifying mechanisms and developing more effective approaches to controlling these effects of AAV gene transfer. Here we discuss the arguments for and against more potent immunosuppression to improve factor expression after AAV-mediated gene therapy.


Hemophilia A , Hemophilia B , Animals , Hemophilia A/genetics , Hemophilia A/therapy , Hemophilia B/genetics , Hemophilia B/therapy , Genetic Therapy , Immunosuppression Therapy , Immunity
3.
J Viral Hepat ; 31 Suppl 1: 9-13, 2024 04.
Article En | MEDLINE | ID: mdl-38606942

Gene therapy for haemophilia, utilizing adeno-associated viral vectors (AAVs) and coagulation factor genes, have demonstrated promising results, leading to recent approvals and introduction of the first gene therapy products into clinical practice. For successful and safe use, there are predefined inclusion and exclusion criteria, and the treatment process and associated risks should be thoroughly understood and long-term safety and efficacy carefully evaluated during follow up. As gene therapy becomes more accessible outside of clinical study centers, continuous evaluation of patient eligibility for subsequent AAV-based treatments becomes essential. Thorough evaluation of factors such as liver condition, anti-AAV status, and medical history ensures that gene therapy maximizing benefits while minimizing risks. Apart from fulfilling the established inclusion and exclusion criteria, the success of gene therapy is greatly influenced by the motivation and willingness of patients to accept temporary constraints, such as regular laboratory monitoring, potential use of immunosuppressants, and thorough documentation. Furthermore, various patient-related factors play a significant role in the management and outcomes of gene therapy, making a comprehensive evaluation essential. With the accumulation of more data, there is potential for the expansion of certain inclusion criteria, which may allow for a larger number of eligible patients to benefit from gene therapy. Empowering patients through shared decision-making enables them to thoroughly consider the therapy's potential benefits and risks.


Genetic Therapy , Hemophilia A , Humans , Genetic Therapy/adverse effects , Genetic Therapy/methods , Hemophilia A/therapy , Hemophilia A/genetics
4.
J Viral Hepat ; 31 Suppl 1: 14-20, 2024 04.
Article En | MEDLINE | ID: mdl-38606951

Hepatitis is a common adverse event following gene therapy for haemophilia, often associated with a loss of transgene expression. Investigating the potential causes and implications of this is crucial for the overall success of treatment. Gene therapy trials using adeno-associated virus (AAV) vectors have demonstrated promising results marked by increases in factor FVIII and FIX levels and reductions in episodes of bleeding. However, hepatocellular injury characterised by elevations in alanine aminotransferases (ALT) has been noted. This liver injury is typically transient and asymptomatic, posing challenges in determining its clinical significance. Proposed causes encompass immune-mediated responses, notably T cell cytotoxicity in response to the AAV vector, direct liver injury from the viral capsid or transcribed protein via the unfolded protein response and pre-existing liver conditions. Liver biopsy data conducted years post-gene therapy infusion has shown sinusoidal infiltration without significant inflammation. The overall safety profile of gene therapy remains favourable with no evidence drug-induced liver injury (DILI) based on Hy's Law criteria. Essential pre-therapy monitoring and identifying patients at high risk of liver injury should involve liver function tests and non-invasive fibroscans, while novel blood-based biomarkers are under exploration. Further research is required to comprehend the mechanisms underlying transaminitis, loss of transgene expression and long-term effects on the liver, providing insights for optimising gene therapy for haemophilia.


Hemophilia A , Hepatitis A , Hepatitis , Humans , Hemophilia A/genetics , Hemophilia A/therapy , Liver Function Tests , Genetic Therapy/adverse effects , Genetic Therapy/methods
5.
Haemophilia ; 30(3): 638-647, 2024 May.
Article En | MEDLINE | ID: mdl-38578179

AIM: To characterise non-severe haemophilia A (HA) patients enrolled on the Australian Bleeding Disorders Registry (ABDR) treated through a state-wide Haemophilia Treatment Centre (HTC) with respect to their mutational profile, inhibitor risk and health-care burden. METHOD: We conducted a single-centre observational study of all non-severe HA patients treated at the Alfred Health HTC registered on the ABDR as of the 26th July 2023. Data were extracted from the ABDR and electronic medical record (EMR) regarding demographics, severity, genetic testing, treatment, inhibitors, bleeding events and procedures. Inhibitor risk was calculated as a function of exposure days (EDs) of FVIII replacement. RESULTS: There were 289 non-severe HA patients treated at the Alfred HTC registered on the ABDR as of July 2023, all of whom were adult patients aged > 18 years old. Genotyping had been performed in 228/289 (78.9%). Of the inhibitor analysis population, 14/193 (7.3%) had an inhibitor. The cumulative incidence of inhibitor development at 75 EDs was 31% (95% CI 13%-46%). The median cost of bypassing agents per inhibitor patient was $57,087.50/year. CONCLUSION: These results demonstrate a relatively high inhibitor prevalence and incidence risk in non-severe HA compared to previously published work, although this may partly reflect a smaller population size. High rates of genotyping have allowed representative mutational characterisation. The burden of care imposed by non-severe HA in terms of bleeding events, procedures and bypassing agent cost is larger than expected, particularly within the inhibitor population.


Hemophilia A , Mutation , Humans , Hemophilia A/drug therapy , Hemophilia A/genetics , Australia , Adult , Male , Middle Aged , Factor VIII/therapeutic use , Factor VIII/genetics , Female , Young Adult , Adolescent , Severity of Illness Index , Aged , Health Care Costs
6.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38612447

Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.


Hemophilia A , Hemostatics , Humans , Factor VIII/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Therapy , Enhancer Elements, Genetic
7.
Curr Med Sci ; 44(2): 435-440, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561593

OBJECTIVE: Hemophilia carriers (HCs), who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene (F8 or F9), may have a wide range of clotting factor levels, from very low, similar to afflicted males, to the upper limit of normal, and may experience mental health issues. The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs. Additionally, we aimed to investigate the mental health status of HCs in China. METHODS: A total of 127 hemophilia mothers, including 93 hemophilia A (HA) mothers and 34 hemophilia B (HB) mothers, were enrolled in this study. Long distance PCR, multiplex PCR, and Sanger sequencing were used to analyze mutations in F8 or F9. Coagulation factor activity was detected by a one-stage clotting assay. The Symptom Checklist 90 (SCL-90, China/Mandarin version) was given to HCs at the same time to assess their mental health. RESULTS: A total of 90.6% of hemophilia mothers were diagnosed genetically as carriers, with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers, respectively. The median clotting factor level in carriers was 0.74 IU/mL (ranging from 0.09 to 1.74 IU/mL) compared with 1.49 IU/mL (ranging from 0.93 to 1.89 IU/mL) in noncarriers, of which 14.3% of HCs had clotting factor levels of 0.40 IU/mL or below. A total of 53.8% (7/13) of HA carriers with low clotting factor levels (less than 0.50 IU/mL) had a history of bleeding, while none of the HB carriers displayed a bleeding phenotype. The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00 (±60.37) and 1.78 (±0.59), respectively. A total of 67.7% of the respondents had psychological symptoms, with obsessive-compulsive disorder being the most prevalent and severe. The pooled estimates of all nine factors were significantly higher than those in the general population (P<0.05). CONCLUSIONS: The detection rate of gene mutations in hemophilia mothers was 90.6%, with a median clotting factor level of 0.74 IU/mL, and 14.3% of HCs had a clotting factor level of 0.40 IU/mL or below. A history of bleeding was present in 41.2% of HCs with low clotting factor levels (less than 0.50 IU/mL). Additionally, given the fragile mental health status of HCs in China, it is critical to develop efficient strategies to improve psychological well-being.


Hemophilia A , Male , Humans , Hemophilia A/epidemiology , Hemophilia A/genetics , Cross-Sectional Studies , Blood Coagulation Factors , Hemorrhage , Surveys and Questionnaires , Health Surveys
8.
BioDrugs ; 38(3): 369-385, 2024 May.
Article En | MEDLINE | ID: mdl-38489061

The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.


CRISPR-Cas Systems , Drug Development , Gene Editing , Genetic Therapy , Hemophilia A , Humans , Hemophilia A/genetics , Hemophilia A/therapy , Gene Editing/methods , Drug Development/methods , Genetic Therapy/methods , Animals , Mutagenesis, Insertional
9.
Haemophilia ; 30 Suppl 3: 12-20, 2024 Apr.
Article En | MEDLINE | ID: mdl-38528615

INTRODUCTION: After decades of stumbling clinical development, the first gene therapies for haemophilia A and B have been commercialized and have normalized factor (F)VIII and factor (F)IX levels in some individuals in the long term. Several other clinical programs testing adeno-associated viral (AAV) vector gene therapy are at various stages of clinical testing. DISCUSSION: Multiyear follow-up in phase 1/2 and 3 studies showed long-term and sometimes curative but widely variable and unpredictable efficacy. Liver toxicities, mostly low-grade, occur in the 1st year in at least some individuals in all haemophilia A and B trials and are poorly understood. Wide variability and unpredictability of outcome and slow decline of FVIII levels are a major disadvantage because immune responses to AAV vectors preclude repeat dosing, which otherwise could improve suboptimal or restore declining expression, while overexpression may predispose to thrombosis. Long-term safety outcomes will need lifelong monitoring because AAV vectors infused at high doses integrate into chromosomes at rates that raise questions about potential oncogenicity and necessitate vigilance. Alternative gene transfer systems employing gene editing and/or non-viral vectors are under development and promise to overcome some limitations of the current state of the art for both haemophilia A and B. CONCLUSIONS: AAV gene therapies for haemophilia have now become new treatment options but not universal cures. AAV is a powerful but imperfect gene transfer platform. Biobetter FVIII transgenes may help solve some problems plaguing gene therapy for haemophilia A. Addressing variability and unpredictability of efficacy, and delivery of gene therapy to ineligible patient subgroups may require different gene transfer systems, most of which are not ready for clinical translation yet but bring innovations needed to overcome the current limitations of gene therapy.


Hemophilia A , Humans , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Genetic Therapy , Gene Editing , Transgenes , Dependovirus/genetics
10.
Haemophilia ; 30 Suppl 3: 45-51, 2024 Apr.
Article En | MEDLINE | ID: mdl-38532560

Raising awareness and improving recognition, accurate classification, and enhanced access to new treatments represent current key challenges for carriers of haemophilia. Women and girls carrying genes for haemophilia often experience significant bleeding and/or low factor levels. The bleeding associated with female haemophilia is frequently overlooked, has a weak correlation with factor levels, and manifests differently than in males, with heavy menstrual bleeding being a predominant symptom. Recent changes in terminology now allow the diagnosis of haemophilia in females with low factor levels and differentiate between symptomatic and asymptomatic carriers of the gene. Observations from real-world experiences and limited clinical trial data have highlighted the positive impact of various new haemophilia treatments for women and girls with clotting factor deficiencies. There is an urgent need for initiatives that increase their access to these treatments and encourage well-designed clinical trials focusing on female-specific outcomes. In women with inherited bleeding disorders, early recognition and optimal management of heavy menstrual bleeding are crucial. However, treatment options and guidance from high-quality clinical trials are currently insufficient. Menstrual health assessment should be a regular part of monitoring women and girls with inherited bleeding disorders throughout their lives, emphasizing the importance of gathering data to improve future management.


Hemophilia A , Menorrhagia , Male , Female , Humans , Hemophilia A/complications , Hemophilia A/diagnosis , Hemophilia A/genetics , Menorrhagia/etiology , Menorrhagia/genetics , Hemorrhage/genetics
11.
Mol Diagn Ther ; 28(3): 239-248, 2024 May.
Article En | MEDLINE | ID: mdl-38538969

Hemophilia is a genetic disorder that is caused by mutations in coagulation factor VIII (hemophilia A) or IX (hemophilia B) genes resulting in blood clotting disorders. Despite advances in therapies, such as recombinant proteins and products with extended half-lives, the treatment of hemophilia still faces two major limitations: the short duration of therapeutic effect and production of neutralizing antibodies against clotting factors (inhibitor). To overcome these limitations, new hemophilia treatment strategies have been established such as gene therapy, bispecific antibody, and rebalancing therapy. Although these strategies have shown promising results, it is difficult to achieve a permanent therapeutic effect. Advances in the clustered regularly interspaced short palindromic repeat (CRISPR) technology have allowed sustainable treatment by correcting mutated genes. Since genome editing generates irreversible changes in host genome, safety must be ensured by delivering target organs. Therefore, the delivery tool of the CRISPR system is crucial for safe, accurate, and efficient genome editing. Recently, non-viral vector lipid nanoparticles (LNPs) have emerged as safer tools for delivering CRISPR systems than other viral vectors. Several previous hemophilia pre-clinical studies using LNP-CRISPR showed that sufficient and sustainable therapeutic effects, which means that LNP-CRISPR-mediated genome-editing therapy can be a valid option for the treatment of hemophilia. In this paper, we summarize the latest advancements in the successful treatment of hemophilia and the potential of CRISPR-mediated genome-editing therapy using LNPs.


CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Hemophilia A , Nanoparticles , Humans , Hemophilia A/therapy , Hemophilia A/genetics , Gene Editing/methods , Genetic Therapy/methods , Animals , Hemophilia B/therapy , Hemophilia B/genetics , Factor VIII/genetics , Factor VIII/therapeutic use , Lipids , Genetic Vectors/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
15.
Mol Ther ; 32(4): 969-981, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38341614

The ability to target the native production site of factor VIII (FVIII)-liver sinusoidal endothelial cells (LSECs)-can improve the outcome of hemophilia A (HA) gene therapy. By testing a matrix of ultrasound-mediated gene delivery (UMGD) parameters for delivering a GFP plasmid into the livers of HA mice, we were able to define specific conditions for targeted gene delivery to different cell types in the liver. Subsequently, two conditions were selected for experiments to treat HA mice via UMGD of an endothelial-specific human FVIII plasmid: low energy (LE; 50 W/cm2, 150 µs pulse duration) to predominantly target endothelial cells or high energy (HE; 110 W/cm2, 150 µs pulse duration) to predominantly target hepatocytes. Both groups of UMGD-treated mice achieved persistent FVIII activity levels of ∼10% over 84 days post treatment; however, half of the HE-treated mice developed low-titer inhibitors while none of the LE mice did. Plasma transaminase levels and histological liver examinations revealed minimal transient liver damage that was lower in the LE group than in the HE group. These results indicate that UMGD can safely target LSECs with a lower-energy condition to achieve persistent FVIII gene expression, demonstrating that this novel technology is highly promising for therapeutic correction of HA.


Factor VIII , Hemophilia A , Humans , Factor VIII/metabolism , Hemophilia A/genetics , Hemophilia A/therapy , Hemophilia A/pathology , Endothelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Genetic Therapy/methods
16.
Haemophilia ; 30(2): 410-418, 2024 Mar.
Article En | MEDLINE | ID: mdl-38343110

INTRODUCTION: Various risk factors for inhibitor development in haemophilia A (HA) have been described but Indian data remains scanty. AIM: We aimed to evaluate the genetic changes in Indian HA-patients that are associated with the development of inhibitors. METHODS: All HA-patients with inhibitors who availed coagulation-laboratory services from January-2015 till December-2021 and had their samples preserved for DNA extraction were included in this study. An equal number of severity-matched HA patients without inhibitors were also included as controls. Intron 22 and intron 1 inversions in Factor VIII gene were identified using inverse-shifting-PCR. Inversion-negative patients were further assessed by targeted NGS, MLPA. RESULTS: Thirty HA-patients with inhibitors were identified. All had severe-HA. Thirty severe-HA-patients without inhibitors were also included as controls. Intron 22 inversion (63.3%) and large deletions (15%) were the commonest variants identified. There was no difference in genetic variants in patients with low and high titre inhibitors. A3, A2 and C2 were the most common domains involved in inversion-negative patients with inhibitors. However, there was no significant difference in domain involvement among inversion-negative patients with and without inhibitors. Seven novel-variants were identified, including three large deletions, one large duplication and two nonsense variants in inhibitor-positive patients, and one frameshift variant in inhibitor-negative patient. After adjusting for clinical risk-factors, large deletions were independently associated with the presence of inhibitors [aOR:6.1 (1.41-56.3)]. CONCLUSION: Intron 22 inversions are the commonest variant in Indian patients with severe-HA. Large deletions predispose to inhibitor development independent of clinical risk factors.


Hemophilia A , Humans , Hemophilia A/genetics , Cohort Studies , Factor VIII/genetics , Genetic Association Studies , Introns , Chromosome Inversion , Genotype , Phenotype , Mutation
17.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368357

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Hemophilia A , Nanopore Sequencing , Mice , Animals , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Hemophilia A/genetics , Hemophilia A/therapy , Gene Editing/methods , DNA
18.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339041

Sporadic hemophilia A (HA) enables the persistence of HA in the population. F8 gene inversion originates mainly in male germ cells during meiosis. To date, no studies have shown the origin and timing of HA sporadic noninversion variants (NIVs); herein, we assume that HA-sporadic NIVs are generated as a de novo variant. Of the 125 registered families with HA, 22 were eligible for inclusion. We conducted a linkage analysis using F8 gene markers and amplification refractory mutation system-quantitative polymerase chain reaction to confirm the origin of the sporadic NIVs (~0% mutant cells) or the presence of a mosaic variant, which requires further confirmation of the origin in the parent. Nine mothers, four maternal grandmothers, and six maternal grandfathers were confirmed to be the origin of sporadic NIVs, which most likely occurred in the zygote within the first few cell divisions and in single sperm cells, respectively. Three mothers had mosaic variants, which most likely occurred early in postzygotic embryogenesis. All maternal grandparents were free from sporadic NIV. In conclusion, F8 NIVs in sporadic HA were found to be caused primarily by de novo variants. Our studies are essential for understanding the genetic pathogenesis of HA and improving current genetic counseling.


Hemophilia A , Male , Humans , Hemophilia A/genetics , Hemophilia A/pathology , Pedigree , Semen , Mutation , Chromosome Inversion , Factor VIII/genetics
19.
J Thromb Haemost ; 22(5): 1510-1515, 2024 May.
Article En | MEDLINE | ID: mdl-38242208

Independent data collection is crucial in addressing the challenges associated with gene therapy for hemophilia, which is a promising treatment option but requires careful monitoring and management of short-term and potential long-term safety concerns. The International Society on Thrombosis and Haemostasis has identified a minimum efficacy and safety data set included in the World Federation of Hemophilia Gene Therapy Registry that should be collected on a national basis at specific time points for each patient who has been treated with the gene therapy products. This Gene Therapy Minimum Data Set (GT-MDS) was developed to facilitate data collection and to ensure capturing the most relevant data and most known and unknown safety and efficacy parameters recently cited by the European Medicine Agencies. The concept of assembling a minimum data set is not about creating a new data set but rather about identifying a subset of critical and essential topics that should always be included. The GT-MDS is structured into 3 sections and comprises an abridged list of 6 topics during routine gene therapy follow-up, keeping the number of data points low but allowing for rapid and independent data evaluation. The World Federation of Hemophilia Gene Therapy Registry data set, developed by the World Federation of Hemophilia, the International Society on Thrombosis and Haemostasis, and other organizations, including industry partners in 2020, is comprehensive. The GT-MDS reports the minimum relevant information that should not be lost and is mandatory to be collected for all patients who undergo gene therapy. Therefore, the implementation of the gene therapy registry and the minimum data set empowers and enhances data collection at a global level.


Genetic Therapy , Hemophilia A , Registries , Humans , Hemophilia A/genetics , Hemophilia A/therapy , Hemophilia A/blood , Genetic Therapy/adverse effects , Treatment Outcome
20.
J Inherit Metab Dis ; 47(1): 9-21, 2024 Jan.
Article En | MEDLINE | ID: mdl-38171926

Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.


Hemophilia A , Liver Diseases , Metabolic Diseases , Humans , Liver Diseases/genetics , Liver Diseases/therapy , Liver Diseases/metabolism , Genetic Therapy , Metabolic Diseases/genetics , Metabolic Diseases/therapy , Metabolic Diseases/metabolism , Hemophilia A/genetics
...