Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Res ; 346: 199409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815869

RESUMEN

Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of cases. CCHFV is listed as a priority pathogen by the World Health Organization (WHO) and there are currently no widely-approved vaccines. Defining a serological correlate of protection against CCHFV infection would support the development of vaccines by providing a 'target threshold' for pre-clinical and clinical immunogenicity studies to achieve in subjects and potentially obviate the need for in vivo protection studies. We therefore sought to establish titratable protection against CCHFV using pooled human convalescent plasma, in a mouse model. Convalescent plasma collected from seven individuals with a known previous CCHFV virus infection were characterised using binding antibody and neutralisation assays. All plasma recognised nucleoprotein and the Gc glycoprotein, but some had a lower Gn glycoprotein response by ELISA. Pooled plasma and two individual donations from convalescent donors were administered intraperitoneally to A129 mice 24 h prior to intradermal challenge with CCHFV (strain IbAr10200). A partial protective effect was observed with all three convalescent plasmas characterised by longer survival post-challenge and reduced clinical score. These protective responses were titratable. Further characterisation of the serological reactivities within these samples will establish their value as reference materials to support assay harmonisation and accelerate vaccine development for CCHFV.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Fiebre Hemorrágica de Crimea/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Ratones , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Femenino , Pruebas de Neutralización , Plasma/inmunología , Masculino
2.
Emerg Infect Dis ; 30(5): 854-863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666548

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tickborne infection that can range from asymptomatic to fatal and has been described in >30 countries. Early identification and isolation of patients with suspected or confirmed CCHF and the use of appropriate prevention and control measures are essential for preventing human-to-human transmission. Here, we provide an overview of the epidemiology, clinical features, and prevention and control of CCHF. CCHF poses a continued public health threat given its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, and potential for severe and fatal illness, in addition to the limited medical countermeasures for prophylaxis and treatment. A high index of suspicion, comprehensive travel and epidemiologic history, and clinical evaluation are essential for prompt diagnosis. Infection control measures can be effective in reducing the risk for transmission but require correct and consistent application.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/prevención & control , Fiebre Hemorrágica de Crimea/transmisión , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/virología , Humanos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Animales , Garrapatas/virología
3.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409240

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Femenino , Animales , Ratones , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas de la Nucleocápside/metabolismo , Anticuerpos Monoclonales , Fiebre Hemorrágica de Crimea/prevención & control , Glicoproteínas/metabolismo , Anticuerpos Antivirales
4.
Cell Res ; 34(2): 140-150, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38182887

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Receptores de LDL , Animales , Humanos , Ratones , Endocitosis , Glicoproteínas/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Fiebre Hemorrágica de Crimea/prevención & control , Receptores de LDL/metabolismo , Internalización del Virus
5.
Viruses ; 15(12): 1-15, dez 4, 2023. tab, mapa
Artículo en Inglés | RSDM | ID: biblio-1531383

RESUMEN

Emerging zoonotic diseases are an increasing threat to public health. There is little data on the seroprevalence of zoonotic diseases among pastoralists in the country. We aim to carry out a cross-sectional study on the prevalence of major zoonotic diseases among pastoral communities in the Caia and Búzi districts. Methods: Between January and December 2018, a questionnaire was used to solicit socio-demographic data from consenting pastoralists with the collection of blood samples in the Caia and Búzi districts of the Sofala province. All samples were tested using ELISA commercial reagents for the detection of IgM antibodies against Brucella and Leptospira. Likewise, IgM and IgG antibodies against Rickettsia and CCHFV were determined using ELISA kits. Results: A total of 218 samples were tested, of which 43.5% (95/218) were from the district of Caia and 56.4% (123/218) from the Búzi district. Results from both districts showed that the seroprevalence of IgM antibodies against Brucella and Leptospira was 2.7% (6/218) and 30.3% (67/218), respectively. Positivity rates for IgM and IgG anti-Rickettsia and CCHFV were 8.7% (19/218), 2.7% (6/218), 4.1% (9/218), and 0.9% (2/218), respectively. Conclusions: Results from our study showed evidence of antibodies due to exposure to Brucella, Leptospira, Rickettsia, and CCHFV with antibodies against Leptospira and Rickettsia being the most prevalent. Hence, laboratory diagnosis of zoonotic diseases is essential in the early detection of outbreaks, the identification of silent transmission, and the etiology of non-febrile illness in a pastoral community. There is a need to develop public health interventions that will reduce the risk of transmission.


Asunto(s)
Humanos , Masculino , Femenino , Brucella/virología , Fiebre Hemorrágica de Crimea/virología , Anticuerpos Antivirales/inmunología , Rickettsia/crecimiento & desarrollo , Virus Hantaan/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Leptospira/virología , Mozambique
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA